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Abstract 

 

In innovation networks based on information exchange, an orchestrating actor, or hub, captures 

information from peripheral actors, promotes innovation and then distributes it to the network in 

the form of added value. This paper identifies the pricing options proposed by the orchestrating 

hub that would result in the network’s stability and efficiency. Since all the companies in this 

ecosystem can be seen as rational agents, game theory is an appropriate framework for studying 

pricing as a mechanism to promote network stability. We analyze the equilibrium conditions in 

this context and conclude that the Nash equilibrium entails the network’s stability. Our findings 

indicate that, in order to maximize the innovation power of the network, the agents should be 

charged a price proportional to the financial benefit obtained by the net innovation. This study fills 

relevant gaps in the literature on monopolistic orchestrated innovation and the pricing structures 

of network connections.  
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1. Introduction 

The efficiency of organizations is highly impacted by their connection to innovation networks. 

These networks may be established through the cooperation of independent companies 

(peripherical actors) or around a central actor (orchestrator) that manages the information flow and 

coordinates the generation of innovation for the other actors (Dhanaraj and Parkhe [2006]). 

Companies in a number of different sectors, such as retail, tourism, telecommunications and 

financial services, have opted for using external agencies provided with information which is 

shared to optimize value chain processes, reducing costs and increasing efficiency in decision-

making. 

One of the main objectives of the orchestrator is to promote its network’s stability, that is, to 

keep the actors connected, avoiding that they migrate to other networks or disconnect. Since this 

kind of network is established through a client-supplier relationship, the price charged by the 

orchestrating company will be assessed and compared by the connected companies to the value 

effectively generated by the connection. Price is therefore a key coordination component in terms 

of the network’s stability.  

 In this context, we try to answer the following questions: what is the relationship between 

pricing and the maintenance of networks’ stability? What are the characteristics of a fair pricing 

structure?  

The aforementioned environment can be seen as a game where both the peripheral actors 

and the orchestrating hub can be seen as economically rational agents who try to maximize their 

profits and where each company can adopt one of the two following strategies: to connect or not 

to connect to the network.  
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Hence, in order to answer the questions above, we propose a theoretical framework based 

on a simplified game in which an orchestrating hub manages information about companies which 

might connect to it and obtain financial gains from the innovation provided. Since every actor in 

the network can be interpreted as a rational agent, the conclusions on the effects of the different 

pricing models can be reached through the analysis of the conditions for a Nash equilibrium of the 

formulated game. The analytical interpretation of the inequalities encountered in the solution 

allows us to reach relevant conclusions on the effect of pricing on network coordination and 

stability. We also include an illustrative example which helps with the visualization and the 

interpretation of the conclusions reached analytically. Our results show that the network’s stability 

is maximized when the price paid by the agents is proportional to the benefit obtained from 

participating in the network. 

We contribute to the literature by, for the first time, associating pricing with stability and 

efficiency in different types of networks ― complete, partial and empty ― in the presence of 

externalities. Moreover, whilst studies in this area have considered a number of sectors, the 

financial segment has been less explored. We fill in this gap by illustrating our study with an 

example applicable to orchestrators such as credit rating agencies and credit bureaus who use the 

information of their own clients (e.g. banks, retail companies and tourism agencies), promote 

innovation through the storage, analysis and statistical modeling of the client’s data, and pass the 

innovation back to their clients in the form of a summary of the credit risk of private individuals, 

allowing their clients to make better decisions. 

Apart from the academic contributions, this paper has important practical implications. We 

focus on monopolistic markets where organizations acting as orchestrating hubs do not have a 

benchmark from peers to help in defining their prices. This scenario is usual in many circumstances 
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and includes cases where a very large organization shares the market with small competitors. Our 

study provides a novel support to network managers when defining optimal prices for their 

services. In other words, our framework can guide orchestrators’ managers who need to set prices 

for their services so that they guarantee the highest possible income without reducing the number 

of clients (i.e. keeping the network stable). This can be applied not only in the sector illustrated 

here but also in any business areas. 

 

2. Literature Review 

2.1. Networks’ structure and their stability 

Networks display different structures and have different typologies. They can be formal or 

informal, where the latter are those with free association or coexistence among participants and 

former are those in which participation is formally contracted. Networks can also be horizontal or 

vertical. Horizontal networks are cooperation networks in which the actors preserve their 

independence and vertical networks are hierarchical networks (Marcon and Moinet [2000]). 

Another variation of the structural form of networks is related to their density, which is measured 

by the ratio between the quantity of existing connections and the quantity of potential connections 

in the network when all participants are interconnected. The position of an actor in a network in 

relation to the other actors involved is understood as its centrality (Rowley [1997]).  

Network stability, which has been investigated in a number of studies (e.g. Dutta and 

Mutuswami [1997]; Jackson and Van den Nouweland [2005]; Bartelings et al. [2017], can be 

understood as the capability of a network to reach a non-negative growth rate, even if it allows 

members to enter or exit the network (Dhanaraj and Parkhe [2006]).  

http://www.sciencedirect.com/science/article/pii/S0022053197923061#!
http://www.sciencedirect.com/science/article/pii/S0022053197923061#!
http://www.sciencedirect.com/science/article/pii/S0022053197923061#!
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The analyses on this issue have focused on very specific contexts, such as computer networks 

(Avrachenkov et al. [2015]; Delgado [2010]), telecommunications (Hong and Chun [2010]), small 

and medium enterprises (Nilsen and Gausdal [2017]), mechanical engineering industry 

(Landsperger and Spieth [2011]), R&D (König et al. [2012]) and supply networks (Ostrovsky 

[2008]). We expand the range of the sectors analyzed by focusing on the financial segment. Pricing 

has also been considered in the literature on networks (e.g. Bloch and Quérou [2013]; Fainmesser 

and Galeotti [2016]) but without a clear link with network stability, which is done in this paper. 

 

2.2. Game Theory, Nash Equilibrium and networks’ stability 

Game Theory, just like the Nash Equilibrium, has been extensively used in the literature as the 

appropriate framework for understanding the formation and stability of networks because the 

strategies chosen by each actor influence the potential results of all actors (Avrachenkov et al. 

[2015]; Ozkan-Canbolat and Beraha [2016]; Anshelevich et al. [2008]; Goyal and Vega-Redondo 

[2005]; Bala and Goyal [2000]). The actors involved in networks can represent people or 

companies which, most of the times, choose to form or not to form their connections with the 

objective of maximizing their returns. From the Game Theory’s standpoint, considering that the 

utility or result achieved by each player depends on the strategy used by each of them (Von 

Neumann and Morgenstern [1944]), the actors forming the network can be understood as rational 

agents who have two strategies in relation to each different actor in the network: to connect or not 

to connect.  

When each agent achieves a better result in comparison to the result from the opposite 

decision (i.e. to connect to the network or not), none of them regret their decisions. If analyzed 

over time, such network would be stable because it is in the Nash equilibrium. If the members 
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connected to the network do not regret doing it, it is expected that they will remain connected in 

the future. Likewise, the non-participating members would not decide to connect to the network. 

Given that network stability is defined as “non-negative growth rates”, the stationary state brought 

about by a Nash equilibrium (Nash [1951]) implies a stable network (Anshelevich et al. [2008]).  

In fact, it is common the existence of many scenarios with Nash equilibria and, therefore, 

multiple possibilities of reaching network stability. As a consequence, it is common to focus on 

the relationship between the “best Nash equilibrium” and the “worst Nash equilibrium”, being the 

“best equilibrium” the one that incentivizes everyone’s participation. On the other hand, the “worst 

equilibrium” does not incentivize the formation of the network and provides the worst global result 

for the group.  

 

3. Theoretical Framework 

In the context of formal and horizontal innovation networks (Marcon and Moinet [2000]) 

constituted by rational agents (Mas-Colell at al. [1995]), this study considers different pricing 

models adopted by an orchestrating hub (Dhanaraj and Parkhe [2006]) as a network coordination 

instrument, and the relationship between these different models and the network’s stability 

(Dhanaraj and Parkhe [2006]) and density (Rowley [1997]), as well as the presence of externalities 

(Katz and Shapiro [1985]). We use Game Theory (Gibbons [1992]), in which the Nash equilibrium 

(Nash [1951]) implies network stability. 

We investigate a particular type of innovation network characterized by low density (Rowley 

[1997]) and only one agent, the orchestrating hub, with high centrality (Freeman [1991]). In this 

type of network, companies with different volumes of information connect only to the 

orchestrating hub, who, in turn, creates added value with the set of information items received and 
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make them available for all the actors connected to the network. Because it is based on free 

association and because the services provided are contracted, the network is defined as horizontal 

and formal, respectively (Marcon and Moinet [2000]). This type of structure is very common in 

the markets of credit-granting (Pagano and Jappelli [1993]), frauds, and debt collection. 

All actors, including the orchestrating hub, are private companies, which makes the use of 

the economic theory of agents rationality even more feasible (Mas-Colell et al. [1995]). They are 

rational agents in the sense that they always aim at maximizing their utility functions (i.e. their 

financial results). Hence, it is reasonable to assume that the agents’ primary motivation for 

connecting to the network is financial. Thus, the network’s instrument of coordination would be 

the price stipulated by the orchestrating hub. Without loss of generality, other factors that could 

also interfere in the actors’ decision (Meyer and Rowan [1977]) have been left out for 

simplification purposes. 

The framework provided by Game Theory offers a valuable tool for assessing stability in 

networks, having been used many times towards this end (Anshelevich et al. [2008]; Papadimitriou 

[2001]). The environment can be understood as a game in which the actors choose between two 

strategies (to connect or not to connect) and benefit according to the result obtained by the 

network’s innovation, measured against the price paid for the connection. Game Theory is 

appropriate to approach this problem, especially because it involves rational agents, which is more 

acceptable when we are dealing with companies than with individuals. 

As defined by Nash [1951], an equilibrium occurs in a game when, once having chosen their 

strategies and assessed their results, none of the agents, or in this case, actors, regrets having chosen 

the strategy they picked, given the strategies picked by the other actors. Such equilibrium implies 

three possible situations: the non-existence of a network (empty network), the existence of the 
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network with a partial quantity of participants (partial network), and the existence of the network 

with all possible participating actors (complete network). The last situation can be understood in 

the present study as “the best equilibrium” in terms of network stability. It is the scenario with 

maximum density for the context proposed. 

Our study adds to the existing body of research on the relationships between the coordination 

structures and the potential levels of density and efficiency as well as the relationships between 

these scenarios and the presence of externalities. The central focus is on the pricing structure and 

the different implications it has on the density and on the presence of externalities. Different price 

structures are determined if a network is either complete, when it has maximum density, or partial, 

i.e., with density between zero and the maximum value.  

 

4. The Model 

4.1. Model with price discrimination 

Let (𝑆, 𝑓) be a game with n participants and 𝑆𝑖 the set of strategies of player 𝑖. 𝑆 = 𝑆1𝑋𝑆2𝑋 … 𝑋𝑆𝑛 

is the set of strategies which specifies all actions of a game. 𝑓 = (𝑓1(𝑥), … , 𝑓𝑛(𝑥)) is the reward 

function. Let 𝜒−𝑖 be the set of strategies of all players, except for player 𝑖. When each player 𝑖 ∈

{1, … , 𝑛} selects its strategy 𝑥𝑖, the set of resulting strategies is 𝑥 = (𝑥1, … , 𝑥𝑛) and the player 𝑖 

has the reward function 𝑓𝑖(𝑥). A set of strategies 𝑥∗ ∈ 𝑆 is a Nash equilibrium when ∀𝑖, 𝑥𝑖 ∈

𝑆𝑖, 𝑥𝑖 ≠ 𝑥𝑖
∗: 𝑓𝑖(𝑥𝑖

∗, 𝑥−𝑖
∗ ) ≤ 𝑓𝑖(𝑥𝑖 , 𝑥−𝑖

∗ ).   

The reward function, 𝑓𝑖(𝑥), can be defined in terms of each peripheral actor i’s utility 

function u as: 

𝑢𝑖
0 = 𝑘𝑖𝑐1 + (1 − 𝑘𝑖)𝑐0 

𝑢𝑖
1 = 𝑘𝑟𝑐1 + (1 − 𝑘𝑟)𝑐0 + 𝑝𝑖  

(1) 

(2) 



Pricing in Information Orchestrators 

 

 

where the superscripts 0 and 1 correspond to not joining or joining the network, respectively. ki is 

the fraction of inhabitants known by peripheral actor i  previously to them joining the network. kr 

is the proportion of inhabitants known by the network, i.e., by the orchestrating hub. c1 and c0 are, 

respectively, the costs when the peripherical actor knows and does not know the inhabitant. 

Therefore, it is natural to assume that  𝑐1 < 𝑐0.  pi is the price charged by the orchestrating hub. 

Given the Nash equilibrium conditions specified above and Eqs. (1) and (2), we have 𝑢𝑖
1 ≤

𝑢𝑖
0, ∀𝑖, which results in:  

(𝑘𝑟 − 𝑘𝑖)(𝑐0 − 𝑐1) ≥ 𝑝𝑖 

Under this condition, it is possible to find a price per peripheral actor which maximizes the 

size of the network. Since 𝑘𝑟 ≥ 𝑘𝑖  and 𝑐0 > 𝑐1 by construction, then there is a 𝑝𝑖 ≥ 0 that allows 

for the equilibrium in any case. (𝑘𝑟 − 𝑘𝑖) can be understood as the difference between the fraction 

of inhabitants known by the network and the fraction of inhabitants known by the company 

connected. The subtraction (𝑐0 − 𝑐1) represents the difference between the cost of making a 

decision for an unknown client and the cost of making a decision for a known client. Thus, 

(𝑐0 − 𝑐1) is the financial gain from the network’s innovation for each client, whose decisions will 

now be made based on information from the network.  

(𝑘𝑟 − 𝑘𝑖)(𝑐0 − 𝑐1) means the innovation gain appropriated by the network from the 

company connected in relation to the fraction of inhabitants whose decisions are made for a lower 

price due to the innovation network. This is the main conclusion of this work: the price established 

by the monopolistic orchestrating hub for each company connected to the network should be 

proportional to the financial gain from the innovation provided by the network for each peripheral 

actor. 

(3) 
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Let 𝑅 be the set of actors that have decided to connect to the network. The orchestrating 

hub’s profit L consists of the sum of the prices paid by the peripheral actors net of the cost 𝐶 

incurred by the hub, i.e., 𝐿 =  ∑ 𝑝𝑖𝑖∈𝑅 − 𝐶.  

For a Nash equilibrium to be achieved in the game, no peripheral actor can regret the decision 

made, given the respective choices made by all of the other actors. Thus, the reward function of 

the strategy chosen by all actors must have a result which is equal to or lower than the result of the 

rejected strategy, since we are dealing with a problem of cost reduction. 

  

4.2. Model without price discrimination  

The model introduced in the previous section is based on the highly feasible principle that the 

orchestrating hub can define a specific price 𝑝𝑖 for each peripheral actor i. Nonetheless, it is also 

important to adapt the model to situations where the orchestrating hub must charge all companies 

the same price 𝑝 (e.g. due to a regulatory demand). In this case, 𝑝𝑖 = 𝑝, ∀𝑖. 

 

4.2.1. Empty network 

When no client is connected to the network, the number of actors in the network is given by an 

empty set 𝑅 = {∅} and, consequently, the number of inhabitants known by the network is also 

given by an empty set. This means that the fraction of inhabitants known by the network 𝑘𝑟 is zero. 

In this case, all actors ai have decided for the 𝑥𝑖
0 strategy, that is, not connecting to the 

network. In order to satisfy the Nash equilibrium condition in which none of the actors participate 

in the network, then 𝑢𝑖
0 ≤ 𝑢𝑖

1, ∀𝑖, i.e., the cost of isolation must be always lower than or equal to 

the cost of participating in a network in which the actor concerned would be the only participant. 



Pricing in Information Orchestrators 

 

In this context, using the previous notation, we have 𝑘𝑖𝑐1 + (1 − 𝑘𝑖)𝑐0 ≤ 𝑘𝑖𝑐1 +

(1 − 𝑘𝑖)𝑐0 + 𝑝, i.e., 𝑝 ≥ 0. Since 𝑝 ≥ 0 by construction, the Nash equilibrium would always 

occur. Thus, for any non-negative price stipulated by the orchestrating hub, the non-existence of 

the network is in itself a Nash equilibrium, as it has been shown in the literature (Bala and Goyal 

[2000]). 

 

4.2.2. Partial network 

In order to demonstrate the Nash equilibrium in partial or incomplete networks, we define a 

scenario with three actors, 𝑎𝑖, 𝑎𝑗 , 𝑎𝑙, with three different levels of knowledge about the population, 

𝑘𝑖 , 𝑘𝑗 , 𝑘𝑙, where 𝑘𝑖 < 𝑘𝑗 < 𝑘𝑙. Let us suppose a network has been formed by the actors 𝑎𝑖  and 𝑎𝑗, 

where 𝑎𝑙 opted for isolation, i.e., in the resulting network, the set of inhabitants known is the union 

of the inhabitants known by the actors 𝑎𝑖 and 𝑎𝑗. A Nash equilibrium exists in the game when the 

conditions for equilibrium are satisfied for all peripheral actors. 

First of all, let us analyze the condition for equilibrium of 𝑎𝑗. Since 𝑎𝑗 opted for connecting, 

in order for this actor to be in equilibrium, its decision-making costs when participating in the 

network must be lower than or equal to its decision-making costs when in isolation, 𝑢𝑖
1 ≤ 𝑢𝑖

0. 

According to Inequality (3), 𝑎𝑗  will be in Nash equilibrium whenever 𝑝∗ ≤ (𝑘𝑟 − 𝑘𝑗)(𝑐0 −

𝑐1), that is, as long as the single price stipulated by the orchestrating hub is lower than or equal to 

the financial gain from the innovation.  

By analyzing the condition for equilibrium for 𝑎𝑖, we also come to (𝑘𝑟 − 𝑘𝑖)(𝑐0 − 𝑐1) ≥ 𝑝, 

by analogy. Substituting 𝑝 with the price limit 𝑝∗ paid by 𝑎𝑗, we have (𝑘𝑟 − 𝑘𝑖)(𝑐0 − 𝑐1) ≥

(𝑘𝑟 − 𝑘𝑗)(𝑐0 − 𝑐1). Since 𝑘𝑖 < 𝑘𝑗, then (𝑘𝑟 − 𝑘𝑖) > (𝑘𝑟 − 𝑘𝑗), thus, the price 𝑝∗ which satisfies 

the equilibrium of 𝑎𝑗, also necessarily satisfies the equilibrium of 𝑎𝑖. 
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To complete the demonstration, we still have to show that 𝑎𝑙 can be in equilibrium when in 

isolation from the network. For such, the isolation strategy adopted by 𝑎𝑙 must have lower costs 

than the costs it would incur if it were participating in the network, that is, 𝑢𝑙
0 ≤ 𝑢𝑙

1. We have that 

𝑢𝑙
0 = 𝑘𝑙𝑐1 + (1 − 𝑘𝑙)𝑐0. To verify 𝑢𝑙

1, we need to consider the set of inhabitants known by the 

network if the actor 𝑎𝑙 decided to participate in it (i.e. the summation of the inhabitants known by 

the three actors). In this case, the fraction (𝑘𝑟
′ ) known by the network with the participation of 

𝑎𝑙 would be higher than or equal to the fraction of the resulting network 𝑘𝑟. 

Developing the condition for equilibrium and considering the maximum price 𝑝∗ that the 

orchestrating hub could stipulate so that 𝑎𝑗  is in equilibrium, we have: 

(𝑘𝑟
′ −  𝑘𝑙) ≤ (𝑘𝑟 −  𝑘𝑗)   

The inequality indicates that, as long as the fraction of extra inhabitants known by the 

network that would be formed with the presence of 𝑎𝑙 is smaller than or equal to the difference 

between the fraction of the existing network and the biggest participating actor in equilibrium, in 

this case, 𝑎𝑗, it will be beneficial for 𝑎𝑙 to remain in isolation. This is explained by the fact that 𝑎𝑗 

is the biggest actor participating in the resulting network and it pays the maximum price 𝑝∗ to be 

able to have a lower decision price for a fraction of the population. With this price determined by 

the orchestrating hub, 𝑎𝑗 would only regret its isolation if it could observe that it could have a gain 

equal to or higher than the amount spared by the network formed due to its presence. 

In practical terms, we can think of a credit bureau in which the biggest user can reduce the 

costs for 30% of the population, on top of those they already know. Naturally, the bureau would 

determine the price according to this fraction. The new user, then, would only be willing to pay 

the price in question if it could obtain a gain of the same nature in the new network in which it 

would participate. 
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4.2.3. Complete network 

Making use of a similar context to the one formulated in the former section, we can study a network 

in which at least one actor has more information k about the population than the others, i.e., ∃𝑗 ∈

𝑅|𝑘𝑗 > 𝑘𝑖 , ∀𝑖 ≠ 𝑗. If we set a specific price 𝑝∗ such that (𝑘𝑟 − 𝑘𝑗)(𝑐0 − 𝑐1) = 𝑝∗, since 𝑘𝑗 >

𝑘𝑖  ⇒ (𝑘𝑟 − 𝑘𝑖)(𝑐0 − 𝑐1) > 𝑝∗, i.e., the same price that satisfies the equilibrium for the actor that 

has the most knowledge of the inhabitants of the region to participate in the network, it is easy to 

notice that p* will necessarily satisfy the condition for equilibrium of all other peripheral actors 

which have less knowledge about the population. 

As an example of this situation, imagine the price for which the biggest bank of a particular 

region would decide to participate in the network in equilibrium making use of a credit bureau. 

This same price would be beneficial for all other banks of the region as they could count on the 

same network innovation, though with a smaller client base. Such situation opens the door to the 

discussion on the presence of externalities in innovation networks. An externality occurs when the 

utility observed is different from the expected utility at the time actors join the network. 

 

4.2.4. Network effects without price discrimination 

To delve deeper into the issue of the presence of externalities in the pricing of the innovation 

network, we use the same scenario constructed in the section concerning partial networks, where 

we have three actors, 𝑎𝑖, 𝑎𝑗 , 𝑎𝑙 and the following order of the proportion of the population 

respectively known by those actors: 𝑘𝑖 < 𝑘𝑗 < 𝑘𝑙. Suppose that the orchestrating hub establishes 

a price 𝑝∗ for the network, such that (𝑘𝑟 − 𝑘𝑗)(𝑐0 − 𝑐1) = 𝑝∗. It has already been verified in the 
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aforementioned section that the same 𝑝∗ satisfying the equilibrium of participation for 𝑎𝑗 will 

necessarily satisfy the equilibrium of participation for 𝑎𝑖. Let us see each case separately: 

For actor 𝑎𝑗, since the condition for equilibrium is (𝑘𝑟 − 𝑘𝑗)(𝑐0 − 𝑐1) ≥ 𝑝∗, the actor finds 

Nash equilibrium in the participation by connecting to the network because the value 𝑝∗ stipulated 

by the orchestrating hub is exactly the same as the economic value of the potential innovation 

appropriated by actor 𝑎𝑗. 

For actor 𝑎𝑖, since 𝑘𝑖 < 𝑘𝑗 ⇒ (𝑘𝑟 − 𝑘𝑖)(𝑐0 − 𝑐1) > 𝑝∗, this actor that knows less about the 

population is not in Nash equilibrium by participating in the network but it has a financial 

advantage in relation to actor 𝑎𝑗. This is explained by the fact that when ai pays the same price 

paid by actor 𝑎𝑗, which has more knowledge about the population, it appropriates more innovation 

than 𝑎𝑗 because its knowledge about the population is smaller and even so it can make use of the 

same complete potential of the network as 𝑎𝑗 does. 

In this case, we can calculate the value of the externality of actor 𝑎𝑖  in relation to actor 𝑎𝑗. It 

is easy to verify that the price limit that would make actor 𝑎𝑖 participate in the network would be 

𝑝 = (𝑘𝑟 − 𝑘𝑖)(𝑐0 − 𝑐1). However, the price paid was 𝑝∗ = (𝑘𝑟 − 𝑘𝑗)(𝑐0 − 𝑐1) < 𝑝. Calculating 

the difference between the two scenarios, we have the value of the positive externality of 𝑎𝑖 in 

relation to 𝑎𝑗, which is called 𝑒𝑖,𝑗, or externality of 𝑎𝑖 in relation to 𝑎𝑗. 

𝑒𝑖,𝑗 = (𝑘𝑟 − 𝑘𝑖)(𝑐0 − 𝑐1) − (𝑘𝑟 − 𝑘𝑗)(𝑐0 − 𝑐1) = (𝑘𝑗 − 𝑘𝑖)(𝑐0 − 𝑐1)       

 

That is, for not working with discrimination of price for different actors, the orchestrating 

hub allowed actor 𝑎𝑖 to have an economic advantage  (𝑘𝑗 − 𝑘𝑖)(𝑐0 − 𝑐1) from the innovation 

whose value is higher than the economic value it paid, which was 𝑝∗ = (𝑘𝑟 − 𝑘𝑗)(𝑐0 − 𝑐1).  
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Thus, when prices for different actors are not discriminated, the orchestrating hub allows the 

actors for whom the network has the highest added value to pay the same value as the other actors 

for whom the network has lower added value. The conclusions concerning externalities are valid 

both for partial and complete networks. 

 

5. Simulations 

5.1. Market specification 

In order to illustrate the models introduced in Section 4, we simulate a market with 10,000 

inhabitants and 20 companies (peripheral actors) where each company knows a set of inhabitants 

of the region but needs to make decisions concerning inhabitants it does not know. These decisions 

could, for example, refer to credit granting, fraud analysis, insurance policy issuance, or any other 

type of analysis for which having information about the inhabitants is necessary and useful. 

A level of propensity to know inhabitants is assigned to each of the 20 companies by means 

of trials using adaptations of the exponential probability. Likewise, each of the inhabitants is 

assigned a level of propensity of being known. Both the companies and the inhabitants are assigned 

different levels in relation to one another in an attempt to reproduce distributions commonly 

encountered in the market (i.e. the companies have different sizes and the inhabitants have distinct 

levels of credit use). The distribution of inhabitants per company, as well as the proportion of 

inhabitants known by each company are shown in Fig. 1 - Panels A and B, respectively.  

[Insert Fig. 1 here] 

 

In this example, the orchestrating hub is a credit bureau and the 20 companies which can 

participate in the network are banks, financial companies and retailers that wish to grant credit to 
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the inhabitants of the region. The orchestrating hub has a fixed cost of $3.00, no matter the quantity 

of actors connected to the network. 

The companies may try to make credit granting decisions by themselves or connected to the 

network with different decision-making costs. When the companies try to make a decision in 

isolation, they have a cost of $10 for the clients they do not know and $1 for those they know. 

Company #17, for instance, has an average decision-making cost of 

$1(0.054)+$10(0.946)=$9.514.  

 

5.2. Scenario without price discrimination 

Assume that the orchestrating hub has stipulated a fixed price of $2.00 for any company interested 

to participate in the network and that the companies that decided to connect are those marked with 

a YES in the column “Connection” in Table 1 - Panel A. 

In the last row of Panel A, we have the price stipulated by the orchestrating hub ($2.00). Just 

to the right of the price, we have the fixed cost incurred by the orchestrating hub, $3.00. Each row 

of the table represents a company, numbered from 1 to 20, with their respective actions and results. 

In the second column, we see that eight companies have connected to the network in this game. 

Thus, the profit enjoyed by the orchestrating hub is 8 x $2.00 - $3.00 = $13.00. In the third column, 

we have the proportion of the population known by each company, with the last row showing the 

proportion of the population known by the network. In this case, the union of the eight companies 

that have connected to the network resulted in the orchestrating hub knowing a proportion of 

28.07%. The columns “Cost – Isolation” and “Cost – Participation” show the cost they would have 

or have had if they remained isolated or if they participated in the network, respectively. The 

column “Economies” represents in positive value the financial gain the company would have (or 
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has had) for participating in the network in comparison with the financial gain associated with not 

participating. For example, company #2, which chooses not to participate in the network, has a 

decision-making cost of $9.82 since it knows only 1.98% of the population. If it had chosen to 

connect to the network, sharing, thus, the information it possessed and paying $2.00 per 

consultation, company #2 would have had an average decision-making cost of $9.39, which would 

have resulted in economies of $0.43 (=$9.82 - $9.39) in costs. Since it would have been preferable 

for the company to participate in the network, it regrets the strategy chosen. Therefore, the game 

formulated does not reach a Nash equilibrium. 

The biggest company, #4, which can be interpreted as a large bank in the region, decides not 

to connect to the network. If it had chosen to connect, it would have had a disadvantage of $0.96 

per consultation in comparison to its results in isolation. Thus, it does not regret its decision. 

A Nash equilibrium can be verified in empty networks. For the data generated, as it is shown 

in Section 4.2.1, we have an equilibrium for not participating in the network for any non-negative 

price, once none of the companies regret being in isolation. To illustrate this possibility, an empty 

network was generated whose cost of connection is only one cent (see Table 1 - Panel B). Even 

so, none of the companies regret not having connected to the network, because they would be 

paying to use a network that contains only their own information.  

The next simulation studies the case of the incomplete or partial networks in which a Nash 

equilibrium is achieved. In this case, all companies connected to the network obtain economies in 

their decision-making even considering that they paid the price stipulated by the orchestrating hub, 

while those which choose isolation also obtain a financial advantage for not paying the connection 

price. The simulation is run with the same 20 companies. The price stipulated by the orchestrating 

hub is $3.00. According to the results in Table 2 - Panel A, all companies have decided to connect 
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paying the price defined, except for companies #4, #6 and #18, which are the biggest companies 

in terms of level of knowledge about the population. The resulting network, thus, is comprised of 

17 companies and all of these achieve economies for using the network, which collectively knows 

46.45% of the population. It is easy to notice that the connection to the network is more beneficial 

for some companies than for others. Company #13, for instance, which knows a very small 

proportion of the population, achieves average economies of $1.12 for using the network, even 

after paying the stipulated price. On the other hand, company #9 has economies of only $0.30, 

since alone it already knows 9.79% of the inhabitants. This is one more example of externality.  

The three largest companies, #6, #18 and #4 choose not to connect to the network and do not 

regret their decisions either. If they had chosen to connect, the price charged by the orchestrating 

hub would make it unfeasible for the companies to have any economies with decision-making 

costs generated by the usage of the network. This suggests that the orchestrating hub should 

practice a lower price for these companies, once it wishes to maximize the quantity of companies 

connected and, consequently, its profit. 

Still in the model without price discrimination, an interesting exercise is to calculate the 

highest price that the orchestrating hub could practice so that the network is complete and in 

equilibrium. We find that such maximum price is $2.57. This is the price limit that makes company 

#4 indifferent to participation, i.e., it does not regret having chosen to connect with the network1. 

In short, the simulation results in Table 1 - Panel B confirm that empty networks entail Nash 

equilibrium as shown in Section 4.2.1. We also see that the higher the proportion ki of the 

population known by company i the less it benefits from joining the network (see Table 1 - Panel 

A and Table 2 - Panel A). Consequently, the size of the population known a priori by companies 

                                                 
1 The detailed results are not reported here due to space constraints but they are available upon request. 
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is a vital information that should be considered by orchestrators when defining their prices. This 

corroborates the models presented in Section 4.2. 

 

5.3. Scenario with price discrimination 

In the previous simulations, the orchestrating hub stipulates one single price for all of the 20 

companies (peripheral actors). Now we discuss the simulation of the model presented in Section 

4.1. In this model, the orchestrating hub raises the prices for each company up to the limit that 

would make them not regret having connected to the complete network. Naturally, then, the 

orchestrating hub appropriates itself of all the economies generated by the network and leaves all 

companies with zero economies. In doing so, the orchestrating hub has maximum profit, as shown 

in Table 2 - Panel B.  

Based on these results, we conclude that the profit of the orchestrating hub with price 

discrimination is much higher than in the simulation without price discrimination: $98.16 versus 

$48.40. We also note that the price defined for each company is inversely proportional to the 

population known by it. The prices can vary from $2.57 for company #4 to $5.73 for companies 

#13 and #14, which know a very small proportion of the population.  

Therefore, our findings in this section indicate that price discrimination leads to higher 

profits compared to situations where prices are the same for all actors and, as found in the previous 

section and in accordance with the models in Section 4, the size of the population known a priori 

by companies should be taken into account in the price definition.
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Table 1. Results of a partial and an empty network. 

Company Panel A – Partial network with a price of $2.00 Panel B – Empty network with a price of $0.01 
 

Connection Proportion 

known 

Cost - 

Isolation 

Cost - 

Participation 

Economies Regrets Connection Proportion 

known 

Cost - 

Isolation 

Cost - 

Participation 

Economies Regrets 

1 YES 5.56% $ 9.50 $ 9.47 $ 0.03 NO NO 5.56% $ 9.50 $ 9.51 ($ 0.01) NO 

2 NO 1.98% $ 9.82 $ 9.39 $ 0.43 YES NO 1.98% $ 9.82 $ 9.83 ($ 0.01) NO 

3 YES 4.93% $ 9.56 $ 9.47 $ 0.08 NO NO 4.93% $ 9.56 $ 9.57 ($ 0.01) NO 

4 NO 35.76% $ 6.78 $ 7.74 ($ 0.96) NO NO 35.76% $ 6.78 $ 6.79 ($ 0.01) NO 

5 NO 2.34% $ 9.79 $ 9.36 $ 0.43 YES NO 2.34% $ 9.79 $ 9.80 ($ 0.01) NO 

6 NO 20.68% $ 8.14 $ 8.52 ($ 0.38) NO NO 20.68% $ 8.14 $ 8.15 ($ 0.01) NO 

7 NO 4.69% $ 9.58 $ 9.24 $ 0.34 YES NO 4.69% $ 9.58 $ 9.59 ($ 0.01) NO 

8 YES 3.74% $ 9.66 $ 9.47 $ 0.19 NO NO 3.74% $ 9.66 $ 9.67 ($ 0.01) NO 

9 NO 9.79% $ 9.12 $ 8.98 $ 0.14 YES NO 9.79% $ 9.12 $ 9.13 ($ 0.01) NO 

10 NO 6.76% $ 9.39 $ 9.17 $ 0.22 YES NO 6.76% $ 9.39 $ 9.40 ($ 0.01) NO 

11 NO 9.52% $ 9.14 $ 9.04 $ 0.10 YES NO 9.52% $ 9.14 $ 9.15 ($ 0.01) NO 

12 YES 2.31% $ 9.79 $ 9.47 $ 0.32 NO NO 2.31% $ 9.79 $ 9.80 ($ 0.01) NO 

13 NO 0.65% $ 9.94 $ 9.44 $ 0.50 YES NO 0.65% $ 9.94 $ 9.95 ($ 0.01) NO 

14 YES 0.67% $ 9.94 $ 9.47 $ 0.47 NO NO 0.67% $ 9.94 $ 9.95 ($ 0.01) NO 

15 YES 2.51% $ 9.77 $ 9.47 $ 0.30 NO NO 2.51% $ 9.77 $ 9.78 ($ 0.01) NO 

16 NO 3.24% $ 9.71 $ 9.32 $ 0.39 YES NO 3.24% $ 9.71 $ 9.72 ($ 0.01) NO 

17 NO 5.4% $ 9.51 $ 9.24 $ 0.28 YES NO 5.4% $ 9.51 $ 9.52 ($ 0.01) NO 

18 NO 25.01% $ 7.75 $ 8.32 ($ 0.57) NO NO 25.01% $ 7.75 $ 7.76 ($ 0.01) NO 

19 YES 9.55% $ 9.14 $ 9.47 ($ 0.33) YES NO 9.55% $ 9.14 $ 9.15 ($ 0.01) NO 

20 YES 7.93% $ 9.29 $ 9.47 ($ 0.19) YES NO 7.93% $ 9.29 $ 9.30 ($ 0.01) NO 

Network 8 companies 28.07% Price: $2.00 

Cost-

network: 

$3.00 

Profit: $13.00 0 companies 0.00% 
Price: 

$0.01 

Cost-

network: 

$3.00 

Profit: ($3.00) 
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Table 2. Results of networks in equilibrium. 

Company Panel A – Partial network with a fixed price of $3.00 Panel B – Complete network with price discrimination 
 

Connection Proportion 

known 

Cost - 

Isolation 

Cost - 

Participation 

Economies Regrets Connection Proportion 

known 

Cost - 

Isolation 

Cost - 

Participation 

Economies Regrets 

1 YES 5.56% $ 9.50 $ 8.82 $ 0.68 NO YES 5.56% $ 9.50 $ 9.50 $ 0 NO 

2 YES 1.98% $ 9.82 $ 8.82 $ 1.00 NO YES 1.98% $ 9.82 $ 9.82 $ 0 NO 

3 YES 4.93% $ 9.56 $ 8.82 $ 0.74 NO YES 4.93% $ 9.56 $ 9.56 $ 0 NO 

4 NO 35.76% $ 6.78 $ 7.85 ($ 1.07) NO YES 35.76% $ 6.78 $ 6.78 $ 0 NO 

5 YES 2.34% $ 9.79 $ 8.82 $ 0.97 NO YES 2.34% $ 9.79 $ 9.79 $ 0 NO 

6 NO 20.68% $ 8.14 $ 8.27 ($ 0.13) NO YES 20.68% $ 8.14 $ 8.14 $ 0 NO 

7 YES 4.69% $ 9.58 $ 8.82 $ 0.76 NO YES 4.69% $ 9.58 $ 9.58 $ 0 NO 

8 YES 3.74% $ 9.66 $ 8.82 $ 0.84 NO YES 3.74% $ 9.66 $ 9.66 $ 0 NO 

9 YES 9.79% $ 9.12 $ 8.82 $ 0.30 NO YES 9.79% $ 9.12 $ 9.12 $ 0 NO 

10 YES 6.76% $ 9.39 $ 8.82 $ 0.57 NO YES 6.76% $ 9.39 $ 9.39 $ 0 NO 

11 YES 9.52% $ 9.14 $ 8.82 $ 0.32 NO YES 9.52% $ 9.14 $ 9.14 $ 0 NO 

12 YES 2.31% $ 9.79 $ 8.82 $ 0.97 NO YES 2.31% $ 9.79 $ 9.79 $ 0 NO 

13 YES 0.65% $ 9.94 $ 8.82 $ 1.12 NO YES 0.65% $ 9.94 $ 9.99 $ 0 NO 

14 YES 0.67% $ 9.94 $ 8.82 $ 1.12 NO YES 0.67% $ 9.94 $ 9.94 $ 0 NO 

15 YES 2.51% $ 9.77 $ 8.82 $ 0.95 NO YES 2.51% $ 9.77 $ 9.77 $ 0 NO 

16 YES 3.24% $ 9.71 $ 8.82 $ 0.89 NO YES 3.24% $ 9.71 $ 9.71 $ 0 NO 

17 YES 5.4% $ 9.51 $ 8.82 $ 0.69 NO YES 5.4% $ 9.51 $ 9.51 $ 0 NO 

18 NO 25.01% $ 7.75 $ 8.19 ($ 0.44) NO YES 25.01% $ 7.75 $ 7.75 $ 0 NO 

19 YES 9.55% $ 9.14 $ 8.82 $ 0.32 NO YES 9.55% $ 9.14 $ 9.14 $ 0 NO 

20 YES 7.93% $ 9.29 $ 8.82 $ 0.47 NO YES 7.93% $ 9.29 $ 9.29 $ 0 NO 

Network 
17 

companies 
46.45% Price: $3.00 

Cost-

network: 

$3.00 

Profit: $48.40 
20 

companies 
64.35% 

Price: 

Variable 

Cost-

network: 

$3.00 

Profit: $98.16 
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5.4. Scenario with price negotiation 

In the previous discussions, we assumed that prices are fixed by the orchestrating 

hub and accepted by actors without any negotiation. However, in practice, it is 

very important to assess network stability when agents are allowed to negotiate 

prices. In this section, company #4 (the one with most information about the 

consumer market) is allowed to negotiate prices with the credit bureau. In these 

circumstances, we initially analyze a network in equilibrium made up of all 

companies, except for company #4.  

The network formed with 19 participants knows 58.02% of the inhabitants 

of the region. If it is allowed that company #4 negotiates the price of its 

participation with the orchestrating hub and the orchestrating hub aggregates 

company #4 to the network, it increases the proportion of inhabitants known from 

58.02% to 64.35%. Since the price each company is willing to pay is proportional 

to the difference between the proportion of inhabitants known by the network and 

the proportion of inhabitants known by each company, the orchestrating hub 

knows it could raise the price charged to all of the other companies in case 

company #4 participated in the network. It is beneficial for the orchestrating hub, 

for example, to let company #4 join the network for free, because doing so would 

increase its profit from $84.76 to $95.59. This result (not shown in Table 3) is 

obtained by adding up the price paid by each of the 19 companies in Table 3 - 

Panel A minus the fixed cost of $3.00 incurred by the network. 
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Table 3. Networks with price negotiation. 

Company Panel A – All companies connecting except for company #4 Panel B – All companies connecting (including company #4) 
 

Proportion 

known 

Cost - 

Isolation 

Cost - 

Participation 

Prices Economies Regrets Proportion 

known 

Cost - 

Isolation 

Cost - 

Participation 

Prices Economies Regrets 

1 5.56% $ 9.50 $ 9.50 $ 4.72 0 NO 5.56% $ 9.50 $ 9.50 $ 5.29 0 NO 

2 1.98% $ 9.82 $ 9.82 $ 5.04 0 NO 1.98% $ 9.82 $ 9.82 $ 5.61 0 NO 

3 4.93% $ 9.56 $ 9.56 $ 4.78 0 NO 4.93% $ 9.56 $ 9.56 $ 5.35 0 NO 

4 35.76%      35.76% $ 6.78 ($ 7.26) ($ 10.83) 14.04 NO 

5 2.34% $ 9.79 $ 9.79 $ 5.01 0 NO 2.34% $ 9.79 $ 9.79 $ 5.58 0 NO 

6 20.68% $ 8.14 $ 8.14 $ 3.36 0 NO 20.68% $ 8.14 $ 8.14 $ 3.93 0 NO 

7 4.69% $ 9.58 $ 9.58 $ 4.80 0 NO 4.69% $ 9.58 $ 9.58 $ 5.37 0 NO 

8 3.74% $ 9.66 $ 9.66 $ 4.89 0 NO 3.74% $ 9.66 $ 9.66 $ 5.45 0 NO 

9 9.79% $ 9.12 $ 9.12 $ 4.34 0 NO 9.79% $ 9.12 $ 9.12 $ 4.91 0 NO 

10 6.76% $ 9.39 $ 9.39 $ 4.61 0 NO 6.76% $ 9.39 $ 9.39 $ 5.18 0 NO 

11 9.52% $ 9.14 $ 9.14 $ 4.37 0 NO 9.52% $ 9.14 $ 9.14 $ 4.93 0 NO 

12 2.31% $ 9.79 $ 9.79 $ 5.01 0 NO 2.31% $ 9.79 $ 9.79 $ 5.58 0 NO 

13 0.65% $ 9.94 $ 9.99 $ 5.16 0 NO 0.65% $ 9.94 $ 9.94 $ 5.73 0 NO 

14 0.67% $ 9.94 $ 9.94 $ 5.16 0 NO 0.67% $ 9.94 $ 9.94 $ 5.73 0 NO 

15 2.51% $ 9.77 $ 9.77 $ 5.00 0 NO 2.51% $ 9.77 $ 9.77 $ 5.57 0 NO 

16 3.24% $ 9.71 $ 9.71 $ 4.93 0 NO 3.24% $ 9.71 $ 9.71 $ 5.50 0 NO 

17 5.4% $ 9.51 $ 9.51 $ 4.74 0 NO 5.4% $ 9.51 $ 9.51 $ 5.31 0 NO 

18 25.01% $ 7.75 $ 7.75 $ 2.97 0 NO 25.01% $ 7.75 $ 7.75 $ 3.54 0 NO 

19 9.55% $ 9.14 $ 9.14 $ 4.36 0 NO 9.55% $ 9.14 $ 9.14 $ 4.93 0 NO 

20 7.93% $ 9.29 $ 9.29 $ 4.51 0 NO 7.93% $ 9.29 $ 9.29 $ 5.08 0 NO 

Network 58.02% 
Price: 

Variable 

Cost-

network: 

$3.00 

 Profit: $84.76 64.35% 
Price: 

Variable 

Cost-

network: 

$3.00 

 Profit: $84.76 
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Following this line of reasoning, if the credit bureau wishes to increase or keep 

its profit, it could pay company #4 to join the network up to the limit that would make 

its profit be higher than or equal to $84.76. That is, the credit bureau would be willing 

to pay $10.83 to company #4. The results are shown in Table 3 - Panel B and indicate 

equilibrium as no company regrets participating in the network. 

It is worth noting that the value of each company to the network depends not 

only on the proportion of the population the company knows, but also on the 

proportion of clients known by the company but unknown by the network. In our 

example, company #4 knows by itself 35.76% of the population, but what it adds to 

the network in terms of information is 6.33%, which is the proportion of inhabitants 

that the network in Table 3 - Panel B has beyond that which the network in Table 3 - 

Panel A has. 

These results reveal that an orchestrator should observe the ratio of the 

population known by each actor and by the network when setting the price for its 

service. Hence, companies would be encouraged to join the network because the price 

stipulated would bring about financial advantages to them. As a consequence, the 

network and, in particular, the orchestrator hub would also benefit from the increasing 

number of members.  

In sum, all the scenarios considered above support the conclusion that pricing 

is intimately associated with the network’s stability, density and profitability in 

different types of networks. 
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6. Conclusions 

We use Game Theory to analyze the relationship between the pricing structures 

proposed by the orchestrating hub and the network’s stability and efficiency. This is 

novel in the literature and has yielded unprecedented conclusions that will be useful 

for decision-makers in different companies, such as bureaus for credit information, 

and fraud and insurance claims.  

Our findings can be summarized as follows. First, the price structure defined a 

priori by the orchestrating hub is related to the network’s stability. Different price 

structures have direct impact on the trend of permanence, increase or deterioration of 

the network. Second, the pricing structure proposed is related to the network’s 

efficiency and density. Structures with or without price discrimination for the 

peripheral actors and their respective prices can in themselves imply empty, partial or 

complete networks. Third, pricing structures without price discrimination for actors 

of different sizes imply the presence of externalities in the network. Last but not least, 

the pricing structure which maximizes the network’s density and eliminates 

externalities is that in which the price is proportional to the gains from the innovation 

appropriated by the peripheral actors. 

From the academic point of view, where only cost allocation structures are 

studied, such framework contributes to filling in an existing gap in the study of 

horizontal, formal networks endowed with orchestrating hubs. In the scenario in 
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which the actors are companies and the connections are established for contracting 

services, the price charged has proved to be an important tool in promoting the 

network’s stability, which is described as one of the three main objectives to be 

promoted by the orchestrating hub (Dhanaraj and Parkhe [2006]).  

This work, however, has some limitations, although none of them depreciates 

the conclusions reached for the proposed scenario. First and foremost, the market 

studied here is a monopolistic one. The presence of a competing orchestrating hub 

would change the study and is beyond our scope. This is, therefore, a suggestion for 

further studies in this area. 

For simplification, we assume that costs incurred by the orchestrating hub are 

fixed, no matter the number of actors connected to the network. It would be reasonable 

to assume that costs depend on how many actors are connected to the network. 

Nonetheless, using variable costs in this study would have made it more complex 

without changing its conclusions as far as the decisions of the peripheral actors are 

concerned. This issue remains as an idea for extending the models developed here. 

The assumption of rationality of companies and individuals that may influence 

stability can also be seen as a limitation of this study. In order to apply Game Theory, 

the starting point has to be the agents’ rationality and, in this case, the price would be 

the determining factor in the context proposed in our analyses. It is known that other 

factors may interfere in decision making but such factors are not in the scope of the 

present work and their inclusion is left for future research. 
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Panel A – Distribution of individuals by peripheral actor 

 

Panel B – Proportion of the inhabitants known by each peripheral actor 

 

 

Fig 1. Distribution of simulated data. 
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