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The paper studies second-price all-pay auctions - wars of attrition - in a new way, based on classroom 

experiments and Kosfeld et al.’s best-reply matching equilibrium. Two players fight over a prize of 

value V, and submit bids not exceeding a budget M; both pay the lowest bid and the prize goes to the 

highest bidder. The behavior probability distributions in the classroom experiments are strikingly 

different from the mixed Nash equilibrium. They fit with best-reply matching and generalized best-

reply matching, an ordinal logic according to which, if bid A is the best response to bid B, then A is 

played as often as B. The paper goes into the generalized best-reply matching logic, highlights the role 

of focal values and discusses the high or low payoffs this logic can lead to.  

 

Keywords : second-price all-pay auction; war of attrition; best-reply matching; Nash equilibrium; 

classroom experiment. 

 

Subject Classification: C72, D44. 

 

 

1. Introduction 

 

The paper studies second-price all-pay auctions – wars of attrition –  in a new way, based 

on classroom experiments and Kosfeld et al.’s [2002] best-reply matching equilibrium. A 

lot has been said about first-price all-pay auctions, but there are only few papers with 

experiments on second-price all-pay auctions (see Hörisch and Kirchkamp [2010] and 

Dechenaux et al. [2015] for experiments with this class of games). The second-price all-

pay auction studied in this paper is the most standard one: two players fight over a prize of 

value V, have a budget M, and simultaneously submit bids not exceeding M. Both pay the 

lowest bid and the prize goes to the highest bidder; in case of a tie, each player gets the 

prize with probability 1/2.  

The mixed Nash equilibrium is strikingly different from the behavior observed in the 

classroom experiments (an experiment with 116 students, another with 109 students). The 

distributions are so different that we cannot conclude on overbidding or underbidding in 

comparison with the Nash equilibrium behavior. This observation is partly shared by 

Hörisch and Kirchkamp [2010]: whereas overbidding is regularly observed in first-price 

all-pay auction experiments (see for example Gneezy and Smorodinsky [2006] and 
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Lugovskyy et al. [2010]), Hörisch and Kirchkamp [2010] establish that underbidding 

prevails in sequential war of attrition experiments. 

In our classroom experiments, the students’ behavior better fits with best-reply (and 

generalized best-reply) matching, a behavioral concept developed by Kosfeld et al. [2002]. 

According to best-reply matching, if bid A is the best response to bid B, then A is played 

as often as B. Mixed Nash equilibria and best-reply matching equilibria follow a different 

logic: whereas Nash equilibrium probabilities are calculated so as to equalize the payoffs 

of the bids played at equilibrium, best-reply matching probabilities just aim to match best 

responses, each bid being played as often as the bid to which it is a best reply.  

In the second-price all-pay auction, there are multiple best responses to a bid, when the bid 

does not exceed the value of the prize. In case of multiple best responses, best-reply 

matching requires that each best response be played with the same probability, whereas 

generalized best-reply matching (Umbhauer [2016]) allows any probability distribution 

over the set of best responses. So we mostly work with generalized best-reply matching, 

given that real players may spontaneously select some best responses more than others. We 

say that some best responses are more focal than others and we exploit this characteristic 

to come closer to the students’ behavior.  

We also call attention to the payoffs of the bidders. In the mixed Nash equilibrium, the 

payoffs are slightly positive in the discrete setting (they are null in a continuous setting). 

This is no longer true with best-reply and generalized best-reply matching: the players can 

lose or win a lot of money.  

Section 2 recalls the pure and mixed Nash equilibria in the discrete second-price all-pay 

auctions, when M, V and the bids are integers. It also presents the two classroom 

experiments and compares the students’ behavior with the mixed Nash equilibrium. In 

section 3, we present the best-reply matching equilibrium and the generalized best-reply 

matching equilibrium, and we compare the mixed Nash equilibrium philosophy with the 

best-reply matching philosophy. In section 4 we establish the best-reply matching 

equilibria and compare them to the students’ behavior. Section 5 is the main part. We turn 

to generalized best-reply matching and focal behavior. Given that there are multiple best 

responses to a given bid, players may only play some focal best responses. Focusing on the 

best responses 0, V and M leads to a generalized best-reply matching equilibrium which is 

close to the students’ behavior. And focusing on cautious best responses leads to a 

generalized best-reply matching equilibrium that is also, surprisingly, a generalized best-

reply matching equilibrium of the first-price all-pay auction. Section 6 is on the mixed 

Nash equilibrium payoffs and the (generalized) best-reply matching equilibrium payoffs. 

Section 7 concludes on the role of M in second-price all-pay auctions. 

 

 

2. Classroom Experiments, Nash Equilibria and Students’ Behavior 

 

Two players have a budget M. They fight over a prize of value V. Each player i submits a 

bid bi, i=1, 2 lower than or equal to M. The prize goes to the highest bidder but both bidders 
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pay the lowest bid. In case of a tie, the prize goes to each bidder with probability ½. 

Throughout the paper, we suppose M ≥ V. V, M and the rules of the game are common 

knowledge. Moreover, in the classroom experiments, M, V and the bids are integers. So 

we restrict attention to discrete games. 

This game is known to have a lot of intuitive asymmetric Nash equilibria, one player 

bidding nothing (0), the other bidding V or more. In some way, if the first player is cautious 

and  afraid of losing money, whereas the second player is a hothead, the first player bids 0, 

whereas the second can afford to bid M (even if M is much larger than V), getting the prize 

without paying anything, thanks to the cautious behavior of the first player. Second-price 

all-pay auctions are rightly seen as dangerous games with great opportunities: when a 

hothead meets another one, both lose a lot of money, but if he meets a cautious player, then 

he wins V and pays nothing. And if a cautious player meets another one, each player gets 

the expected amount V/2 without paying anything.  

 

Things become less intuitive when turning to the unique mixed Nash equilibrium (NE) of 

this game, which is a symmetric mixed NE. We call qi the probability of bidding i. 

 

Result 1 Umbhauer [2017]a. V, M and the bids are integers, M≥ V and the bids go from 

0 to M; we assume that V is odd. The unique mixed NE is symmetric.  

We note 𝑖=̅ M-V/2-5/2. The main recurrence equation that defines the probabilities is:  

qi=  2qi+1/V+qi+2      i from 0 to 𝑖 ̅ (for 𝑖≥̅0).   
The additional equations are: 

𝑞𝑖̅+1=qM(1/V +2/V2)  (for 𝑖+̅1≥0) 

𝑞𝑖̅+2= qM/V      

qi=0  for i from  to 𝑖̅ + 3  to M-1 (for V≥3) 

and ∑ 𝑞𝑖 + 𝑞𝑀 = 1
𝑖+̅2
𝑖=0 .  

Proof see Appendix A.  

 

We study the mixed NE for (V=3, M=5), (V=3, M=6) (these equilibria are necessary in the 

classroom experiments) and (V=9, M=12). The NE are given in Table 1 and illustrated in 

Fig. 1a, 1b and 1c.  

The shape of the three distributions is close to that obtained in the continuous setting, 

illustrated in Fig. 1b (the decreasing curve, the segment and the point) and briefly recalled 

below (Result 2). This similarity is always observed when V, M and the bids are integers 

and V is odd (see Umbhauer [2017]). 

 

 

 
a Result 1 only holds for odd values of V (V and M being integers and the bids being all integers from 0 to M). 

When V is even (V and M being integers, the bids being all integers from 0 to M), a different result applies, due 
to a different gap between M-V/2 and the highest played bid lower than M in case of V odd and V even. This has 

a strong impact on the probability distribution, that is much less regular in shape for V even than for V odd (see 

Umbhauer [2017]). 
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Table 1. Mixed Nash equilibria for (V=3, M=5), (V=3, M=6), (V=9, M=12). 

 q0 q1 q2 q3 q4 q5 q6 q7 q8,q9, 

q10,q11 

q12 

V=3 

M=5 

83/ 

293= 

0.283 

57/ 

293= 

0.195 

45/ 

293= 

0.154 

27/ 

293= 

0.092 

0 81/ 

293= 
0.276 

    

V=3 

M=6 

337/ 

1216= 

0.277 

249/ 

1216= 

0.205 

171/ 

1216= 

0.141 

135/ 

1216= 

0.111 

81/ 

1216= 

0.066 

0 243/ 
1216= 
0.20 

   

V=9 

M=12 
0.106 0.093 0.085 0.074 0.069 0.058 0.056 0.046 0 0.413 

 

 
Fig. 1a. Mixed NE (V=3,M=5).       Fig. 1b. Mixed NE (V=3,M=6).      Fig. 1c. Mixed NE (V=9,M=12). 

 

Result 2. We call b a bid in [0 , M]. The unique mixed NE in the continuous game is 

symmetric and given by: 

- The support of the equilibrium is [0, M-V/2] {M}, 

- the cumulative probability distribution on  [0, M-V/2] is given by F(b)=1-e-b/V,  

- M is a mass point played with probability   1-F(M-V/2) = e1/2-M/V. 

The net payoff (payoff minus M) is equal to 0 at equilibrium. 

Proof see Appendix B. 

 

It derives from the Fig. 1a, 1b, and 1c that the NE probabilities decrease from 0 to M-V/2-

1/2  (M-V/2 in the continuous setting), and are null from M-V/2+1/2 to M-1 (in ]M-V/2, 

M[ in the continuous setting), whereas bid M is played with a positive probability.  In the 

continuous setting, M is a mass point; this is rather intuitive, in that M is a focal point with 

a special property. Given that nobody can play more than M and given that many players 

bid less, a player, when he bids M, is sure to get the prize with a high probability and he 

often pays less than V, especially if M-V/2 <V. In this latter case, at equilibrium, bidding 

M leads to a negative payoff only if the opponent bids M too.   
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0 is more often played than the bids from 1 to M-V/2-1/2, which is rather intuitive, because 

0 is the only best reply to M and never leads to losing money. Yet the probability of playing 

0 seems unrelated to the probability of playing M (q0 is very close to, larger than, much 

smaller than qM, respectively in Fig. 1a, 1b and 1c) and this non-intuitive fact is confirmed 

in the continuous setting: 0 is not a mass point and the cumulative probability on [0, db] is 

db/V (db →0) so does not depend on M, in contrast to the probability assigned to M. It 

namely follows that when V and M become large, but M/V remains constant, the 

cumulative probability on [0, db] tends towards 0 whereas f(M) remains constant. This is 

not intuitive. 

What about risk aversion? In the above equilibria, we implicitly suppose that the players 

are risk neutral, given that the utility is assumed to be equal to the payoff. We could follow 

Hörisch and Kirchkamp [2010], and opt for the utility function U(x)= e-rM-e-rx  to express 

risk aversion (r being the player’s degree of risk aversion). This would lead to steeper 

density probability distributions, with a stronger probability on low bids, but it would not 

change the nature of the mixed NE. 

 

We now present the two classroom experiments. 

In the first classroom experimentb, 116 L3 students, i.e. undergraduate students in their 

third year of training, played the second-price all-pay auction game in matrix 1 (Game 1), 

with V=3, M=5 and the possible bids 0, 1, 2, 3, 4 and 5. In the second classroom 

experiment, 109 L3 students played the second-price all-pay auction game in matrix 2 

(Game 2), with V=30, M=60 and the possible bids 0, 10, 20, 30, 40, 50 and 60. This second 

game has the same best responses and the same NE as the game with V=3, M=6, and bids 

0, 1, 2, 3, 4, 5 and 6 (to get the payoffs in the game with V=3, M=6, it is sufficient to divide 

the payoffs of Game 2 by 10). So, to get the mixed NE of Game 2, we can apply result 1 

to the game with V=3, M=6 and bids 0,1,2,3,4,5,6.c  

    Player 2    

  0 1 2 3 4 5 

  0 (6.5,6.5) (5, 8) (5, 8) (5, 8) (5, 8) (5, 8) 

 1 (8, 5) (5.5,5.5) (4, 7) (4, 7) (4, 7) (4, 7) 

Player 1 2 (8, 5) (7, 4) (4.5,4.5) (3, 6) (3, 6) (3, 6) 

  3 (8, 5) (7, 4) (6, 3) (3.5,3.5) (2, 5) (2, 5) 

 4 (8, 5) (7, 4) (6, 3) (5, 2) (2.5,2.5) (1, 4) 

 5 (8, 5) (7, 4) (6, 3) (5, 2) (4, 1) (1.5,1.5) 

Matrix 1 : Game 1, V=3, M=5. 

 

 
b This experiment has also been partly studied in Umbhauer [2016]. 
c For reasons of presentation homogeneity, it would be logical to give the students’ results by referring to the 

game with V=3, M=6 and the bids 0, 1, 2, 3, 4, 5 and 6. But of course this cannot be done from an experimental 

point of view.  
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Player 2 
   

    0 10 20 30 40 50 60 

  0 (75, 75) (60, 90) (60, 90) (60, 90) (60, 90) (60, 90) (60, 90) 
 

10 (90, 60) (65, 65) (50, 80) (50, 80) (50, 80) (50, 80) (50, 80) 

  20 (90, 60) (80, 50) (55, 55) (40, 70) (40, 70) (40, 70) (40, 70) 

 Player1 30 (90, 60) (80, 50) (70, 40) (45,45) (30, 60) (30, 60) (30, 60) 

  40 (90, 60)  (80, 50) (70, 40) (60, 30) (35, 35) (20, 50) (20, 50) 

  50 (90, 60) (80, 50) (70, 40) (60, 30) (50, 20) (25, 25) (10, 40) 

  60 (90, 60) (80, 50) (70, 40) (60, 30) (50, 20) (40, 10) (15, 15) 

Matrix 2: Game 2, V=30, M=60. 

 

The games were played during game theory lectures and the students knew what a normal-

form game is. So they had no difficulty in understanding the two games, and the meaning 

of the normal forms in matrix 1 and matrix 2. Several couples of payoffs were explained 

in detail to the students, to ensure that they understood the rules of the game. The students 

had the matrices, as well as the explanation of the couples of payoffs, in front of them while 

choosing their bid. We add that the first game was played by students trained in NE and 

dominance. In contrast, the second game was played by novice students with no training 

in NE and dominance. Students were also allowed, but not compelled to, add comments on 

their way of playing. 

 

The students’ way of playing is given in Table 2. 

 

Table 2. Comparison of the mixed NE and the students’ behavior. 

 

 

 

 

 

 

 

 

 

 

The students’ distributions do not fit with the mixed NE distributions. The main difference 

concerns low bids different from 0. The probabilities assigned to low bids (1 and 2 in Game 

1, 10 and 20 in Game 2) by the NE are much higher than the frequencies with which the 

students play these bids: bids 1 and 2 in Game 1 are played with probability 34.9% in the 

NE, with probability 11.2% by the students; bids 10 and 20 in Game 2 are played with 

probability 34.54% in the NE, with probability 8.3% by the students. According to the 

Game1 

V=3, 

M=5  

Bids 

Nash 

equilibrium 

probabilities 

(percentage) 

Students: 

frequencies 

of the bids 

 Game2 

V=30, 

M=60  

bids 

Nash 

equilibrium 

probabilities  

(percentage) 

Students: 

frequencies 

of the bids 

0 28.3% 37.9%  0 27.7% 33% 

1 19.5% 9.5%  10 20.48% 5.5% 

2 15.4% 1.7%  20 14.06% 2.8% 

3 9.2% 20.7%  30 11.1% 21.1% 

4 0 15.5%  40 6.66% 4.6% 

5 27.6% 14.7%  50 0% 5.5% 

    60 20% 27.5% 
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comments added by the students, they fear that if they play low bids different from 0, the 

opponent will bid more and make money whereas they lose money. In some way, bidding 

a low amount is seen as a way to encourage the opponent to bid more, even if there is no 

sequentiality in this game. 

Another difference concerns the probability assigned to the value of the prize. Students bid 

this value much more often than in the NE (20.7% versus 9.2% in the first game, 21.1% 

versus 11.1% in the second game).  

We also observe that the students bid 0 more often than in the NE (37.9% versus 28.3% in 

Game 1, 33% versus 27.7% in Game 2), yet the difference in the probabilities in the second 

game is less significant. 

The way students play bids higher than V is different in the two games. Whereas 30.2% of 

them play bids 4 and 5 almost with the same probabilities in Game 1 (in contrast to the NE 

that assigns probability 0 to bid 4 and 27.6% to bid 5), students, like the NE, assign a small 

probability to bids 40 and 50 in Game 2 (10.1% for the students, 6.66% in the NE), and a 

large probability to bid 60 (27.5% for the students, 20% in the NE). 

It derives from these facts that the students’ probabilities are different from the NE ones, 

and - this matters more - that the shapes of the students’ distributions are quite different 

from the mixed NE one. 

We claim that these differences simply highlight the fact that the philosophy of a mixed 

NE does not fit with the way of playing of real players. We justify this point of view by 

turning to best-reply matching.  

 

 

3. Philosophy of Mixed Nash Equilibria and Philosophy of Best-Reply Matching 

 

We first recall Kosfeld et al.’s [2002] Best-Reply Matching (BRM) equilibrium.  

 

Definition 1. Kosfeld & al. [2002]: Normal-form Best-Reply Matching equilibrium 

Let G=(N, Si,≻𝑖, iN)  be a game in normal form(N is the set of players, N=CardN, Si is 

player i’s set of pure strategies, and ≻𝑖 is player i’s preference relation on 𝑋𝑖=1
𝑁 𝑆𝑖

 ). A 

mixed strategy p is a BRM equilibrium if for every player iN and for every pure strategy 

siSi : 

𝑝𝑖(𝑠𝑖) = ∑
1

𝐶𝑎𝑟𝑑𝐵𝑖(𝑠−𝑖)
𝑝−𝑖(𝑠−𝑖)

𝑠−𝑖∈𝐵𝑖
−1(𝑠𝑖)

 

where Bi(s-i) is the set of player i’s best replies to the strategies s-i played by the other 

agents. 

 

In a BRM equilibrium (BRME), the probability assigned to a pure strategy by player i is 

linked to the probability assigned to the opponents’ strategies to which this pure strategy 

is a best reply:  if player i' s opponents play s-i with probability  p-i(s-i), and if the set of 
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player i's best responses to s-i is the subset of pure strategies Bi(s-i), then each strategy of 

this subset is played with probability p-i(s-i) divided by the cardinal of Bi(s-i).  

This criterion builds on the notion of rationalizability developed by Bernheim [1984] and 

Pearce [1984], a strategy si being rationalizable if it is a best response to at least one profile 

s-i played by the other players.  Kosfeld et al. [2002] simply observe that, if the opponents 

often play s-i, then si often becomes the best response, so should often be played. In some 

way, they rationalize the probabilities of a player by the other players’ probabilities.  

We illustrate the concept on the normal-form game in matrix 3. 

 

  Player 2  

  A2 B2 

Player 1 A1 ( 2.9 , 1) ( 5 , 5 ) 

 B1 ( 3 , 3 ) ( 1 , 2.9) 
Matrix 3. 

 

We call p and 1-p, respectively q and 1-q, the probabilities assigned to A1 and B1, 

respectively to A2 and B2. In the mixed NE we equalize player 1’s payoffsd obtained with 

A1 and B1, so we set 2.9q+5(1-q)= 3q+1-q, and we get q=40/41, i.e. a condition on player 

2’s probabilities. We also equalize player 2’s payoffs obtained with A2 and B2, p+3(1-p) 

and 5p+2.9(1-p), so we get p=1/41, a condition on player 1’s probabilities. This may seem 

quite strange from a behavioral point of view: a player’s probabilities have no impact on 

his own payoff, they only ensure that the opponent is indifferent between his actions in the 

NE support. So, when player 1 plays A1 with probability 1/41 and B1 with probability 

40/41, these probabilities mean nothing for herself. She could play A1 and B1 with any 

probabilities given that, due to player 2’s probabilities, she is indifferent between A1 and 

B1. She chooses probabilities 1/41 and 40/41 only to help player 2 to become indifferent 

between his two actions. This explains why she plays B1 with a probability close to 1, even 

though B1 is not interesting for her when considering the range of payoffs (2.9 and 5 for 

A1, 3 and 1 for B1). As a matter of fact, player 2’s payoffs- when he plays A2 and B2- are 

close when she plays B1 (he gets 3 with A2 and 2.9 with B2) whereas they are quite different 

when she plays A1 (he gets 1 with A2 and 5 with B2). And vice versa for player 2. 

We think that real players do not choose probabilities in this way. Especially if the support 

of the mixed NE is the whole set of pure strategies, have you ever seen a player who says: 

“let’s try to put probabilities on my pure strategies so that the opponent gets the same payoff 

with all his pure strategies”? e 

 
d By ‘payoff’ we mean ‘expected payoff’, for all concepts of equilibria. For ease of notations, we will proceed so 
right through the paper. 
e We do not say that this way of playing is always meaningless. If, by doing so, the payoff of the opponent is 

always low regardless of what he plays, and if the game is a zero-sum game (so a player is better off when his 
opponent is worse off) then behaving in such a way may be strategically meaningful. But, in a usual game like 

the one in matrix 3, this behaviour is quite strange.  

                       
 



9 
 

In real life, behavior is less sophisticated (and less strange). When somebody plays A with 

probability 1/41 and B with probability 40/41, it is because he thinks that B is much more 

often his best response than A, 40 times more often, which justifies that he plays B with 

probability 40/41. In real life, probabilities (often) simply translate the frequency with 

which an action is supposed to be a best response, and, as a consequence, the frequency 

with which a player is ready to play it. And this is what is done in the BRME. Players 

simply try to be consistent with the way other players are playing, adapting their probability 

of playing an action to the probabilities with which the others play the actions to which this 

action is a best reply. This way of dealing with probabilities has no link with the mixed NE 

way of dealing with probabilities.  

We define the BRME for the game in matrix 3: 

A1 is player 1’s best response to B2, so has to be played as often as B2, i.e. p = 1-q. 

B1 is player 1’s best response to A2, so has to be played as often as A2, i.e. 1-p = q. 

A2 is player 2’s best response to B1, so has to be played as often as B1, i.e. q = 1-p. 

B2 is player 2’s best response to A1, so has to be played as often as A1, i.e. 1-q = p. 

And 0≤ p ≤1, 0≤ q ≤1. So, for the game studied, we get an infinite number of BRME, 

characterized by the fact that player 1 plays A1 as often as player 2 plays B2, and plays B1 

as often as player 2 plays A2 and vice versa.  

Three remarks derive from these results: 

• First, the BRM way of defining probabilities allows us to cope with the 

asymmetric pure strategy NE. Given that A1 is the best response to B2 and B2 is 

the best response to A1, the BRME allows player 1 to play A1 with probability 1 

and player 2 to play B2 with probability 1, given that A1 is player 1’s best response 

as often as player 2 plays B2 and vice versa. A similar reasoning holds for the 

profile (B1, A2). So, in this game, the pure strategy NE are also BRME. 

• Second, the payoff in the mixed NE (here 121/41) may be higher or lower than 

the payoff in the BRME. In the game studied, as long as we choose p between 

1/41 and 20/41, the players get more with the mixed NE than with the BRME, but 

for p lower than 1/41 and p larger than 20/41, the players get more with the 

BRME.  

• Third, in the game studied, the mixed NE is also a BRME (because p=1-q=1/41). 

Most often, mixed NE are not BRME. Observe that the justification of this special 

BRME is not the mixed NE one. In the BRME, player 1 plays A1 with probability 

1/41 because it is her best response to B2 which is also played with probability 

1/41, and she plays B1 with probability 40/41 because it is her best response to 

A2, which is played with the same probability (and the symmetric explanation 

holds for player 2). So both actions are played because each is a best response, 

and not because they lead to the same payoff. In some degree, even when the 

BRME is a mixed equilibrium, players reason in a pure strategy way: in our 

example the aim is to play A when the other plays B, and to play B when he plays 

A. This is not the case in a mixed NE, where each player best reacts to the mixed 

strategies of the others. 
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In the paper we mainly focus on a generalization of the BRM concept. As a matter of fact, 

when there are several best replies to a profile s-i, there is no reason to demand that each 

best reply be played with the same probability, so it is reasonable to generalize Kosfeld et 

al.’s criterion by allowing players to play the different best replies with different 

probabilities. 

 

Definition 2. Umbhauer [2016]: Normal-form Generalized Best-reply Matching 

equilibrium. Let G=(N, Si, ≻𝑖, iN) be a game in normal form. A mixed strategy p is a 

Generalized BRM  (GBRM) equilibrium if for every player iN  and for every pure strategy 

siSi : 

𝑝𝑖(𝑠𝑖) = ∑ 𝛿𝑠𝑖𝑠−𝑖𝑝−𝑖(𝑠−𝑖)

𝑠−𝑖∈𝐵𝑖
−1(𝑠𝑖)

 

with 𝛿𝑠𝑖𝑠−𝑖 [0, 1] for any si belonging to Bi(s-i) and ∑ 𝛿𝑠𝑖𝑠−𝑖 = 1𝑠𝑖∈𝐵𝑖(𝑠−𝑖)
 .     

          . 

Pure NE, in contrast to mixed ones, are automatically GBRM equilibria (GBRME): if 

player 1 plays A and player 2 plays B in a pure strategy NE  –so they play the actions with 

probability 1-, player 1 plays A as often as the opponent plays the action B to which A is a 

–perhaps among several- best reply, and player 2 plays B as often as player 1 plays the 

action A to which B is a –perhaps among several- best reply (Umbhauer [2016]). 

 

We make two additional remarks. Firstly, BRME and GBRME are ordinal concepts. This 

may prevent a good strategy, for example a cautious strategy that leads to high payoffs but 

is never a best response to the pure strategy profiles of the opponents, from being played 

in a BRME or in a GBRME. This is not intuitive and allows us to conjecture that BRM 

behavior will not always be observed in real life (in real life, players like playing cautious 

strategies that lead to high payoffs even when these strategies are neither best responses to 

the pure strategy profiles of the opponents, nor belong to a NE). Yet in the second-price 

all-pay auction, there do not exist strategies that lead to high payoffs without being a best 

response. Bidding 0 is a cautious way of playing but it leads to a positive net payoff only 

if the other player bids 0 too. Secondly, the second-price all-pay auction has a special 

structure as regards best responses : there are many best responses to a given bid (when it 

is not higher than V), so that GBRM becomes very useful and powerful ; this will be 

developed in the following sections. 

 

 

4. Best-Reply Matching and Students’ Way of Playing 

 

We establish the BRME in the second-price all-pay auctions. 

We start with the games played by the students. To do so, we write the best-reply matrices 

4a (Game 1) and 4b (Game 2), where bi means that player i’s action is a best reply to the 
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opponent’s action, i=1,2. For example, the bold b1 in italics in matrix 4a means that bid 4 

is one of player 1’s best replies to player 2’s bid 1. 

 

     Player 2   

   q0 q1 q2 q3 q4 q5 

   0 1 2 3 4 5 

 p0  0  b2 b2 b1b2 b1b2 b1b2 

 p1  1 b1  b2 b2 b2 b2 

Pl.1 p2  2 b1  b1  b2 b2 b2 

 p3  3 b1b2 b1 b1  b2 b2 

 p4  4 b1b2 b1 b1 b1   

 p5  5 b1b2 b1 b1 b1   

Matrix4a. Best-reply Matrix Game 1.  

 

 

 

 

 

 

 

 

 

 

 

Matrix 4b. Best-reply Matrix Game 2. 

 

It derives from the matrices 4a and 4b that the best responses in the second-price all-pay 

auction match a special structure: each bid x higher than 0 and up to V is a best response 

to each bid lower than x, each bid higher than V is a best response to all bids from 0 to V, 

and 0 is a best response to each bid from V to M. This fact is illustrated for player 1 in both 

matrices: the diagrams contain player 1’s best responses. 

In all the games studied, we write pi, respectively qi, the probability assigned to bid i by 

player 1, respectively by player 2.  

In Game 1f, i goes from 0 to 5. The symmetry of the game leads to the symmetric set of 

equations: 

p0 = q3/3+q4+q5   q0 = p3/3+p4+p5 

p1 = q0/5    q1 = p0/5  

p2 = q0/5+q1/4   q2 = p0/5+p1/4 

p3 = q0/5+q1/4+q2/3  q3 = p0/5+p1/4+p2/3 

p4 = q0/5+q1/4+q2/3+q3/3  q4 = p0/5+p1/4+p2/3+p3/3 

 
f For some results of Game 1, see also Umbhauer [2016]. 

     Player 2    

   q0 q10 q20 q30 q40 q50 q60 

   0 10 20 30 40 50 60 

 p0  0  b2 b2 b1b2 b1b2 b1b2 b1b2 

 p10  10 b1  b2 b2 b2 b2 b2 

Pl.1 p20  20 b1  b1  b2 b2 b2 b2 

 p30  30 b1b2 b1 b1  b2 b2 b2 

 p40  40 b1b2 b1 b1 b1    

 p50  50 b1b2 b1 b1 b1    

 p60 60 b1b2 b1 b1 b1    
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p5 = q0/5+q1/4+q2/3+q3/3 = p4 q5 = p0/5+p1/4+p2/3+p3/3 = q4 

p0+p1+p2+p3+p4+p5 = 1  q0+q1+q2+q3+q4+q5 = 1.    

This system of equations has a unique solution: p0=q0=180/481=37.4%, 

p1=q1=p0/5=7.5%, p2=q2=p0/4=9.4%, p3=q3=p0/3=12.5%, p4=p5=q4=q5=4p0/9 =16.6%. 

These results are reproduced in Table 3. 

 

Table 3. BRME for Game 1, Game 2 and (V=9, M=12)a,b,c. 

 q0 q1 q2 q3 q4 q5 q6 q7 q8 q9 q10,q11, 

q12 

V=3 

M=

5 

* 

180/ 

481= 
0.374 

36/ 

481= 
0.075 

45/ 

481= 
0.094 

60/ 
481= 

0.125 

80/ 

481= 
0.166 

80/ 
481= 

0.166 

     

V=

30 

M=

60 

* 

240/ 

613= 
0.3915 

40/ 

613= 
0.065 

48/ 

613= 
0.078 

60/ 
613= 

0.098 

75/ 

613= 
0.1225 

75/ 

613 

 

75/ 

613 

 

    

V=9 

M=

12 

* 

55440 

/D= 
0.312 

4620

/D= 
0.026 

5040

/D= 
0.0285 

5544

/D = 
0.031 

6160

/D= 
0.035 

6930

/D = 
0.039 

7920

/D = 
0.045 

9240

/D = 
0.052 

11088 

/D = 
0.0625 

13860 
/D = 
0.078 

17325 

/D = 
0.097 

a The notations q0, q1, q2, q3, q4, q5, q6  should be read q0, q10, q20, q30, q40, q50, q60 for V=30 and M=60. 
b * = unique BRME 
c D= 177817 

 

Game 2 leads to the equations: 

p0  = q30/4+q40+q50+q60   q0  = p30/4+p40+p50+p60 

p10  = q0/6     q10  = p0/6  

p20  = q0/6+q10/5    q20  = p0/6+p10/5 

p30  = q0/6+q10/5+q20/4   q30  = p0/6+p10/5+p20/4 

p40  = q0/6+q10/5+q20/4+q30/4  q40  = p0/6+p10/5+p20/4+p30/4 

p50  = q0/6+q10/5+q20/4+q30/4 = p40  q50  = p0/6+p10/5+p20/4+p30/4 = q40 

p60  = q0/6+q10/5+q20/4+q30/4 = p40  q60  = p0/6+p10/5+p20/4+p30/4 = q40 

p0+p10+p20+p30+p40+p50+p60  = 1  q0+q10+q20+q30+q40+q50+q60  = 1.  

The unique solution, reproduced in Table 3, is p0=q0=240/613=39.15%, 

p10=q10=p0/6=40/613=6.5%, p20=q20=p0/5=48/613=7.8%, p30=q30=p0/4= 60/613=9.8%, 

p40=p50=p60=q40=q50=q60 =5p0/16=75/613 =12.25%. 

More generally, due to the structure of the second-price all-pay auction, there is a unique 

BRME, given in proposition 1. 

 

Proposition 1. For M  ≥ V and M>1 the unique BRME is symmetric and given by: 

𝑞0 =
1

2+∑
1

𝑀−𝑖
𝑉−1
𝑖=0  − 

1

(𝑀−𝑉+1)2
  

qi = q0/(M-i+1)                       i from 1 to V, 

qi = q0(M-V+2)/(M-V+1)2      i from V+1 to M  (when M>V), 
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where qi is the probability of playing bid i, i from 0 to M. 

We get:  ∑ 𝑞𝑖 < 𝑞0 <
𝑀
𝑖=𝑉+1 ∑ 𝑞𝑖

𝑀
𝑖=𝑉  if M>V   and q0=qV if M=V. 

For M=V=1 there exist an infinite number of BRME defined by: q1=p0, p0+p1=1, q0+q1=1. 

Proof see Appendix C. 

 

Proposition 1 allows us to establish the BRME for V=9 and M=12. The probabilities are 

given in Table 3. The BRME are given in Fig. 2a, 2b and 2c. 

 

 

Fig. 2a. BRME (V=3,M=5).            Fig. 2b. BRME (V=30,M=60).            Fig. 2c. BRME (V=9,M=12). 

 

We first compare the shape of the BRME distribution and the shape of the mixed NE 

distribution. 

In the BRME, qi is increasing in i for i from 1 to V+1, and is constant from V+1 to M, a 

result in sharp contrast with the mixed NE probabilities that are decreasing from 1 to M-

V/2-1/2 and null from M-V/2+1/2 to M-1. BRM clearly takes into account that a higher 

bid is more often a best reply than a lower one (different from 0), in that each bid x 

(different from 0) is a best reply to all the bids lower than x, if x ≤ V, and a best-reply to all 

bids from 0 to V if x >V. And bid 0, in contrast to the other low bids, has a special status 

in that it is a best reply to all bids from V to M.  

Clearly, the Nash and BRM distributions have no common points, except the fact that the 

probability on bid 0 is higher than the probabilities assigned to the bids higher than 0 and 

lower than or equal to V, both in the BRME and in the NE (when M>V). The strong 

differences and the few similarities are highlighted by comparing two by two Fig. 1a and 

2a, 1b and 2b, 1c and 2c. 

 

But what about BRM and the student’s behavior? 

Fig. 3a, 3b and 3c give the students’ behavior, the NE and the BRME in Game 1. 
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Fig. 3a. Game1, Students’ way of playing.      Fig. 3b. NE Game 1.              Fig. 3c. BRME Game 1. 

 

In Game 1, the BRME probabilities fit much better with the students’ probabilities, except 

p2 (higher) and p3 (lower). This proximity is due to the fact that BRM exploits some 

observations made by the students in their comments, namely that bids 1 and 2 are seldom 

best responses. In fact, bid 1 is a best response only if the opponent bids 0 (and in this case, 

bids 2, 3, 4, 5 are also best responses), bid 2 is a best response only if the opponent bids 0 

or 1 and in these two cases, bids 3, 4 and 5 are also best responses. By contrast, 0, 3, 4 and 

5 are often best responses (bid 0 is the unique best response to bids 4 and 5 and one best 

response to bid 3, bid 3 is a best response to bids 0, 1 and 2, bids 4 and 5 are best responses 

to bids 0, 1, 2 and 3). 

 

We turn to Game 2: Fig. 4a, 4b and 4c give the students’ behavior, the NE and the BRME. 

This time, both the BRME and the NE are strongly different from the students’ behavior. 

This can be explained by the fact that the students, especially when the number of bids 

grows and when there are several best replies, do not play all best replies with the same 

probability, and may even choose to play only some of them, as allowed by GBRM. 
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Fig. 4a. Game 2, Students’ way of playing.       Fig. 4b. NE Game 2.              Fig. 4c. BRME Game 2. 

 

 

5. Generalized Best-Reply Matching, Focal Values and Focal Behavior, a Way to 

bring closer First-Price and Second-Price All-Pay Auctions 

 

In a second-price all-pay auction, all the bids higher than x and up to M are best responses 

to x, when x is not exceeding V. It is very reasonable to expect that players will not play 

each best response with the same probability but may prefer playing best responses that are 

focal, that is to say that have something special that make them prominent. That is why 

GBRM fits better with real behavior. So, for example, in Game 2, bids 40, 50 and 60 are 

best replies to bids 0, 10, 20 and 30, which explains that they are each played with the same 

probability 0.1225 in the BRME. Yet 40 and 50 are much less focal than 60, given that 60, 

besides being a best response, has focal properties not shared by 40 and 50: 60 is the largest 

possible bid, so a player is sure to get the prize at least with probability ½ by bidding 60. 

This may lead a player to only (mostly) playing 60, instead of playing 40, 50 and 60 with 

the same probability 0.1225 (this does not change the other probabilities in the system of 

equations). So, according to GBRM, the player can play 40 and 50 with a small probability, 

and 60 with the probability complementary to 3X0.1225= 0.3675. And this is exactly what 

is done by the students; they play 40 with probability 0.046, 50 with probability 0.055 and 

60 with probability 0.275, which leads to the total amount 0.376, a probability which is 

close to 0.3675. 

In Game 2, 3 bids are more focal than others: 0, because it is the cautious bidg, V, because 

it is the value of the prize, hence the fair price to pay, and M, which is the highest possible 

bid and which leads to getting the prize at least with probability ½.  

 
g 0 is sometimes also viewed as a cooperative bid, because bidding 0 allows a player to get the prize half of the 

time without paying anything, when both players bid 0.  
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So suppose that the students prefer playing focal values each time they belong to the best 

responses. For example, when player 1 bids 10, player 2 only best replies with bid 30 and 

bid 60, even though bids 20, 40 and 50 are also best responses. This leads to the GBRM 

matrix 5 (consider only the b1 and b2, the B1 and B2 are used in a further study). 

       

Player 2 

   

    q0 q10 q20 q30 q40 q50 q60 

    0 10 20 30 40 50 60 

  p0  0  B2  b1b2 b1 b1 b1b2 

  p10  10 B1  B2 b2   b2 

Player1  p20  20  B1  b2   b2 

  p30  30 b1b2 b1 b1  B2 B2 b2 

  p40  40 b2   B1    

  p50 50 b2   B1    

  p60 60 b1b2 b1 b1 b1    

Matrix 5. Selected best responses in Game 2. 

 

The system of equations becomes: 

p0 = q30/2+q40+q50+q60   q0 = p30/2+p40+p50+p60 

p10 = 0      q10 = 0  

p20 = 0     q20 = 0 

p30 = q0/2+q10/2+q20/2   q30 = p0/2+p10/2+p20/2 

p40 = 0     q40 = 0 

p50 = 0     q50 = 0 

p60 = q0/2+q10/2+q20/2+q30/2    q60 = p0/2+p10/2+p20/2+p30/2 

p0+p10+p20+p30+p40+p50+p60 = 1  q0 +q10+q20+q30+q40+q50+q60 = 1.  

The unique GBRME, solution of this system of equations, is: p0=q0=4/9=44.4% 

p30=q30=p0/2=22.2%, p60=q60=3p0/4=33.3% p10=q10= p20=q20=p40=q40=p50=q50=0. 

We get a 3 peak distribution which is similar to that of the students as regards the shape 

(highest peak on 0, second highest peak on 60 and lowest peak on 30) (see Table 4 and Fig. 

5a). 

 

To focal bids we can add focal behavior. We suggest that the players, among the multiple 

best responses, may prefer choosing responses that fit with a type of behavior. For example, 

they may add cautiousness to best replying.  So, when the opponent bids 0, the bids 10, 20, 

30, 40, 50 and 60 are best responses, but they choose 10 because 10 is the most cautious 

bid in the set of best responses (in that it maximizes the minimum payoff in this set, the 

minimum payoffs being respectively 50, 40, 30, 20, 10 and 15 for bids 10, 20, 30, 40, 50 

and 60). In the same way, 20 is the most cautious best reply to 10 and 30 is the most 

cautious best response to 20. So cautiousness in some groups of players (and other types 
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of behavior in other groups of players) may help them to select actions in the set of best 

responses.  
  

        Table 4.NE, Students’ behavior and GBRME for V=30 and M=60. 

V=30, 

M=60 

bids 

Nash 

equilibrium 

Students’ 

behavior 

GBRME 

with bids 0, 30 

and 60 

GBRME with 

weighted focal 

values 

0 27.7% 33% 44.5% 35.5% 

10 20.48% 5.5% 0 11.8% 

20 14.06% 2.8% 0 3.9% 

30 11.1% 21.1% 22.2% 17.7% 

40 6.66% 4.6% 0 4.45% 

50 0% 5.5% 0 4.45% 

60 20% 27.5% 33.3% 22.2% 

 

 

 

To come closer to the students’ distribution, we add some cautious behavior (in addition to 

the play of the three focal values 0, V and M), by assuming that players also focus on 10 

as the cautious best response to 0, and on 20 as the cautious best response to 10. And we 

also add 40 and 50 as best responses to 30 (perhaps because some players like outbidding 

the fair price bidders, without necessarily focusing exclusively on 60). So we add the B1 

and B2 in matrix 5 and we get the equations:  

p0  = q30/4+q40+q50+q60   q0  = p30/4+p40+p50+p60 

p10 = q0/3     q10 = p0/3  

p20 = q10/3    q20 = p10/3 
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p30 = q0/3+q10/3+q20/2   q30 = p0/3+p10/3+p20/2 

p40 = q30/4 = p50    q40 = p30/4 = q50 

p60 = q0/3+q10/3+q20/2+q30/4   q60 = p0/3+p10/3+p20/2+p30/4  

p0+p10+p20+p30+p40+p50+p60 = 1  q0 +q10+q20+q30+q40+q50+q60 = 1.  

The unique solution of this system of equations is : p0=q0=72/203=35.5%, 

p10=q10=24/203=11.8%, p20=q20=8/203=3.9%, p30=q30=36/203=17.7%, p40=p50=q40= 

q50= 9/203=4.45% and p60=q60= 45/203=22.2%.  

These values are illustrated in Fig. 5b and in Table 4. It derives from this that we can come 

close to the students’ distribution both in probabilities (see Table 4) and in shape (see Fig. 

5b and Fig. 4a). 

 

We now turn to the general discrete second-price all-pay auction (V, M are integers and 

the bids are the integers from 0 to M) and show that we get a GBRME of special interest, 

in that it is also a GBRME of the first-price all-pay auction. 

We recall that the only – but crucial – difference between a first-price all-pay auction and 

a second-price all-pay auction is that in the first-price all-pay auction each player pays his 

bid. So the structure of the best-reply matrix is different.  

We show the first-price all-pay auction for V=3 and M=6 in matrix 6a. 

 

    
   

Player 2 
   

    0 1 2 3 4 5 6 

  0 (7.5,7.5) (6, 8) (6, 7) (6, 6) (6, 5) (6, 4) (6, 3) 
 

1 (8, 6) (6.5,6.5) (5, 7) (5, 6) (5, 5) (5, 4) (5, 3) 

  2 (7, 6) (7, 5) (5.5,5.5) (4, 6) (4, 5) (4, 4) (4, 3) 

 Player 1 3 (6, 6) (6, 5) (6, 4) (4.5,4.5) (3, 5) (3, 4) (3, 3) 

  4 (5, 6) (5, 5) (5, 4) (5, 3) (3.5,3.5) (2, 4) (2, 3) 

  5 (4, 6) (4, 5) (4, 4) (4, 3) (4, 2) (2.5,2.5) (1, 3) 

  6 (3, 6) (3, 5) (3, 4) (3, 3) (3, 2) (3, 1) (1.5,1.5) 

Matrix 6a. First –price all-pay auction (V=3, M=6). 

 

We recall in matrix 6b the best-reply matrix for the second-price all-pay auction with V=3 

and M=6; matrix 6c is the best-reply matrix for the first-price all-pay auction with V=3 and 

M=6.  

It derives from matrices 6b and 6c that, for any bid, the intersection of the sets of best 

responses to this bid, in the second-price all-pay auction, and in the first-price all-pay 

auction, is never empty. It follows from this that, by selecting the same best responses in 

the intersection, we necessarily get the same GBRME for both games. 

So suppose that the players, in the second-price all-pay auction, among the best responses, 

only choose the most cautious one. It follows that each player best replies to the opponent’s 

bid x by playing the lowest possible best reply (because it is the bid that yields the max-

min payoff in the set of best responses). So bid x+1 is chosen as the best response to bid x, 
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for x from 0 to V-1, and bid 0 is chosen as the best response to all bids higher than or equal 

to V. 

 

     Player 2    

   q0 q1 q2 q3 q4 q5 q6 

   0 1 2 3 4 5 6 

 p0  0  b2 b2 b1b2 b1b2 b1b2 b1b2 

 p1  1 b1  b2 b2 b2 b2 b2 

Player 1 p2  2 b1  b1  b2 b2 b2 b2 

 p3  3 b1b2 b1 b1  b2 b2 b2 

 p4  4 b1b2 b1 b1 b1    

 p5  5 b1b2 b1 b1 b1    

 p6 6 b1b2 b1 b1 b1    
Matrix 6b. Best-reply matrix, second-price all-pay auction (V=3, M=6).  

 

 

 

 

 

 

 

 

 

 

 

 

In the first-price all-pay auction, bid x+1 is the only best response to bid x, x from 0 to V-

2, bid 0 is the only best reply to all bids higher than or equal to V, and bid 0 and bid V are 

the only best responses to bid V-1. Suppose that the players choose V as the best response 

to V-1, - i.e.  that they select the less cautious best response. 

By so doing, in both games, the players choose for any bid the same best response (the bold 

and underlined best responses in matrices 6b and 6c). So they play the same GBRME.   

Given that pi=qi=0, for i from V+1 to M, the GBRM equations become: 

p0=qV       q0=pV 

pi=qi-1 qi=pi-1       i from 1 to V        ∑ 𝑝𝑖 = ∑ 𝑞𝑖 = 1.
𝑉
𝑖=0

𝑉
𝑖=0  

It follows that the unique symmetric GBRME assigns the same probability 1/(V+1) to each 

bid from 0 to V and a null probability to the higher bids. 

So playing in a cautious (best-replying) way in the second-price all-pay auction leads to 

the same strategy profile as playing in a non-cautious (best-replying) way in the first-price 

all-pay auction. 

 

     Player 2    

   q0 q1 q2 q3 q4 q5 q6 

   0 1 2 3 4 5 6 

 p0  0  b2 b1 b1 b1 b1 b1 

 p1  1 b1  b2     

Player 1 p2  2 b2 b1  b2    

 p3  3 b2  b1     

 p4  4 b2       

 p5  5 b2       

 p6 6 b2       
Matrix 6c. Best-reply matrix, first-price all-pay auction (V=3, M=6).  
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This result is of interest, both from a game theory point of view and from an economic 

point of view. 

Firstly, in game theory, getting a same equilibrium behavior for two different games means 

that the equilibrium is robust to important changes in the game. And this is interesting 

given that players do often not perfectly understand the rules of a game. Especially, as 

regards all-pay auctions, which are special non obvious auctions, some players may be 

unsure about what they will have to pay: even if one takes time explaining the rules of a 

second-price all-pay auction, one can reasonably anticipate that some players keep on 

thinking that they pay what they bid. So some players play without knowing what they 

have to pay, i.e. they play a game with incomplete information on the payoffs. Hence it is 

fine to get an equilibrium that is robust to different payoff structures. In our approach, 

getting the same equilibrium in two different games is possible when the intersection of 

the sets of best responses to each action in both games is not empty, which restricts the 

ways in which the payoff structures are allowed to differ. This observation contributes to 

the literature on the robustness of equilibrium behavior in games with incomplete 

information (see for example Bergemann and Morris [2013]).  

Secondly, it is sometimes difficult to distinguish a first-price all-pay auction from a second-

price all-pay auction. Consider for example Shubik’sh [1971] dollar auction game, where 

two bidders make bids and can outbid each other (in multiple of five cents) in order to get 

a dollar. The game stops when one bidder drops out; the dollar goes to the highest bidder, 

and both bidders pay the largest bid they made. This game is close to a first-price all-pay 

auction, in that each bidder pays his largest bid. But, because the game is sequential, one 

may observe a sequential overbidding process – the escalation process Shubik [1971] 

analyses in his paper- such that each player systematically outbids the opponent by 5 cents, 

till one player stops; if so, the player who stops loses his last bid, and the opponent, who 

gets the dollar, just pays 5 cents more than the loser: so he (almost) pays the second-price, 

that is to say the game looks like a second-price all-pay auction.  

To give a more economic (political) example, consider an electoral campaign that leads a 

candidate to visiting a given town several times in order to persuade the inhabitants of the 

city to vote for him. Suppose that the citizens vote for the candidate that most visited their 

city.  At first sight, this game is a first-price all-pay auction, given that each candidate loses 

the money and the time he invests in each visit. Yet it is also close to a war of attrition 

 
h Shubik’s game is in fact neither exactly a first-price all-pay auction nor a second price all-pay auction. It is more 

complex. There are potentially more than two bidders (a large crowd around the auctioneer) and only the two 

highest bidders pay their bid. The way ties are resolved is quite original, given that the dollar goes to the bidder 
closest to the auctioneer (so, at the start of the game, especially if the crowd forms a disk around the auctioneer, 

a potential bidder does not know if he will be the lucky closest person). Shubik expects an escalation process that 

lasts a long time, players overbidding each other by 5 cents, but he is not even sure that the game will start. And 
Shubik tells us nothing about what happens if nobody makes a bid. Does the auctioneer keep the dollar? If so, 

there is a discontinuity between what happens for no bid (i.e. a bid of 0 cents) and what happens for a single bid 

of the lowest amount (5 cents).  For the game and the escalation process to start, Shubik expects a kind of bounded 
rationality in that he hopes that ‘the propensity to calculate does not settle in until at least two bids have been 
made’….This easily explains why Shubik’s game is more than an all-pay auction and that it has been studied in 

many different ways. 
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because the visits are sequential. So suppose that, at a given time t, both candidates visited 

the town a same number of times. But assume that one of the candidates, for possibly 

different reasons – he has not enough money, he prefers visiting other towns...- stops 

visiting the town. Then one (and only one) additional visit is enough for the opponent to 

be voted by the inhabitants of the city. So the winner just pays one more visit than the loser. 

This looks like a second-price all-pay auction. This example is linked to vote-buying 

literature (see for example Dekel et al. [2008]). 

To summarize, when a first-price all-pay auction gives rise to a dynamic process of 

overbidding, then it can become close to a war of attrition, i.e. a second-price all-pay 

auction. 

 

 

6. Best-Reply Matching Equilibria, Generalized Best-Reply Matching Equilibria, 

Nash Equilibria and Payoffs 

 

What about payoffs? In the second-price all-pay auction, the NE always leads to a null 

payoff (in the continuous setting) or a small positive payoff in the discrete setting; this 

(slight) positivity is due to the fact that bid 0 always yields a non negative payoff, regardless 

of the bids chosen by the opponent. 

 

With BRM and GBRM, we get different results.  

 

We first come back to the BRME.  

For M not too far from V, the BRME payoffs can be higher than the NE ones. For example, 

for V=3 and M=5, the NE payoff is 1589.5/293= 5.425, whereas the BRME payoff is 5.457 

(= 180(6.5x180+5(481-180)) + 36(8x180+5.5x36+4(481-180-36)) + 

45(8x180+7x36+4.5x45+3x60+3x80+3X80) + 60(8x180+7x36+6x45+3.5x60+2x80+ 

2x80) + 80(8x180+7x36+6x45+5x60+2.5x80+1x80) + 80(8x180+7x36+6x45+5x60+ 

4x80+1.5x80) /4812 = 1262620.5/4812). 

For V=9 and M=12, the BRME is 13.528, whereas the NE payoff is only 12.477. 

For V=30 and M=60 (and bids in increments of ten) the results are reversed: the NE payoff 

is 64.157 and the BRME payoff is slightly lower (24082745/6132= 64.089). 

In the general setting (V, M are integers and the bids are the integers from 0 to M), we get 

the result in proposition 2. 

 

Proposition 2. We call Eg(i) the payoff obtained with bid i in the BRME. We get: 

Eg(i+1)-Eg(i)= 𝑉𝑞𝑖/2 + 𝑉𝑞𝑖+1/2 − ∑ 𝑞𝑗
𝑀
𝑗=𝑖+1           i from 0 to M-1. 

Eg(i+1)-Eg(i) is increasing in i, i from 1 to M-1. 

For M>2V, Eg(i) decreases from bid 1 to bid M-V, then increases up to M. 

Proof see Appendix D. 
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It derives from proposition 2 that the shape of the payoff function goes as follows. Often 

Eg(1)>Eg(0) due to the fact that 
𝑉𝑞0

2
+
𝑉𝑞1

2
− ∑ 𝑞𝑗

𝑀
𝑗=1 > 0  (because of the large value of 

q0). Then, generally, the payoff function decreases (due to the fact that 
𝑉𝑞1

2
+
𝑉𝑞2

2
−

∑ 𝑞𝑗
𝑀
𝑗=2 < 0) for a while; and, when Eg(i+1)-Eg(i) becomes positive, the payoff function 

increases up to bid M. We represent the net payoff function for V=9 and M=12 in Fig. 6. 

 
Fig. 6. BRME net payoffs (full curve) and mixed NE net payoffs (dashed line).  

 

We comment on these payoffs. If we compare the payoffs in Fig. 6 and the probabilities 

assigned to the bids in Fig. 2c, we may feel uncomfortable in that the evolution of the 

payoffs does not follow the evolution of the probabilities. For example, q1 is the smallest 

probability but bid 1 yields one of the highest net payoffs; and qi increases from 1 to 7 

whereas the net payoffs decrease at the same time. Yet the player, regardless of his chosen 

bid, never gets a negative net payoff and he always gets a net payoff larger than the NE 

one: his lowest net payoff, obtained for bid 7, is equal to 0.704 which is higher than 0 and 

higher than the NE net payoff 0.477. So the BRME is of course not stabilized as regards 

the Nash logic, but its own consistency ensures large payoffs. 

 

Yet the payoffs may become negative, notably when M is much larger than V. In that case 

q0 tends towards ½, and all the other probabilities tend towards 0 (but are still increasing 

in i from 1 to V+1 and constant from V+1 to M) because ∑ 𝑞𝑖
𝑉
𝑖=1 <VqV=Vq0/(M-V+1)→0, 

and ∑ 𝑞𝑖
𝑀
𝑖=𝑉+1 = q0 (M-V+2)(M-V)/(M-V+1)2 →q0 , so q0 and  ∑ 𝑞𝑖  

𝑀
𝑖=𝑉+1 → ½. 

Accordingly, when M is large, the BRM probabilities are shared on bid 0 (probability ½) 

and homogenously shared over the set of bids from V+1 to M (probability ½ on this set). 

We have a kind of bimodal distribution, ½ on bid 0 and ½ on a set (each bid in the set being 

played with the same probability).  
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It follows that for large values of M, a player often suffers from the winner’s curse. Playing 

high bids leads him to often win the prize, but he pays too much given that he often wins 

against a player who bids too much.  

 

Proposition 3. For large values of M, M large in comparison to V (M/V→+ꝏ, V is a 

constant), the mean net loss of a player, at the BRME, is equal to 1/12th of his budget M. 

The main net loss is obtained for the bid M-V: the player loses 1/4th of M. 

Proof see Appendix E. 

 

We now turn to GBRM. The degree of liberty in the way of weighting the best responses - 

i.e. in choosing the probability distributions over the sets of best responses - gives rise to a 

large set of payoffs:  players can get payoffs much larger than the NE payoff, but they may 

also get lower, negative payoffs, depending on the best responses they focus on.  

Before talking about some specific payoffs, we specify the set of GBRME and their 

associated payoffs. 

 

Proposition 4. For any probability distribution over each set of best responses, there exists 

a symmetric GBRME. These equilibria lead to a closed interval of net payoffs that includes 

all the payoffs in [V/2-M/4, V/4]. The maximal symmetric equilibrium net payoff will not 

be higher than V/2-1/4 and the minimal one will not be lower than -V/4-M/4. 

Proof see Appendix F. 

 

Given that all the net payoffs in the interval [V/2-M/4, V/4] are reachable, players can get 

large positive net payoffs (V/4 is far from a mixed NE null payoff) but they may also get 

very negative ones, notably if M >>2V. So the first reaction may be to say that the degree 

of liberty allowed by the GBRME concept has the defects of its qualities. On the one hand, 

it allows us to give a consistent foundation to different potential observed bidding 

behaviors and their associated payoffs, but on the other hand, it is not very useful if used 

to predict the payoffs in a second-price all-pay auction game. The second reaction, which 

involves two steps, is more positive and is linked to behavioral economics. Firstly, true 

facts often reduce the acceptable probability distributions on the sets of best responses; for 

example, if we work with senior bidders, usually known as being cautious, we 

automatically weight the best responses in a given way and so we reduce the set of 

achievable equilibria and associated payoffs. Secondly, a large range of possible payoffs 

should encourage players to try to reach the largest positive payoffs, so should lead them 

to learning to select best responses in a way to get nice payoffs.  

 

We now give some examples. We first observe that by selecting cautious best responses as 

in matrix 6b, which leads both players to putting the same probability 1/(V+1) on each bid 

from 0 to V, the players get a nice positive payoff. 
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Proposition 5. The GBRME that assigns the probability 1/(V+1) to each bid from 0 to V 

leads to a null net payoff in the first-price all-pay auction. But it leads to the net payoff 

(V2+2V)/(6V+6) in the second-price all-pay auction. Moreover, in the second-price all-

pay auction, the net payoff obtained with each played bid is positive. 

Proof see Appendix G. 

 

It follows from proposition 5 that by playing this GBRME in the second-price all-pay 

auction, the players are as safe as in the NE, given that they get a positive net payoff with 

each played bid. And the net payoff is much larger than the NE one, especially if V is large 

(for V=3 and M=6, respectively V=9 and M=12, the NE net payoff is 0.4157, respectively 

0.477, whereas the GBRME net payoff is 0.625, respectively 1.65). More generally, the 

GBRME payoff is close to V/6 when V is large. 

 

We now come back, in the general setting (M,V and the bids are integers), to our students 

who focus on 0, V and M (more than 4/5 of the students only play these bids in Game 2); 

observe that for any bid from 0 to M, at least one of these three bids is a best response to 

it. So we get the game in matrix 7a, and the best-reply matrix 7b (‘…’ represents the other 

bids and probabilities). 

 

   Player 2   

 0 … V … M 

               0 (M+V/2, M+V/2)  (M, M+V)  (M, M+V) 

              …      

Player 1 V (M+V, M)  (M-V/2, M-V/2)  (M-V, M) 

              …      

              M (M+V, M)  (M, M-V)  (V/2,V/2) 
Matrix 7a. Payoffs with focal values 0, V and M. 

 

 

 

 

 

 

 

 

 

 

For any values of V and M, given that pi and qi, i from 1 to M-1, i≠V, are equal to 0 (the 

associated bids being never chosen as best responses), the GBRM equations become:   

p0 = qV/2+qM  q0 = pV/2+pM 

pV = q0/2  qV = p0/2 

pM = q0/2+qV/2  qM = p0/2+pV/2  

     Player 2   

   q0 … qV … qM 

   0  … V … M 

 p0  0   b1b2 b1 b1b2 

 … …   b2  b2 

Player 1 pV  V b1b2 b1   b2 

 … … b2     

 pM M b1b2 b1 b1   

   Matrix 7b. Best-reply Matrix with 0, V and M. 
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p0+pV+pM = 1  q0+qV+qM = 1. 

The unique solution of this system of equations is p0 =q0=4/9, pV=qV=2/9, pM=qM= 3/9. 

These probabilities exploit true facts: bid 0 is played more than M because it is the unique 

best response to M and is also one among the 2 best responses to V. M is more played than 

V because each time V is a best response, M is a best response too, and M is also a best 

response to V. These facts may easily be observed by a real player, so he can play in 

accordance with the hierarchy p0 > pM > pV (like the students in Game 2).  

An important fact is that the probabilities do not depend on the values of V and M (what 

matters is that M+V>M+V/2, M>M-V/2, M>V/2 and M>M-V, which is true for all values 

of M and V, given that M≥V). This derives from the fact that, contrary to the mixed NE 

concept, BRME and GBRME are ordinal concepts, so only take into account the sign of 

the differences in payoffs. Yet this may imply bad payoffs. As a matter of fact, the net 

payoff is equal to: 4/9x4V/18+2/9(4V/9-V/9-3V/9)+3/9(4V/9+3(V/2-M)/9) = 24.5V/81-

M/9. It follows that the net payoff is negative as soon as M>24.5V/9.  

Our students do not lose money even if their net payoff is barely positive (their payoff is 

60.026>60), because M/V is not too large: in the experiment, M=2V<24.5V/9. So it is 

possible that the students (mainly) focus on 0, V=30 and M=60, because they estimate that 

the possible loss with M is not large enough to prevent them from bidding M. In other 

terms, M is not felt as being risky. We can reasonably conjecture that the students would 

behave differently for other values of V, M, and the ratio M/Vi.  There may exist a kind of 

bifurcation in the focal bids chosen as best replies when the values of M, V and M/V change 

and exceed threshold values.  

An extreme way of playing, notably useful when M/V becomes large, allowed by GBRM, 

consists in selecting only the focal bids 0 and V as best responses; this is possible because 

0 or V belong to the best responses to each possible bid (0 is a best response to all bids 

higher than or equal to V, and V is a best response to each bid lower than V). In that case, 

the GBRM equations, after deleting all the null probabilities, reduce to q0=pV and qV=p0, 

each player bidding 0 as often as the opponent bids V and vice versa. The symmetric 

GBRME, which consists in bidding 0 and V with probability ½, leads to the large net 

positive payoff V/4, which is much larger than the mixed NE net payoff  when V is large 

(for V=9 and M=12, V/4=2.25 whereas the mixed NE net payoff is only 0.477). 

In other terms, if real players behave in accordance with GBRM, then it is crucial to know 

what is focal for a player, and if a change in the values of V and M is able to induce an 

appropriate change in the focal bids and in the way of selecting best responses, in order 

always to get nice positive payoffs. 

 

 

 

 

 
i Other experiments with other students give support to this conjecture. The percentage of players playing M 

shrinks when M becomes much larger than V, and new focal values emerge, like 2V. 
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7. Concluding Remarks 

 

We have shown in this paper that real behavior, in second-price all-pay auctions, fits much 

better with generalized best-reply matching than with mixed Nash equilibria. Second-price 

all-pay auctions are games with many best responses to a given strategy. In such games, 

players can adopt a best-reply matching behavior and combine it with additional 

characteristics, like cautiousness for example. Depending on the way players select their 

best responses, the equilibrium behavior and payoffs will be different. 

Whereas the mixed Nash equilibrium behavior always leads to a small positive payoff (in 

the discrete setting) or null payoff (in the continuous setting), a best-reply (and a 

generalized best-reply) matching behavior can lead to lose or to get a lot of money.  

With best-reply matching, when M is close to V, players get a nice payoff, but when M is 

far from V, the bidders lose money. With generalized best-reply matching, all depends on 

the way players choose among their best responses. Some best responses may be more 

focal, hence be more chosen than others, like 0, V and M. In that case, the payoff is positive 

when M/V is lower than a given threshold, negative otherwise. When players choose 

cautious bids in the best response set, then they usually make money. For example, when 

the bidders focus on the lowest possible best responses, they get a net payoff close to V/6 

(when V is large). And if they only focus on 0 or V as best responses, each bidder gets a 

net payoff V/4, even if M/V is large. 

M seems to be a dangerous focal point, when it becomes large relative to V, because 

bidding M when the opponent also bids M leads to losing a lot of money. Yet other 

experiments with other students not reproduced in this paper highlight a more subtle fact. 

When M is large in comparison to V (for example M≥3V) students focus less on M. As a 

consequence, M stops acting as a bad focal point. Students prefer focusing on 0, V and 2V 

for example. So the negative payoffs the bidders can get by playing M too often, may be 

observed more when M is larger than 2V but not too large. This raises the question of 

where M comes from, and, as a consequence, the question of the real number of players in 

the game. 

For example, when the second-price all-pay auction is a true auction, then of course there 

is a third player, the auctioneer, who takes the bids and offers the prize, and the true game 

can be viewed as a three-player zero-sum game.  In that case, in the mixed Nash 

equilibrium, the payoffs of the auctioneer and the two bidders are slightly negative and 

positive (are equal to 0 in the continuous setting). With generalized best-reply matching, 

the auctioneer and the bidders may alternately be losers and winners, depending on the 

value of M/V and on the best responses the bidders focus on. Observe also that M can be 

the budget of the bidders, but it may also be arbitrarily fixed by the rules of the auction.  

We may also view the second-price all-pay auction as a “casino” game, like Shubik’s 

[1971] dollar auction game; in this game, there is an auctioneer and he can, if he wants, set 

an upper bound M to invest in the game (if so, he surely chooses the amount that leads to 

the largest bids). But he may also fix no upper bound (M does not exist). Shubik [1971] 

observed that, with no upper bound, the game is usually highly beneficial to the auctioneer, 
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in that it is not uncommon for him to get a total payoff between 3 and 5 dollars. To avoid 

such a situation, in a casino game, a game authority regulation could impose the value of 

M, so that the players, even when focusing on M (and 0 and V), do not lose money or at 

least not too much. 

But what happens in real life? A seller rarely uses a second-price all-pay auction when he 

wants to sell an object, so second-price all-pay auctions are seldom true auctions. Usually, 

a second-price all-pay auction is used to study an economic war of attrition.  

For example, consider the theory of exit from a duopoly (see for example Fudenberg and 

Tirole [1986]), where two firms incur a loss by staying in the duopoly, but where the 

remaining firm (if the other firm leaves the market) gets a positive monopoly payoff. In 

this game, V is the monopoly payoff, the bids are the losses incurred each period by staying 

in the market, and M is the maximal total loss a firm can incur before being constrained to 

cease trading. M is partly fixed by law, so could be changed; in France for example, a firm 

has to declare the state of insolvency at most 45 days after having observed it, so M is 

linked to these 45 days. Observe also that, in addition to the law player, there is an 

additional player, who would like a more generous deadline (so that M is larger):  the 

consumer, who prefers the duopoly to the monopoly, because he pays less for a same 

amount. 

More generally, there are many economic or political contexts where M is arbitrarily fixed 

and could be changed. Consider, as a last example, the presidential electoral process in 

France. For reasons of equality, there are campaign spending limits. In 2017 (the limit 

amount M can change from one campaign to the other), each candidate could at most invest 

16.851 Million euros if eliminated in the first round of the presidential electoral process, 

22.509 Million euros if he reached the second round. These amounts are fixed by law. So, 

if we assume that the result of the electoral process is positively linked to the amount 

invested in the campaign, we get a war of attritionj with an arbitrary limit M, V being the 

value of winning the election. And one may wonder if changing M, or even deleting M, 

may change the electoral campaign and its result (see for example Che and Gale [1998], 

Pastine and Pastine [2012]). 

To conclude, M, in economic or political second-price all-pay auctions, when it exists, is 

not always a natural limit. Given that the value of the ratio M/V may have an impact on 

the focal values of the bidders, and hence on their behavior and payoff, this is not a neutral 

observation.   
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Appendix A.  Proof of  result 1 (Umbhauer [2017]) 

 

Consider player 1. If V=1, there is no dominated strategy. If V>1, the bids from M-V/2+1/2 

to M-1 are weakly dominated by M and played with probability 0. 

M-V/2-1/2 and M lead to the same payoff except if player 2 bids M-V/2-1/2 or M. So 

player 1 gets the same payoff with both bids if and only if: 

qM-V/2-1/2(V+1/2)+qM(V/2+1/2) = qM-V/2-1/2(3V/2+1/2)+qM(V/2) 

We get     qM-V/2 -1/2 = qM/V.       

We now compare the bids M-V/2-3/2 and M-V/2-1/2. Both lead to the same payoff, except 

if player 2 bids M-V/2-3/2, M-V/2-1/2 or M. We need:  

qM-V/2-3/2(V+3/2)+qM-V/2-1/2(V/2+3/2)+qM(V/2+3/2)= 

qM-V/2-3/2(3V/2+3/2)+qM-V/2-1/2(V+1/2)+ qM(V/2+1/2) 

hence qM-V/2-3/2(-V/2)+qM-V/2-1/2(-V/2+1)+qM = 0. 

We get:  qM-V/2-3/2  = qM(1/V +2/V2).       

More generally M-V/2-1/2-j and M-V/2-1/2-j-1, j from 1 to M-V/2-3/2,  lead to the same 

payoff, except if player 2 bids M-V/2-1/2-k  or M, with k going from 0 to j+1. 

We need:  

𝑞
𝑀−

𝑉

2
−
1

2
−𝑗−1

(𝑉 +
3

2
+ 𝑗) + 𝑞

𝑀−
𝑉

2
−
1

2
−𝑗
(
𝑉

2
+
3

2
+ 𝑗) + ∑ 𝑞

𝑀−
𝑉

2
−
1

2
−𝑘
(
𝑉

2
+
3

2
+ 𝑗) + 𝑞𝑀 (

𝑉

2
+
3

2
+ 𝑗)

𝑗−1
𝑘=0 = 

𝑞
𝑀−

𝑉
2−
1
2−𝑗−1

(
3𝑉

2
+
3

2
+ 𝑗) + 𝑞

𝑀−
𝑉
2−
1
2−𝑗
(𝑉 +

1

2
+ 𝑗) +∑𝑞

𝑀−
𝑉
2−
1
2−𝑘

(
𝑉

2
+
1

2
+ 𝑗) + 𝑞𝑀 (

𝑉

2
+
1

2
+ 𝑗)

𝑗−1

𝑘=0

. 

Hence 𝑞
𝑀−

𝑉

2
−
3

2
−𝑗
(
−𝑉

2
) + 𝑞

𝑀−
𝑉

2
−
1

2
−𝑗
(
−𝑉

2
+ 1) + ∑ 𝑞

𝑀−
𝑉

2
−
1

2
−𝑘
+ 𝑞𝑀 = 0

𝑗−1
𝑘=0 . 

We also get: 

  𝑞
𝑀−

𝑉

2
−
3

2
−(𝑗+1)

(
−𝑉

2
) + 𝑞

𝑀−
𝑉

2
−
1

2
−(𝑗+1)

(
−𝑉

2
+ 1) + 𝑞

𝑀−
𝑉

2
−
1

2
−𝑗
+ ∑ 𝑞

𝑀−
𝑉

2
−
1

2
−𝑘
+ 𝑞𝑀 = 0

𝑗−1
𝑘=0 . 

It follows   qM-V/2-j-5/2=  2qM-V/2-j-3/2/V+qM-V/2-j-1/2  for any j from 0 to M-V/2-5/2. 

i.e.   qi =  2qi+1/V+qi+2 for i from 0 to M-V/2-5/2.     

Observe that if M=(V+1)/2, which requires V=M=1 (because V≤M), then the proof stops 

with  qM-V/2-1/2=q0= qM/V=q1= ½. And if M=(V+3)/2, which requires M≤3, then the proof 

stops with q1=qM/V and q0=qM(1/V+2/V2).  M=(V+3)/2 implies M=3 and V=3 (and 

q0=5/17, q1=3/17 and q3=9/17), or M=2 and V=1 (and q0=3/5, q1=q2=1/5).  

The analysis is the same for player 2, so leads to the same equilibrium probabilities for 

player 1.                             □ 

 

Appendix B.  Proof of result 2  

 

A first proof of this (almost folk) result goes back to Hendricks et al. [1988]. The following 

proof is from Umbhauer [2016]. 
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All bids from M-V/2 to M (excluded) are weakly dominated by M, so it is conjectured that 

the NE strategy is a density function f(.) on [0 ,  M-V/2] with a mass point on M.  

Call f2(.) player 2’s equilibrium strategy. Suppose that player 1 plays b. She wins the 

auction each time player 2 bids less than b. Her payoff Eg(b) is equal to: 

𝐸𝑔(𝑏) = 𝑀 +∫ (𝑉 − 𝑥)𝑓2(𝑥)𝑑𝑥
𝑏

0

− 𝑏(∫ 𝑓2(𝑥)𝑑𝑥 + 𝑓2(𝑀))
𝑀−𝑉/2

𝑏

 

Eg(b) has to be constant for each b in [0, M-V/2] ⋃ {M}.  

We get  𝐸𝑔(𝑀) = 𝑀 + ∫ (𝑉 − 𝑥)𝑓2(𝑥)𝑑𝑥
𝑀−𝑉/2

0
+ (

𝑉

2
−𝑀)𝑓2(𝑀) = 𝐸𝑔 (𝑀 −

𝑉

2
). 

We need Eg’(b) = 0 for b in [0, M-V/2] . 

We get (V-b)f2(b)-F2(M-V/2)+F2(b)-f2(M)+bf2(b) = 0    

where F2(.) is the cumulative distribution of the density function f2(.).  

By construction f2(M) = 1-F2(M-V/2), and the differential equation becomes   

Vf2(b)-1+F2(b) = 0. 

The solution is  F2(b) = 1+Ke-b/V where K is a constant determined as follows: 

F2(0) = 0 because there is no mass point on 0, so K = -1. 

It follows F2(b) = 1- e-b/V  for b in [0, M-V/2],  f2(M) = 1-F2(M-V/2) = e1/2-M/V (<1) ,  

f2(b) = e-b/V/V for b in [0, M-V/2]  (and f2(b) = 0 for b in ]M-V/2, M[ ). 

By symmetry, we get f1(b) = e-b/V/V for b in [0, M-V/2],  f1(M) = e1/2-M/V (and f1(b) = 0 for 

b in  ]M-V/2, M[ ). 

Given that Eg(0) is equal to M, given that bid 0 is played at equilibrium, and given that a 

player gets the same payoff with each played bid, each player gets the payoff M, hence a 

net payoff equal to 0 at equilibrium.                                                                       □ 

 

Appendix C. Proof of proposition 1 

 

Each bid i, i from 1 to V is a best reply to all bids j, j from 0 to i-1. 

Each bid i, i from V+1 to M is a best reply to all bids j, j from 0 to V (if M>V). 

Bid 0 is a best reply to V and the only best reply to bid j, j from V+1 to M, if M>V, and 

bid 0 is the only best reply to V if M=V. 

We get: 

𝑝0 =
𝑞𝑉

𝑀−𝑉+1
+ ∑ 𝑞𝑉+𝑖

𝑀−𝑉
𝑖=1   𝑞0 =

𝑝𝑉

𝑀−𝑉+1
+ ∑ 𝑝𝑉+𝑖

𝑀−𝑉
𝑖=1 . 

These two equations reduce to p0=qV and q0=pV if M=V. 

p1 = q0/M    q1 = p0/M, 

p2 = q0/M+q1/(M-1)     (if V>1)  q2 = p0/M+p1/(M-1)      (if V>1)           (C.1) 

 𝑝𝑖 = ∑ 𝑞𝑗/(𝑀 − 𝑗) 
𝑖−1
𝑗=0    i from 1 to V         𝑞𝑖 = ∑ 𝑝𝑗/(𝑀 − 𝑗) 

𝑖−1
𝑗=0    i from 1 to V 

 𝑝𝑖 = ∑
𝑞𝑗

𝑀−𝑗
+ 𝑞𝑉/(𝑀 − 𝑉 + 1)

𝑉−1
𝑗=0        i from V+1 to M,     

𝑞𝑖 = ∑
𝑝𝑗

𝑀−𝑗
+ 𝑝𝑉/(𝑀 − 𝑉 + 1)

𝑉−1
𝑗=0       i from V+1 to M, 

and ∑ 𝑝𝑖 =
𝑀
𝑖=0 ∑ 𝑞𝑖 = 1.

𝑀
𝑖=0                                       (C.2)       

It can easily be checked that the equations defining p0 and q0 are redundant. 
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We first look for a symmetric BRME. 

 

We start with M>V. 

We get: 

𝑞0 =
𝑞𝑉

𝑀 − 𝑉 + 1
+ ∑ 𝑞𝑉+𝑖

𝑀−𝑉

𝑖=1

 

q1 = q0/M 

q2 = q0/M+q1/(M-1)  (if V>1) 

𝑞𝑖 = ∑ 𝑞𝑗/(𝑀 − 𝑗) 
𝑖−1
𝑗=0      i from 1 to V 

𝑞𝑖 = ∑
𝑞𝑗

𝑀−𝑗
+ 𝑞𝑉/(𝑀 − 𝑉 + 1)

𝑉−1
𝑗=0   i from V+1 to M. 

We observe that   ∑ 𝑞𝑖
𝑀
𝑖=𝑉+1 < 𝑞0 < ∑ 𝑞𝑖

𝑀
𝑖=𝑉 . 

Suppose V>1. Given that q1 = q0/M, we get q2 = q0/M +q0/((M-1)M) = q0/(M-1). 

qi = q0/(M-i+1) implies qi+1 = qi +qi/(M-i) = q0/(M-i+1)+q0/((M-i+1)(M-i)) = q0/(M-i).  

It derives by induction that qi = q0/(M-i+1), for i from 1 to V. 

And qi = q0/(M-V+1)+qV/(M-V+1) = q0/(M-V+1)+q0/(M-V+1)2 = q0(M-V+2)/(M-V+1)2 

for i from V+1 to M.  

It follows: q0+q0/M+q0/(M-1)+…+q0/(M-V+1)+q0-q0/(M-V+1)2  = 1. 

So 𝑞0(2 + ∑ 1/(𝑀 − 𝑖)𝑉−1
𝑖=0 − 1/(𝑀 − 𝑉 + 1)2  =  1. 

It can be checked that the result is the same for V=1. 

 

We now suppose that M=V.  

In that case the bids from V+1 to M vanish and we only focus on the boxed equations (C.1) 

and (C.2) (and the redundant equations p0=qV and q0=pV). It easily follows that 𝑞0/(1 +

∑ 1/(𝑀 − 𝑖)𝑉−1
𝑖=0 ) = 1.  

Given that 1 + ∑
1

𝑀−𝑖
= 2 +𝑉−1

𝑖=0 ∑ 1/(𝑀 − 𝑖)𝑉−1
𝑖=0 − 1/(𝑀 − 𝑉 + 1)2 (for M=V), we keep 

the same notation for q0 for M>V and M=V.       

It can be checked that the result also holds for M=V=1. It reduces to q0=q1=1/2.                                                                      

 

We now show that the equilibrium is unique, by showing that a BRME is necessarily 

symmetric (for M≠1).  

We observe that q0=p0 implies qi=pi for i from 1 to M. 

Now we set po=aq0  where a is a constant,  and we show that a=1. 

 

We start with M>V.  

We have:  

p1 = q0/M                       q1 = p0/M, 

p2 = p1+q1/(M-1)   (if V>1)        q2 = q1+p1/(M-1)   (if V>1)                           (C.3) 

pi = pi-1+qi-1/(M-i+1)  i from 1 to V       qi = qi-1+pi-1/(M-i+1)     i from 1 to V 

pi = pV+qV/(M-V+1)   i from V+1 to M     qi = qV+pV/(M-V+1)      i from V+1 to M 
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𝑝0 =
𝑞𝑉

𝑀−𝑉+1
+ ∑ 𝑞𝑉+𝑖

𝑀−𝑉
𝑖=1             𝑞0 =

𝑝𝑉

𝑀−𝑉+1
+ ∑ 𝑝𝑉+𝑖

𝑀−𝑉
𝑖=1 . 

Suppose V>1. 

It follows: 

p1-q1 = (q0 –p0)/M= (1-a)q0/M    i.e.     p1=q1+(1-a)q0/M 

p2-q2 = (p1 –q1)(1-1/(M-1))= (1-a)(M-2)q0/[M(M-1)]                    (C.4) 

pi-qi = (pi-1 –qi-1)(1-1/(M-i+1))= (1-a)(M-i)q0/[M(M-1)]     i from 2 to V 

pV+i-qV+i= (pV –qV)(1-1/(M-V+1))= (1-a)(M-V)2q0/[M(M-1)(M-V+1)]   i from 1 to M-V. 

𝑝0  =
𝑞𝑉

𝑀−𝑉+1
+∑ 𝑞𝑉+𝑖

𝑀−𝑉
𝑖=1  ⇒   aq0= qV/(M-V+1)+(M-V)qV+1.         (C.5) 

𝑞0  =
𝑝𝑉

𝑀−𝑉+1
+ ∑ 𝑝𝑉+𝑖

𝑀−𝑉
𝑖=1  ⇒  

q0=(qV+(1-a)(M-V)q0/[M(M-1)])/(M-V+1) + 

(M-V)(qV+1+(1-a)(M-V)2q0/[M(M-1)(M-V+1)]). 

q0= qV/(M-V+1)+(M-V)qV+1 +(1-a)q0 ((M-V)+(M-V)3)/[M(M-1)(M-V+1)].        (C.6) 

It follows from Eq. (C.5) and (C.6): 

aq0=q0-(1-a)q0 ((M-V)+(M-V)3)/[M(M-1)(M-V+1)] 

i.e. (1-a)(1- ((M-V)+(M-V)3)/[M(M-1)(M-V+1)])=0 

i.e.  a=1 except if ((M-V)+(M-V)3)/[M(M-1)(M-V+1)]=1, which is not possible for M>V.  

By developing ((M-V)+(M-V)3)/[M(M-1)(M-V+1)]-1 we get the expression 3MV2-2M2V-

V3+2M-VM-V= V(V-M)(2M-V)+M(2-V)-V which is always negative. 

Hence a=1, and the symmetric BRME is the only BRME of the game.   

Easier calculations lead to the same result for V=1. 

 

We now switch to M=V. 

If V=M=1, it is obvious to get the infinite set of BRME, defined by: p1=q0, q0+q1=1, 

p0+p1=1. 

Suppose M>1; given that V=M, we only focus on the boxed equations (C.3) and (C.4) and 

the equations p0=qV and q0=pV. Given the expression of pi-qi, for i from 1 to V, we have 

pV=qV. Given that p0=qV and q0=pV,  we get p0=q0. So the symmetric BRME is the only 

BRME of the game.                            □ 

  

Appendix D. Proof of proposition 2 

 

We have Eg(0) = M+q0V/2    

Eg(1) = M+q0V+q1(V/2 -1)-1(1-q0-q1) =  M+q0V+q1V/2 -1(1-q0) 

𝐸𝑔(𝑖) =  𝑀 + ∑ (𝑉 − 𝑗)𝑞𝑗
𝑖−1
𝑗=0 + 𝑞𝑖𝑉/2 − 𝑖(1 − ∑ 𝑞𝑗

𝑖−1
𝑗=0 )   i from 1 to M. 

It follows: 𝐸𝑔(𝑖 + 1) − 𝐸𝑔(𝑖) =  (𝑉 − 𝑖)𝑞𝑖 +
𝑞𝑖+1𝑉

2
−
𝑞𝑖𝑉

2
+ 𝑖𝑞𝑖 − (1 − ∑ 𝑞𝑗

𝑖
𝑗=0 )  

=
𝑉𝑞𝑖

2
+
𝑉𝑞𝑖+1

2
− ∑ 𝑞𝑗

𝑀
𝑗=𝑖+1 . 

And  𝐸𝑔(𝑖 + 2) − 𝐸𝑔(𝑖 + 1)  =
𝑉𝑞𝑖+1

2
+
𝑉𝑞𝑖+2

2
− ∑ 𝑞𝑗

𝑀
𝑗=𝑖+2 . 
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Given that qi+2 ≥qi for i from 1 to M-2, and given that −∑ 𝑞𝑗 >
𝑀
𝑗=𝑖+2 − ∑ 𝑞𝑗

𝑀
𝑗=𝑖+1  for i from 

0 to M-2, we get Eg(i+2)-Eg(i+1) > Eg(i+1)-Eg(i) for i from 1 to M-2. So Eg(i+1)-Eg(i) 

is increasing in i, for i from 1 to M-1. 

We now suppose M>2V. 

We get, for i from 1 to M-V-1, 

 𝐸𝑔(𝑉 + 𝑖 + 1) − 𝐸𝑔(𝑉 + 𝑖) =  
𝑉𝑞𝑉+𝑖

2
+
𝑉𝑞𝑉+𝑖+1

2
− ∑ 𝑞𝑉+𝑗  

𝑀−𝑉
𝑗=𝑖+1  

= 𝑞0(𝑀 − 𝑉 + 2)(2𝑉 + 𝑖 − 𝑀)/(𝑀 − 𝑉 + 1)
2  

given that qV+j = q0(M-V+2)/(M-V+1)2 for  i from 1 to M-V. It follows that  Eg(V+i+1)-

Eg(V+i) becomes positive only for i > M-2V.  

Hence Eg(j+1)-Eg(j) becomes positive only for j > M-V. 

Putting the results together, it derives that, for M>2V, Eg(b) decreases for b from 1 to M-

V and increases from M-V+1 to M.                    

                 

      

Appendix E. Proof of proposition 3 

 

First part of the proposition.  

We calculate the mean payoff for each player when M is large. We know that, when M is 

large (M→+ꝏ) and V is a constant, then q0 → ½ , ∑ 𝑞𝑖
𝑉
𝑖=1 → 0, ∑ 𝑞𝑖 → 1/2

𝑀
𝑖=𝑉+1 , so qi= 

a=1/(2(M-V)) for each i from V+1 to M. 

We look for the payoff obtained with each played bid. We omit the bids from 1 to V, given 

that they lead to a payoff which is a constant that will be multiplied by a probability (of 

playing the bid) so close to 0 that the sum of the payoffs obtained with these bids also tends 

towards 0 (each qi → 0 and ∑ 𝑞𝑖 → 0
𝑉
𝑖=1 ). For similar reasons we omit the payoff a player 

gets when he meets a player who plays a bid from 1 to V. So we calculate the payoff 

obtained with bid 0, the payoff obtained with bid V+i, i from 1 to M-V, and the expected 

net payoff.  

Net payoff obtained with bid 0 = q0V/2 = V/4. 

Net payoff obtained with bid V+1 =  

q0V+a(V/2-V-1)-(V+1)(M-V-1)a = q0V+a(V/2)- a(V+1)(M-V). 

Net payoff obtained with bid V+2 = q0V-a+a(V/2-V-2)-(V+2)(M-V-2)a =  

q0V-a+a(V/2)- a(V+2)(M-V-1).  

More generally, the net payoff obtained with bid V+i is equal to: 

q0V- a -….-(i-1)a+a(V/2)-a(V+i)(M-V-i+1),    i from 2 to M-V. 

So, for i from 1 to M-V, the net payoff obtained with V+i is equal to: 

V/2+ai2/2-aV(M-V+1/2)-ia(M-2V+1/2).  

To calculate the expected net payoff, we multiply V/4 by q0, the net payoff for bid V+i by 

a, i from 1 to M-V, and we sum these payoffs. We get: 

 
𝑉

8
+
𝑎(𝑀−𝑉)𝑉

2
− 𝑎2(𝑀 − 𝑉)𝑉 (𝑀 − 𝑉 +

1

2
) + 𝑎∑ (

𝑎𝑖2

2
− 𝑖𝑎 (𝑀 − 2𝑉 +

1

2
)).𝑀−𝑉

𝑖=1  

𝑎 ∑ (
𝑎𝑖2

2
− 𝑖𝑎 (𝑀 − 2𝑉 +

1

2
)) 𝑀−𝑉

𝑖=1 =  
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a2(M-V)(M-V+1)(2M-2V+1)/12 - a2(M-V)(M-V+1)(M-2V+1/2)/2,  which tends towards 

2M/48-M/8 = -M/12  because a = 1/(2(M-V)) and because V and the other constants are 

small in comparison to M. 

V/8+a(M-V)V/2- a2(M-V)V(M-V+1/2) → V/8+V/4-V/4 because a = 1/(2(M-V)). 

So the BRME net payoff tends towards -M/12.                    □ 

                                 

Second part of the proposition 

Given that M >> 2V, we know from proposition 2 that the lowest payoff is obtained for 

bid M-V, i.e.  bid V+(M-2V). This net payoff is equal to: 

V/2+ai2/2-aV(M-V+1/2)-ia(M-2V+1/2) with i = M-2V and a = 1/(2(M-V)). 

So it is equal to :  V/2+a(M-2V)2/2-aV(M-V+1/2)-(M-2V)a(M-2V+1/2) which tends 

towards -M/4 (we can omit V and the others constants given that only M → +ꝏ).          □ 

 

Appendix F. Proof of proposition 4 

 

We only look for symmetric GBRME and we only study the case M>V (there is no 

difficulty in adapting the proof to M=V). We get the equations (F.1): 

q0= δ0VqV+∑ 𝑞𝑖
𝑀
𝑖=𝑉+1   

𝑞𝑖 = ∑ 𝛿𝑖𝑗𝑞𝑗
𝑖−1
𝑗=0     i from 1 to V 

𝑞𝑖 = ∑ 𝛿𝑖𝑗𝑞𝑗
𝑉
𝑗=0     i from V+1 to M       and   ∑ 𝑞𝑖

𝑀
𝑖=0 = 1.     

For ease of notation we will write “δ” for all “the constants/variables δ0V and δij, j from 0 

to V and i from j+1 to M”. We call D the set of δ that check the constraints (F.2): 

 ∑ 𝛿𝑖𝑗 = 1
𝑀
𝑖=𝑗+1     j from 0 to V-1 

 𝛿0𝑉 +∑ 𝛿𝑖𝑉
𝑀
𝑖=𝑉+1 = 1 

δ0V ≥0, δij≥0, j from 0 to V and i from j+1 to M. 

There is a redundant equation in (F.1):  

𝑞𝑖 = ∑ 𝛿𝑖𝑗𝑞𝑗
𝑖−1
𝑗=0 ,  i from 1 to V, 𝑞𝑖 = ∑ 𝛿𝑖𝑗𝑞𝑗

𝑉
𝑗=0 ,  i from V+1 to M, and  ∑ 𝑞𝑖 = 1

𝑀
𝑖=0    ⇒ 

𝑞0 = 1 −∑𝑞𝑖

𝑀

𝑖=1

= 1 −∑∑ 𝛿𝑖𝑗𝑞𝑗 − ∑ 𝛿𝑗𝑉𝑞𝑉 = 1 −∑𝑞𝑗

𝑉−1

𝑗=0

− (1 − 𝛿0𝑉)𝑞𝑉 

𝑀

𝑗=𝑉+1

 
𝑀

𝑖=𝑗+1

𝑉−1

𝑗=0

 

= ∑ 𝑞𝑖 − (1 − 𝛿0𝑉)𝑞𝑉
𝑀
𝑖=𝑉 =∑ 𝑞𝑖 + 𝛿0𝑉𝑞𝑉

𝑀
𝑖=𝑉+1  . So the first equation is redundant and we 

suppress it. 

The existence of a unique symmetric GBRME for all δ in D follows by construction. 

q1=δ10q0= a1q0 with a1≥0. 

q2=δ20q0+δ21a1q0 = a2q0 with a2≥0. 

Suppose that qi=aiq0 with ai ≥0  for  i<V. 

It follows 𝑞𝑖+1 = ∑ 𝛿(𝑖+1)𝑗𝑞𝑗 =
𝑖
𝑗=0 ∑ 𝛿(𝑖+1)𝑗𝑎𝑗𝑞0

𝑖
𝑗=0 = 𝑎𝑖+1𝑞0 with ai+1 ≥0. 

So qi=aiq0 with ai ≥0       i from 1 to V. 

And  𝑞𝑖 = ∑ 𝛿𝑖𝑗𝑞𝑗 =
𝑉
𝑗=0 ∑ 𝛿𝑖𝑗𝑎𝑗𝑞0 = 𝑎𝑖𝑞0

𝑉
𝑗=0    ai ≥0      i from V+1 to M. 

                      (F.2) 

               (F.1) 
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We get: ∑ 𝑞𝑖 = 1
𝑀
𝑖=0       𝑞0 = 1/(1 + ∑ 𝑎𝑖

𝑀
𝑖=1 )   with at least one strictly positive ai , i 

from 1 to M. 

So q0 is unique, positive and lower than 1. Given that qi=aiq0 with ai≥0, and given that 

∑ 𝑞𝑖 = 1
𝑀
𝑖=0 , it follows that all the qi, i from 1 to M are unique, positive or null and lower 

than 1. So, for all δ in D, there exists a unique symmetric GBRME. 

More precisions can be given on q0. Given that qi= δi0q0+bi, with bi≥0, i from 1 to M, we 

get ∑ 𝑞𝑖 =
𝑀
𝑖=1 ∑ (𝛿𝑖0𝑞0 + 𝑏𝑖

𝑀
𝑖=1 ) = 𝑞0 + ∑ 𝑏𝑖

𝑀
𝑖=1 . It follows that ∑ 𝑞𝑖 = 1

𝑀
𝑖=0  2𝑞0 +

∑ 𝑏𝑖
𝑀
𝑖=1 = 1 so q0<1/2 given that each bi is positive or null (i from 1 to M), and at least one 

of them is strictly positive if V>1 (if V=1, q0 can be equal to 1/2).    

 

We now look at player 1’s net payoff (the analysis is symmetric for player 2). It is equal 

to : 

 

(𝑞,0, 𝑞1, 𝑞2,… , 𝑞𝑀−1, 𝑞𝑀)

(

 
 
 
 
 
 
 
 

𝑉

2
0 0 0 0 … 0 0

𝑉
𝑉

2
− 1 −1 −1 −1 … −1 −1

𝑉 𝑉 − 1
𝑉

2
− 2 −2 −2 … −2 −2

… … … … … … … …

𝑉 𝑉 − 1 𝑉 − 2 𝑉 − 3 𝑉 − 4 …
𝑉

2
− (𝑀 − 1) −(𝑀 − 1)

𝑉 𝑉 − 1 𝑉 − 2 𝑉 − 3 𝑉 − 4 … 𝑉 − (𝑀 − 1)
𝑉

2
−𝑀 )

 
 
 
 
 
 
 
 

.

(

  
 

𝑞0
𝑞1
𝑞2
…
𝑞𝑀−1
𝑞𝑀 )

  
 
= 

 

𝑉

2
𝑞0
2 +∑ 𝑞𝑖(∑ (𝑉 − 𝑗)𝑞𝑗 + (

𝑉

2
− 𝑖) 𝑞𝑖 − 𝑖 ∑ 𝑞𝑗) + 𝑞𝑀(∑(𝑉 − 𝑗)𝑞𝑗 + (

𝑉

2
−𝑀)𝑞𝑀) =

𝑀−1

𝑗=0

𝑀

𝑗=𝑖+1

𝑖−1

𝑗=0

𝑀−1

𝑖=1
 

𝑉

2
∑ 𝑞𝑖

2 + 𝑉∑ ∑ 𝑞𝑖𝑞𝑗
𝑀−1
𝑖=0 − ∑ 𝑖𝑞𝑖(𝑞𝑖 + 2∑ 𝑞𝑗) − 𝑀𝑞𝑀

2 =𝑀
𝑗=𝑖+1

𝑀−1
𝑖=1

𝑀
𝑗=𝑖+1

𝑀
𝑖=0

𝑉

2
[∑ 𝑞𝑖

𝑀
𝑖=0 ]2 −

∑ [∑ 𝑞𝑗
𝑀
𝑗=𝑖 ]

2𝑀
𝑖=1 = 

𝑉

2
− ∑ [∑ 𝑞𝑗

𝑀
𝑗=𝑖 ]

2𝑀
𝑖=1 . 

When M=V we get the same result. 

We write 𝑔(. ) =
𝑉

2
− ∑ [∑ 𝑞𝑗

𝑀
𝑗=𝑖 ]

2𝑀
𝑖=1 with 𝑞𝑖 = 𝑎𝑖/(1 + ∑ 𝑎𝑖

𝑀
𝑖=1 ) where ai is defined as 

above, i from 1 to M, in function of δ. So g(.) is a function of  δ and can be maximized and 

minimized on δ subject to δ ∊ D. 

Given that g(δ) is continuous on D, given that D is closed and bounded, Weierstrass’s 

theorem ensures that g(δ) has a maximum and a minimum on D.  

We give a trivial upper bound for the maximum. Given that (∑ 𝑞𝑗
𝑀
𝑗=1 )

2
= (1 − 𝑞0)

2 and 

given that q0<1/2, we get 
𝑉

2
− ∑ [∑ 𝑞𝑗

𝑀
𝑗=𝑖 ]

2
<
𝑉

2
−
1

4

𝑀
𝑖=1   .  

This result also holds when M=V. 

We provide a lower bound: 

Given that 𝑞0 ≥ ∑ 𝑞𝑖
𝑀
𝑖=𝑉+1  

𝑉

2
− ∑ [∑ 𝑞𝑗

𝑀
𝑗=𝑖 ]

2𝑀
𝑖=1 = 

𝑉

2
−∑ [∑ 𝑞𝑗

𝑀
𝑗=𝑖 ]

2𝑉
𝑖=1  − ∑ [∑ 𝑞𝑗

𝑀
𝑗=𝑖 ]

2𝑀
𝑖=𝑉+1  

∑ [∑ 𝑞𝑗
𝑀
𝑗=𝑖 ]

2𝑀
𝑖=𝑉+1 ≤ (𝑀 − 𝑉)(∑ 𝑞𝑖)

2𝑀
𝑖=𝑉+1   



35 
 

∑ [∑ 𝑞𝑗
𝑀
𝑗=𝑖 ]

2
≤ 𝑉(1 − 𝑞0)

2𝑉
𝑖=1 . 

𝑉

2
− ∑ [∑ 𝑞𝑗

𝑀
𝑗=𝑖 ]

2𝑉
𝑖=1  − ∑ [∑ 𝑞𝑗

𝑀
𝑗=𝑖 ]

2𝑀
𝑖=𝑉+1 ≥ 

𝑉

2
− 𝑉(1 − 𝑞0)

2 − (𝑀 − 𝑉)(∑ 𝑞𝑖)
2𝑀

𝑖=𝑉+1  

≥ 
𝑉

2
− 𝑉 − (𝑀 − 𝑉)𝑞0

2 

≥ 
𝑉

2
− 𝑉 − (𝑀 − 𝑉)/4 

≥ −𝑉/4 − 𝑀/4.  

This result also holds for M=V. 

Given that (q0= ½, qV=1/2, qi=0, i≠0,V) satisfies the equations (F.1) when δ0V=1 and δVi=1,  

i from 0 to V-1, the other δ variables being equal to 0, the maximum is necessarily higher 

than or equal to V/4. And given that (q0= ½, qM=1/2, qi=0, i≠0,M) satisfies the equations 

(F.1) when δMi=1, i from 0 to V, the other δ variables being equal to 0, the minimum is 

necessarily lower than or equal to V/2-M/4.  

D is convex and g(δ) is continuous on D. So the intermediate value theorem ensures that 

all the payoffs between the minimum and the maximum, and a fortiori, any payoff between 

V/2-M/4 and V/4, can be observed for some specific δ. Of course, this last result is of 

interest only if M>V.                                  □ 

 

Appendix G. Proof of proposition 5 

 

We first calculate the net payoff in the first-price all-pay auction. It is well-known that the 

discrete NE leads to playing each bid from 0 to V-1 with probability 1/V and that the NE 

payoff is 0.5 (so each bid from 0 to V-1 leads to the payoff 0.5 in the NE). 

It follows that, in the GBRME: 

bid 0 leads to the net payoff 0.5V/(V+1).  

bid 1 leads to the net payoff 0.5V/(V+1)-1/(V+1)   (because we have to add the payoff 

obtained by bid 1 when confronted to bid V). 

bid i leads to the net payoff 0.5V/(V+1)-i/(V+1)     i from 2 to V-1. 

bid V leads to the net payoff  -0.5V/(V+1). 

And the GBRME net payoff is equal to: 

 0.5V2/(V+1)2- (1+2+…+V-1)/(V+1)2 - 0.5V/(V+1)2= [0.5V2-0.5V(V-1)-0.5V]/(V+1)2  =  

0. 

We now focus on the second-price all-pay auction. 

Bid 0 leads to the net payoff 0.5V/(V+1). 

Bid 1 leads to the net payoff  [V+V/2-V]/(V+1). 

Bid i leads to the net payoff [∑ (𝑉 − 𝑗) + 𝑉/2 − 𝑖(𝑉 − 𝑖 + 1)]/(𝑉 + 1)𝑖−1
𝑗=0   i from 2 to V. 

We get [∑ (𝑉 − 𝑗)  + 𝑉/2 − 𝑖(𝑉 − 𝑖 + 1)]/(𝑉 + 1𝑖−1
𝑗=0 ) = [𝑉/2 + 𝑖(𝑖 − 1)/2]/(𝑉 + 1)  

for i from 1 to V. 

And the GBRME net payoff becomes: 

[0.5𝑉(𝑉 + 1) + 0.5∑ 𝑖2𝑉
𝑖=1 − 0.5∑ 𝑖 𝑉

𝑖=1 ]/(𝑉 + 1)2=0.5[V(V+1)+V(V+1)(2V+1)/6 – 

0.5V(V+1)]/(V+1)2  = 0.5V[0.5+(2V+1)/6]/(V+1) = (V2+2V)/(6(V+1)). 
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Regardless of the played bid, the player gets a positive net payoff, given that bid 0 leads to 

the net payoff 0.5V/(V+1) and that bid i leads to the net payoff  [V/2+i(i-1)/2]/(V+1) for i 

from 1 to V.                       □ 
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