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Abstract The rank of a bimatrix game is defined as the rank of the sum of the
payoff matrices of the two players. The rank of a game is known to impact both
the most suitable computation methods for determining a solution and the
expressive power of the game. Under certain conditions on the payoff matrices,
we devise a method that reduces the rank of the game without changing the
equilibrium of the game. We leverage matrix pencil theory and the Wedderburn
rank reduction formula to arrive at our results. We also present a constructive
proof of the fact that in a generic square game, the rank of the game can be
reduced by 1, and in generic rectangular game, the rank of the game can be
reduced by 2 under certain assumptions.

Keywords Bimatrix Games · Wedderburn Rank Reduction · Matrix Pencils ·
Strategic Equivalence in Games

1 Introduction

The study of game theory — which models strategic interactions among ratio-
nal agents — has a rich history dating back to the formalization of the field by
John Neumann (1928); see Von Neumann (1959) for an English translation.
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Nash equilibrium (NE) is the widely accepted solution approach for normal
form games, and computing a solution in a k-player finite game is one of the
fundamental problems in game theory. Due to the well known theorem by
Nash (1951), we know that every finite game has a solution, possibly in mixed
strategies. However, outside of some restricted classes of games, which includes
zero-sum games, rank-1 games, potential games, and coordination games, the
computation of NE is shown to be computationally difficult in the worst case.

In a two-player bimatrix game in which the row player has m pure strate-
gies and the column player has n pure strategies, the payoffs to the players
can be represented as two matrices, A and B in Rm×n. Define the rank of
this game as the rank of the sum of the two payoff matrices, rank (A+B)
(Kannan and Theobald 2007, 2010). The rank of a game is known to im-
pact both the most suitable computation methods for determining a solu-
tion and the expressive power of the game. For example, it is well known
that zero-sum games, which are rank-0 games, can be solved via a linear pro-
gramming approach. For approximate solutions, Kannan and Theobald (2007,
2010) present an algorithm for computing approximate Nash equilibria of rank-
k games, defined as the class of games where rank (A+B) ≤ k, for some given
k.

The concept of strategic equivalence between game theoretic models also
enjoys a rich history, dating back to at least von Neumann and Morgen-
stern’s book first published in 1944 (Von Neumann and Morgenstern 2007,
p. 245). If two games are strategically equivalent, then they have the same
set of Nash equilibria. See Subsection 2.1 for many competing definitions of
strategic equivalence between games. Operations that preserve the strategic
equivalence of bimatrix games can modify the rank of the game. For example,
the well-studied constant-sum game, in which the sum of the two payoff ma-
trices equals a constant matrix, is strategically equivalent to a zero-sum game.
However, the zero-sum game has rank zero, while the constant-sum game is
a rank-1 game. Since the rank of a game influences both the most suitable
solution techniques and the expressive nature of a game, one should be par-
ticularly interested in determining if a given game is strategically equivalent
to a lower rank game.

Accordingly, in this paper, given a game, we apply the classical theory of
matrix pencils in conjunction with the Wedderburn rank reduction formula to
determine whether or not the given game is strategically equivalent to a game
of lower rank. If so, we also devise an algorithm for efficiently computing the
strategically equivalent lower rank game.

1.1 Prior Work

Closely related to our work is the class of strategically zero-sum games de-
fined by Moulin and Vial (1978). They study the class of games in which
no completely mixed NE can be improved upon via a correlation strategy
and come to the conclusion that these games are the class of strategically
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zero-sum games. For the bimatrix case, they provide a complete character-
ization of strategically zero-sum games (Moulin and Vial 1978, Theorem 2).
Kontogiannis and Spirakis (2012) introduce the notion of mutually concave
games and show that such games are solvable in polynomial time. They then
proceed to characterize this class of games and conclude that this class is pre-
cisely the class of strategically zero-sum games. They devise an algorithm that
can compute the strategically equivalent zero-sum game in O(m3n3) steps.

Around the same time, Isaacson and Millham (1980) studied a class of bi-
matrix games that they characterized as row-constant games . They define
row-constant games as those bimatrix games where the sum of the payoff ma-
trices is a matrix with constant rows. In their work, they show that the NE
strategies of a row-constant game can be found via solving the zero-sum game
(m,n,A,−A). Comparing Isaacson and Millham (1980) and Moulin and Vial
(1978), one can easily see that row-constant games form a subclass of strate-
gically zero-sum games.

Related to strategically zero-sum bimatrix games are the class of strictly
competitive games (Aumann 1961). In a strictly competitive game, if both
players change their mixed strategies, then either the payoffs remain un-
changed, or one of the two payoffs increases while the other payoff decreases.
In other words, all possible outcomes are Pareto optimal. It has long been
claimed that strictly competitive games share many common and desirable NE
features with zero-sum games, such as ordered interchangeability, NE payoff
equivalence, and convexity of the NE set. Indeed, Aumann claims that strictly
competitive games are equivalent to zero-sum games (Aumann 1961). Moulin
and Vial proceed to cite Aumann’s claim when arguing that strictly competi-
tive games form a subclass of strategically zero-sum games (Moulin and Vial
1978, Example 2). However, many years later Adler et al. (2009) conducted
a literature search and found that the claim of equivalence of strictly com-
petitive games and zero-sum games was often repeated, but without a formal
proof. They then proceeded to prove that this claim does indeed hold true.

Another class of games that shares some NE properties with zero-sum
games is the class of (weakly) unilaterally competitive games. As defined by
Kats and Thisse (1992), a game is unilaterally competitive if a unilateral
change in strategy by one player results in a (weak) increase in that player’s
payoff if and only if it results in a (weak) decrease in the payoff of all other
players. A game is weakly unilaterally competitive if a unilateral change in
strategy by one player results in a strict increase in that player’s payoff, then
the payoffs of all other players (weakly) decrease. If the payoff of the player
who makes the unilateral move remains unchanged, then the payoffs of all
players remain unchanged. For the two-player case, strictly competitive games
form a subclass of unilaterally competitive games, and unilaterally competi-
tive games form a subclass of weakly unilaterally competitive games. For the
bimatrix case, Kats and Thisse (1992) show that (weakly) unilaterally com-
petitive games have the ordered interchangeability and NE payoff equivalence
properties. However, convexity of the NE set is only proved for infinite games
with quasiconcave payoff functions.
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More recently, in a series of works Adsul et al. (2011, 2020) the authors
have developed polynomial time algorithms for solving another subclass of
bimatrix games called rank-1 games. Rank-1 games are defined as games where
the sum of the two payoff matrices is a rank-1 matrix. As far as we are aware,
no other authors have charaterized games that are strategically equivalent to
rank-1 games.

There is a significant body of research into computation of approximate
Nash equilibria in bimatrix games; see, for instance, Bosse et al. (2007); Daskalakis et al.
(2006); Barman (2018); Lipton et al. (2003); Daskalakis et al. (2007); Kontogiannis et al.
(2006); Kontogiannis and Spirakis (2010); Alon et al. (2013). The approxima-
tion bounds of the Nash equilibria computed by these algorithms depend
on sparsity of the sum of payoff matrices Barman (2018), rank of the pay-
off matrices Lipton et al. (2003), or the rank of the sum of payoff matrices
Kannan and Theobald (2010, 2007). We believe that our algorithm can be
used as a preprocessing step to reduce the rank of the game first and then
apply the algorithm to compute an approximate Nash equilibrium.

1.2 Notation

We use 1n and 0n to denote, respectively, the all ones and all zeros vectors
of length n. All vectors are annotated by bold font, e.g u, and all vectors
are treated as column vectors. ∆n is the set of probability distributions over
{1, . . . , n}, where ∆n =

{

p | pi ≥ 0, ∀i ∈ {1, . . . , n},
∑n

i=1 pi = 1
}

. Let ej ,
j ∈ {1, 2, ..., n}, denote the vector with 1 in the jth position and 0’s elsewhere.

Consider a matrix C. We use rank (C) to indicate the rank of the matrix
C. ColSpan(C) indicates the subspace spanned by the columns of the matrix
C, also known as the column space or the range of the matrix C. We indicate
the nullspace of the matrix C, the space containing all solutions to Cx = 0m,
as null(C). In addition, we use C(j) to denote the jth column of C and C(i)

to denote the ith row of C.

1.3 Outline of the Paper

In the next section, we review some game theoretic concepts. In Section 3,
we discuss various notions of strategic equivalence used in the literature and
implications of those definitions. In this paper, we will use the definition of
strategic equivalence introduced in Moulin and Vial (1978). We present the
main result in Section 4. In that section, we first briefly review the Wedderburn
rank reduction formula and the theory of matrix pencils. We then introduce the
overall rank reduction algorithm in Subsection 4.3. We then devise in Section
5 a novel algorithm for determining the solution to the rank-1 matrix pencil
problem, assuming such a solution exists. Next, we present some consequences
of our results when applied to generic (random) games in Section 6. We present
a simple numerical example in Section 7 and discuss the complexity of our
algorithm in this section. We finally conclude the paper in Section 8.
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2 Preliminaries

In this section, we recall some basic definitions in bimatrix games and the
definition of strategic equivalence in bimatrix games.

We consider here a two player game, in which player 1 (the row player) has
m actions and player 2 (the column player) has n actions. Player 1’s set of pure
strategies is denoted by S1 = {1, . . . ,m} and player 2’s set of pure strategies
is S2 = {1, . . . , n}. If the players play pure strategies (i, j) ∈ S1 × S2, then
player 1 receives a payoff of aij and player 2 receives bij .

We let A = [aij ] ∈ Rm×n represent the payoff matrix of player 1 and B =
[bij ] ∈ Rm×n represent the payoff matrix of player 2. As the two-player finite
game can be represented by two matrices, this game is commonly referred to as
a bimatrix game. The bimatrix game is then defined by the tuple (m,n,A,B).
Define the m×n matrix C as the sum of the two payoff matrices, C := A+B.
We define the rank of a game as rank (C). Some authors define the rank of
the game to be the maximum of the rank of the two matrices A and B, but
this is not the case here.

Players may also play mixed strategies, which correspond to a probabil-
ity distribution over the available set of pure strategies. Player 1 has mixed
strategies p and player 2 has mixed strategies q, where p ∈ ∆m and q ∈ ∆n.
Using the notation introduced above, player 1 has expected payoff p

TAq and
player 2 has expected payoff p

TBq.

2.1 Nash Equilibrium in Bimatrix Games

To introduce the notion of Nash equilibrium, we first need to define the best
response correspondence. For the payoff matricesA,B, define the best response
correspondences ΓA : ∆n ⇒ ∆m and ΓB : ∆m ⇒ ∆n as

ΓA(q) = {p ∈ ∆m : pTAq = max
i

[Aq]i},

ΓB(p) = {q ∈ ∆n : pTBq = max
j

[pTB]j}.

A Nash Equilibrium is defined as a tuple of strategies (p∗, q∗) such that
each player’s strategy is an optimal response to the other player’s strategy. In
other words, neither player can benefit, in expectation, by unilaterally deviat-
ing from the Nash Equilibrium. This is made precise in the following definition.

Definition 1 (Nash Equilibrium (Nash 1951)) A pair (p∗, q∗) of mixed
strategies is a Nash Equilibrium (NE) if and only if p∗ ∈ ΓA(q

∗) and q
∗ ∈

ΓB(p
∗).

It is a well known fact due to Nash (1951) that every bimatrix game with a
finite set of pure strategies has at least one NE, possibly in mixed strategies.
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3 Strategically Equivalent Games and Problem Formulation

Given two different games with the same set of pure strategies of both players,
under what conditions would they have the same set of Nash equilibria? Such
a topic is generally studied under the umbrella of “strategically equivalent
games”. There could be multiple definitions of strategic equivalence of bimatrix
games, depending on what we would like to preserve between the two games:

1. For each player, for every pure strategy of the other player, the preference
ordering of the player’s pure strategies remains the same in both games
(Definition 2).

2. For each player, for every mixed strategy of the other player, the sets of
best response mixed strategies of the player remain the same in both games
(Definition 3).

3. For each player, for every mixed strategy of the other player, the preference
ordering of the player’s mixed strategies remain the same in both games
(Definition 4).

It is clear that if two games are strategically equivalent according to Definition
2, then the sets of pure strategy Nash equilibria of both games are the same.
On the other hand, if two games are strategically equivalent according to
Definitions 3 and 4, then the sets of all mixed strategy Nash equilibria of both
games are the same. We present a brief overview of these definitions along
with some consequences.

The first definition of strategically equivalent games that preserves the
preference over the pure best responses of the players is proposed in Hespanha
(2017).

Definition 2 (Possieri and Hespanha (2017), Hespanha (2017)) Two
games (m,n,A,B) and (m,n, Ã, B̃) are strongly strategically equivalent iff
there exist two monotone strictly increasing functions φ1, φ2 : R → R such
that ãij = φ1(aij) and b̃ij = φ2(bij).

As we noted above, this definition of strategic equivalence between games
imply that the games have the same set of pure strategy Nash equilibria,
assuming they exist.

Another definition of strategic equivalence, based on preservation of best
response correspondence, is given in an unpublished paper (Liu 1996). This
notion of strategic equivalence is also discussed in (Myerson 2013, p. 52-53).

Definition 3 (Liu (1996)) Two games (m,n,A,B) and (m,n, Ã, B̃) are
strategically equivalent if and only if for any p ∈ ∆m and q ∈ ∆n, we have
ΓA(q) = ΓÃ(q) and ΓB(p) = ΓB̃(p).

Another definition of strategic equivalence, based on preservation of prefer-
ence ordering for all mixed strategies of the other player, was presented in
Moulin and Vial (1978), which is given below.
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Definition 4 (Moulin and Vial (1978), Def. 1, p. 205) Two games (m,n,A,B)
and (m,n, Ã, B̃) are strategically equivalent if and only if for any p̄,p ∈ ∆m

and q̄, q ∈ ∆n, we have

p̄
TAq ≥ p

TAq ⇐⇒ p̄
TÃq ≥ p

TÃq

p
TBq̄ ≥ p

TAq ⇐⇒ p
TB̃q̄ ≥ p

TB̃q.

This notion of strategic equivalence puts more stringent requirements on
the two games in comparison to the one in Definition 3. Indeed, this was
shown by Liu (1996) via an example comprising two bimatrix games that have
different preference orderings of the players, but have the same set of best
response correspondences for both the players in the two games.

To ascertain strategic equivalence between the two games according to
Definition 4, we need to check that the above condition holds for all possible
p̄,p ∈ ∆m and q̄, q ∈ ∆n. This is obviously difficult using the brute-force
computational approach. It turns out that two games that are strategically
equivalent according to the above definition satisfy a simple property:

Definition 5 (Positive affine transformation) (m,n, Ã, B̃) is a positive
affine transformation (PAT) of (m,n,A,B) if and only if there exists α1, α2 ∈
R>0, u ∈ Rn, and v ∈ Rm such that Ã = α1A + 1mu

T and B̃ = α2B + v1T

n.
We define the PAT correspondence Υ : Rm×n × Rm×n

⇒ Rm×n × Rm×n as
follows:

Υ (A,B) =
{

(Ã, B̃) ∈ R
m×n × R

m×n : (Ã, B̃) is a PAT of (A,B)
}

.

PAT is a commonly studied game transformation within the game theory
community; see, for example, the discussion in (Myerson 2013, p. 52). It is
immediate that PAT transformations preserve the preference orderings of the
players for any given strategy of the other player; consequently, if two games
are a PAT of each other, then they are strategically equivalent according to
Definition 4. The surprising result in Moulin and Vial (1978) is that in fact,
the converse also holds.

Lemma 1 Two games (m,n,A,B) and (m,n, Ã, B̃) are strategically equiva-
lent according to Definition 4 if and only if they are PAT of each-other.

Proof This result is established in (Moulin and Vial 1978, Theorem 1, p. 206).
⊓⊔

It is also straightforward to verify the following result.

Lemma 2 If two games are strategically equivalent according to Definition 4,
then they are strategically equivalent according to Definition 3.

Given that PAT and the notion of strategic equivalence due to Definition
4 are equivalent, we will use Definition 5 throughout this text. It is clear from
the above discussion that the PAT operation can transform the rank of the
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game. In this paper, we ask the following question: Given a game (m,n, Ã, B̃),
is there an algorithm that determines the parameters (α1, α2,u,v), such that
(m,n, Ã, B̃) is strategically equivalent to a lower rank game (m,n,A,B) via a
PAT? In the process, we solve the following problem:

(Â, B̂) ∈ argmin
(A,B)∈Υ (Ã,B̃)

rank (A+B) . (1)

We proceed to solving this problem in the next section.

4 Main Result

From Definition 5, it is straightforward to derive the following algebraic rela-
tionship for a PAT: If there exists α1, α2 ∈ R>0, u ∈ Rn, and v ∈ Rm such
that:

Ã = α1A+ 1mu
T, (2)

B̃ = −α2A+ v1T

n + α2

k
∑

i=1

ric
T

i (3)

then (m,n, Ã, B̃) is strategically equivalent to the rank-k game (m,n,A,−A+
∑k

i=1 ric
T

i ) via a positive affine transformation (PAT). To see this, we combine
(2) and (3) to get

Ã = −
α1

α2
B̃ + α1

k
∑

i=1

ric
T

i + 1mu
T +

α1

α2
v1T

n. (4)

Defining γ := α1

α2

, û := u, v̂ := γv, and letting α1ric
T

i = r̂iĉ
T

i , we rewrite
(4) as:

Ã+ γB̃ = 1mû
T + v̂1T

n +

k
∑

i=1

r̂iĉ
T

i . (5)

From (5), we see that any algorithm that determines the parameters (γ, û, v̂)
solves the problem of finding (A,B) ∈ Υ (Ã, B̃) such that rank (A+B) ≤
rank(Ã+ B̃). The uniqueness of our algorithm that we present in this section
is that it solves problem (1). In other words, we find a game, (m,n, Â, B̂), that
is both a minimum rank game and a PAT of the original game, (m,n, Ã, B̃).

Our approach to solving problem (1) is to decompose it into two parts
based on solving (A,B) ∈ Υ (Ã, B̃) and a third part based on constructing the
minimum rank game, (m,n, Â, B̂). These three parts are:

1. Given (m,n, Ã, B̃), we apply the Wedderburn rank reduction formula to Ã
and B̃ to arrive at matrices Ā and B̄ such that 1m 6∈ ColSpan(Ā), ColSpan(B̄)
1n 6∈ ColSpan(ĀT), ColSpan(B̄T).
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2. We use matrix pencil theory to compute γ∗ ∈ R>0 such that rank
(

Ā+ γ∗B̄
)

is as small as possible.
3. Using γ∗, we construct the strategically equivalent game (m,n, Â, B̂)

We now introduce the Wedderburn rank reduction formula and show how
that can reduce the rank of a game by at most two. Following that, we discuss
matrix pencils, an existing canonical form for calculating the eigenvalues of
rectangular pencils, and show how such a canonical form can be applied to
obtain a bimatrix game of lower rank than the original game. Finally, we
conclude the section with the statement and proof of our main result.

4.1 Rank Reduction via the Wedderburn Rank Reduction Formula

The Wedderburn Rank Reduction formula is a classical technique in linear
algebra that allows one to reduce the rank of a matrix by subtracting a specif-
ically formulated rank-1 matrix. By repeated applications of the formula, one
can obtain a matrix decomposition as the sum of multiple rank-1 matrices.
In contrast to other well-known matrix factorization algorithms, such as sin-
gular value decomposition, the Wedderburn rank reduction formula allows
almost limitless flexibility in choosing the basis of the rank-1 matrices that
are subtracted at each iteration. For further reading on the Wedderburn rank
reduction formula, we refer the reader to Wedderburn (1934, p. 69), or to the
excellent treatment of the topic by Chu et al. (1995).

We now proceed to state Wedderburn’s original theorem. Following that,
we show how one can exploit the flexibility of the decomposition to extract
specifically formulated rank-1 matrices that allow us, when certain conditions
hold true, to reduce the rank of a bimatrix game.

Theorem 1 (Wedderburn (1934, p. 69),Chu et al. (1995)) Let C ∈
Rm×n be a non-zero matrix. Then, the following holds:

1. There exists vectors x1 ∈ Rn and y1 ∈ Rm such that w1 = y
T

1Cx1 6= 0.
Then, the matrix

C2 := C − w−1
1 Cx1y

T

1C (6)

has rank exactly one less than the rank of C.
2. A vector z ∈ ColSpan(C2) if and only if z ∈ ColSpan(C) and z ⊥ y1.

Similarly, z ∈ ColSpan(CT

2 ) if and only if z ∈ ColSpan(CT) and z ⊥ x1.
3. We have Cx1 6∈ ColSpan(C2) and CT

y1 6∈ ColSpan(CT

2 ).

Proof The proof of the first assertion is due to Wedderburn (1934, p. 69). It
essentially shows that the null space of C2 is equal to the span of the null
space of C and x1. The second assertion is established in Proposition 3 in the
appendix. The third assertion is a consequence of the second assertion and the
fact that yT

1Cx1 6= 0. ⊓⊔
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We now use the Wedderburn rank reduction formula whenever there exists
x1 ∈ Rn such that Cx1 = 1m (equivalently 1m ∈ ColSpan(C)) and/or there
exists y1 ∈ Rm such that CT

y1 = 1n). This operation can reduce the rank by
at most 2. We outline this operation next.

For a matrix D ∈ Rm×n, recall that D(i) is the ith row (represented as a

column vector) and D(j) is the jth column. Let us define a map Ψ : Rm×n →
Rn ×Rm×{0, 1, 2} as follows: For a matrix D ∈ Rm×n, Ψ(D) is defined as the
tuple (u,v, l), which is defined as

1. If 1m 6∈ ColSpan(D) and 1n 6∈ ColSpan(DT), then u = 0n, v = 0m, and
l = 0.

2. If 1m ∈ ColSpan(D), then u = D(i) for any i ∈ {1, . . . ,m}, v = 0m, and
l = 1.

3. If 1n ∈ ColSpan(DT), then u = 0n, v = D(j) for any j ∈ {1, . . . , n}, and
l = 1.

4. For the case 1m ∈ ColSpan(D), 1n ∈ ColSpan(DT), we have two possibil-
ities:

(a) If the nullspace of the matrix

[

D 1m

1T

n 0

]

comprises of vectors of the form
[

x

0

]

, then define u = D(i) for any i ∈ {1, . . . ,m}, v = 0m, and l = 1.

(b) On the other hand, if there exists a vector of the form

[

x

−1

]

in the

nullspace of the matrix

[

D 1m

1T

n 0

]

, then u = D(i) and v = (D(j)−dij1n)

for any i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, and l = 2.

It is clear from the preceding discussions on the Wedderburn rank reduction
formula that the following holds.

Lemma 3 For any matrix D, let (u,v, l) = Ψ(D). Then, the matrix D̄ =
D− 1mu

T − v1T

n has the rank (rank (D)− l). Further, 1m 6∈ ColSpan(D̄) and
1n 6∈ ColSpan(D̄T).

Proof A proof is presented in Appendix A.

We now define another matrix transformation and two additional lemmas
that are necessary when we prove that (m,n, Â, B̂) is a strategically equivalent
game of lowest rank in Subsection 4.3. Let Mk be a square matrix defined as

Mk :=

(

Ik −
1

k
1k×k

)

, (7)

where Ik is an identity matrix of dimension k × k. We note here that 1k is in
the nullspace of Mk. For a matrix D ∈ Rm×n, define u,v and D̃ as

u :=
1

m
DT1m, v :=

1

n
MmD1n,

D̃ := D − 1mu
T − v1T

n = MmDMn.
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Define Ξ : Rm×n → Rm×n × Rn × Rm as

Ξ(D) := (D̃,u,v). (8)

We show in the lemma below that the rows of the matrix D̃ are orthogonal to
1n and the columns of the matrix D̃ are orthogonal to 1m.

Lemma 4 For a matrix D ∈ Rm×n, let (D̃,u,v) := Ξ(D). Then, the fol-
lowing holds: (a) 1T

mD̃ = 0, D̃1n = 0 and (b) 1m 6∈ ColSpan(D̃), 1n 6∈
ColSpan(D̃T).

Proof The proof of part (a) and (b) follows from simple algebraic manipula-
tions and is therefore omitted. Further, since 1m is orthogonal to every column
of D̃, 1m cannot be in the column span of D̃. Analogously, 1n 6∈ ColSpan(D̃T).
This completes the proof. ⊓⊔

The matrix transformation induced by the map Ξ does not reduce the
rank of the matrix beyond what is possible through the map Ψ . This result is
formally established below.

Lemma 5 Let D ∈ R
m×n be a matrix. Let (u,v, l) = Ψ(D) and define

D̄ = D − 1mu
T − v1T

n. Define (D̃, ũ, ṽ) := Ξ(D̄). Then, D̃ = MmDMn

and rank

(

D̃
)

= rank
(

D̄
)

= rank (D)− l.

Proof We have D̃ = Mm

(

D − 1mu
T − v1T

n

)

Mn = MmDMn. Let k denote
the rank of D̄. Recall from Theorem 1 part 3 that 1m 6∈ ColSpan(D̄) and
1n 6∈ ColSpan(D̄T). Since 1m 6∈ ColSpan(D̄) and the nullspace of Mm is of the
form ξ1m, MmD̄ is a rank k matrix. Further, since 1n 6∈ ColSpan(D̄T) and
ColSpan(D̄TMm) ⊂ ColSpan(D̄T), we conclude that 1n 6∈ ColSpan(D̄TMm).
Since 1n 6∈ ColSpan(D̄TMm) and the nullspace of Mn is of the form ξ1n, we
have MnD̄

TMm is also a rank k matrix. ⊓⊔

We next proceed to a discussion on the matrix pencil theory and identify
how to apply it to reduce the rank of the game.

4.2 Matrix Pencils

Let A,B ∈ Rm×n be matrices of known values, and let λ represent an unknown
parameter. Then the set of all matrices of the form A+λB, with λ ∈ C, define a
linear matrix pencil (or just a pencil)(Ikramov 1993; Gantmacher 1959, p. 24).
The literature defines both the set of matrices A+λB and A−λB as pencils.
Although A− λB seems to be more common (possibly due to the connection
to the standard presentation of the eigenvalue problem A− λI), we choose to
use A+ λB as it more closely aligns with the problem presented in (1).

While not as well studied as the standard eigenproblem, A−λI, the theory
of pencils still enjoys a rich history. For the square, nonsingular, m×m case,
Weierstrass investigated pencils and developed a canonical form as early as
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1867. The rectangular case was later solved, with a canonical form presented,
by Kronecker in 1890. His canonical form, aptly named the Kronecker Canon-
ical Form (KCF), was popularized by Gantmacher in chapter XII of his two
volume treatise on the theory of matrices (Gantmacher 1959, Ch. 12). For a
(not so short) survey on pencils, we refer the reader to (Ikramov 1993). For a
discussion of the various canonical forms and computational methods, for the
square case see (Golub and Van Loan 2013, Ch. 7.7) and, for the more general
singular/rectangular case, see (Demmel and Kågström 1993).

In a series of papers, Weil (1968); Thompson and Weil (1972), the authors
study the relationship between the eigenvalues and eigenvectors of matrix pen-
cils and the solution of a zero-sum game, where the game is formulated as
(m,n,A − λB,−A + λB). The square, traditional eigenvalue problem with
(m,m,A − λI,−A + λI) is studied in Weil (1968). The authors present the
rectangular matrix pencil version in Thompson and Weil (1972). Their results
are indeed theoretically interesting; however, as Weil (1968) states, the rela-
tionship between eigensystems and game theory is “tenuous”. This seems to
make, at least in accordance with the current theoretical results, the study of
eigensystems ill-suited as a solution concept for bimatrix games. In contrast,
as we will show in this subsection, the matrix pencil problem is well-suited to
the study of strategically equivalent games.

In the remainder of this section, we review the canonical form of a ma-
trix pencil presented by Thompson and Weil (1970, 1972). Although not a
common terminology in the literature, we’ll refer to this canonical form as
the Thompson-Weil Canonical Form (TWCF). Our motivation for studying
the TWCF is two-fold. First off, the TWCF focuses on only computing those
eigenvalues, if they exist, that strictly reduce the rank of the pencil A + λB.
Other extraneous values, such as those computed in the KCF, are ignored.
Secondly, we wish to bring renewed emphasis on existing results that connect
the study of matrix pencils to game theory.

For completeness, we now restate some results from (Thompson and Weil
1970, 1972; Dell et al. 1971). Following that, we show how to apply those
results to calculate an equivalent game of lower rank.

For the following discussions, let rank (A) = p and rank (B) = r.

Definition 6 (Thompson and Weil (1972, Definition 2.1)) By a solu-
tion to the pencil A + λB, we shall mean a triple (λ,x,y) ∈ C × Rn × Rm,
satisfying x 6= 0 and y 6= 0, that solve the set of equations

(A+ λB)x = 0, y
T(A+ λB) = 0,

and have the property that rank (A+ λB) < rank (A+ µB) for any µ that is
not an element of the solution triple.

Throughout their series of works on matrix pencils, Thompson and Weil (1970,
1972); Dell et al. (1971) refer to the solution triple in Definition 6 by various
names such as pencil value, pencil roots, rank-reducing numbers, left pencil-
vector, and right pencil-vector. For simplicity, we choose to use the terms eigen-
value and left\right eigenvector. We will also use the set Λ(A,B) to represent
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all λ that are in the solution triple as defined in Definition 6. This set Λ(A,B)
exactly corresponds to the eigenvalues of the Jordan block in KCF form.

Lemma 6 (Thompson and Weil (1970, Lemma 1)) For all A,B ∈ Rm×n,
there exists nonsingular S1 and T1 such that S1(A+ λB)T1 can be partitioned
into:









r t q

r E11 E12 0 0
s E21 0 0 0
q 0 0 Iq 0

0 0 0 0









+ λ









Ir 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0









(9)

where q ≤ min{m−r, n−r, p}, E12 is in column echelon form, rank (E12) = t,
E21 is in row echelon form, and rank (E21) = s. Any of s, t, q may be zero,
r + s+ q ≤ m, and r + t+ q ≤ n.

Proof See (Thompson and Weil 1970, Lemma 1) or (Thompson and Weil 1972,
Theorem 2.1).

Lemma 7 (Thompson and Weil (1970, Lemma 2)) If s + t > 0 in
Lemma 6, there exists nonsingular S2 and T2 such that S2(A + λB)T2 can
be partitioned into:













r−s s t q

r−t C11 0 0 0 0
t 0 0 It 0 0
s 0 Is 0 0 0
q 0 0 0 Iq 0

0 0 0 0 0













+ λ













D11 D12 0 0 0
D21 D22 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













(10)

Proof See (Thompson and Weil 1970, Lemma 2).

Furthermore, by repeated applications of Lemmas 6 and 7, the authors define
an iterative algorithm that solves for the set Λ(A,B), including identifying if
Λ(A,B) = ∅. We briefly outline the algorithm in Algorithm 1. For the full
proof and implementation details, we refer the reader to (Thompson and Weil
1970; Dell et al. 1971).

Remark 1 As the authors note in Dell et al. (1971), their algorithm may be
numerically unsound for ill-conditioned problems. Indeed, while there does not
appear to be any results in the literature comparing the numerical stability of
the TWCF algorithm and Gantmacher’s method for computing the KCF, it
seems likely that both methods may share similar numerical difficulties. There-
fore, other algorithms may be better suited for ill-conditioned problems. For
the square, dense matrix pencil, (whether ill-conditioned or not) the famous
QZ algorithm of Moler and Stewart (1973) is likely a better option. One can
also see (Golub and Van Loan 2013, Ch. 7.7) for a detailed description of the
QZ algorithm. For the rectangular case, numerical accuracy for ill-conditioned
problems can likely be improved via the GUTPRI algorithm developed by
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Demmel and Kågström (1993). However, even in light of this discussion, we
choose to explore the TWCF as it provides insight into the mathematical
structure of the pencil that applies to our problem at hand.

Algorithm 1 Algorithm for computing the eigenvalues of a pencil using the
Thompson-Weil Canonical Form

1: function TWCF(A,B)
2: i← 1
3: A1 ← A,B1 ← B

4: flag←True
5: while flag do
6: Calculate E11,i, Iri , ri, si, ti, qi via (9)
7: if ri = si ∨ ri = ti then
8: Λ(A,B)← ∅
9: flag←False
10: else if si + ti = 0 then
11: Λ(A,B)← Λ(E11,i, Iri)
12: flag←False
13: else
14: Calculate C11,i,D11,i via (10)
15: Ai ← C11,i, Bi ← D11,i

16: end if
17: end while
18: return (Λ(A,B))
19: end function

We now state one final definition before proceeding to state the main the-
orem from Thompson and Weil (1970), which we use to prove our next result.

Definition 7 For any λ ∈ C, define the geometric multiplicity of λ as:

1. m(λ) = 0 if λ /∈ Λ(A,B),
2. m(λ) = the number of Jordan blocks containing λ in the Jordan normal

form of E11,i where i is the smallest integer such that si + ti = 0.

Theorem 2 (Thompson and Weil (1970, Theorem 1)) For any complex
number λ,

rank (A+ λB) = r + q − m(λ)

where r and q are defined in Lemma 6 and m(λ) is as defined in Definition 7.

Proof See (Thompson and Weil 1970, Theorem 1).

As we are only concerned with the real, strictly positive eigenvalues, let us
further define the restricted set of eigenvalues as:

Λ>0(A,B) = {λ ∈ R>0|λ ∈ Λ(A,B)} = Λ(A,B) ∩ (0,∞).

Let γ∗(A,B) be defined as

γ∗(A,B) =

{

argmaxλ∈Λ>0(A,B) m(λ) if Λ>0(A,B) 6= ∅

1 otherwise.
(11)
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Lemma 8 For matrix (A,B), let γ∗ := γ∗(A,B). Then, rank (A+ γ∗B) ≤
rank (A+ λB) for all λ > 0. Further, rank (A+ γ∗B) = rank (A+ λB) +
m(λ)− m(γ∗) for all λ > 0.

Proof Clearly, if λ>0(A,B) = ∅, then for all λ ∈ R>0 we have rank (A+ λB) =
r + q by Theorem 2. Thus, the statement holds trivially.

Let us suppose that λ>0(A,B) 6= ∅. Since m(γ∗) ≥ m(λ) for all λ > 0, we
get

rank (A+ γ∗B) = r + q − m(γ∗) ≤ r + q − m(λ) = rank (A+ λB) .

This yields the result. ⊓⊔

4.3 The Algorithm for Rank Reduction and the Main Result

Finally, we now state our main result. Consider the game (m,n, Ã, B̃) with

rank

(

Ã+ B̃
)

= k̃ ≥ 1. Define the rank reduction map Π : R
m×n × R

m×n →

Rm×n × Rm×n by employing the following five step process.

1. Let (ũÃ, ṽÃ, lÃ) := Ψ(Ã) and (ũB̃, ṽB̃, lB̃) := Ψ(B̃).

2. Compute (A†,u†
A,v

†
A) := Ξ(Ã) and (B†,u†

B ,v
†
B) := Ξ(B̃).

3. Compute γ∗ := γ∗(A†, B†). Define û, v̂, and l̂ as

û := ũÃ + γ∗
ũB̃ v̂ := ṽÃ + γ∗

ṽB̃, l̂ :=











0 if û = 0n, v̂ = 0m

2 if û 6= 0n, v̂ 6= 0m

1 otherwise

.

4. Determine Ǎ := Ã − 1mû
T, B̌ := γ∗B̃ − v̂1T

n, and Č := Ǎ + B̌. Let
(ǔ, v̌, ľ) := Ψ(Č).

5. Define Π
(

Ã, B̃
)

:=
(

Â, B̂
)

, where Â = Ǎ− 1mǔ
T and B̂ = B̌ − v̌1T

n.

Theorem 3 The game (m,n, Â, B̂) is strategically equivalent to the game
(m,n, Ã, B̃) with

rank

(

Â+ B̂
)

= rank

(

Ã+ B̃
)

+ m(1)− m(γ∗)− l̂ − ľ. (12)

Further, (Â, B̂) solves (1).

Proof The strategic equivalence of games (m,n, Â, B̂) and (m,n, Ã, B̃) follows
from Lemma 1. Equation 12 follows from the Wedderburn rank reduction
formula in Theorem 1, Lemma 3, and Lemma 8. We only need to show that
(Â, B̂) solves (1).

In Step 3, we have rank
(

A† + γ∗B†
)

≤ rank
(

A† + λB†
)

for all λ > 0.
Lemma 5 implies that

rank

(

Â+ B̂
)

= rank

(

Mm(Â+ B̂)Mn

)

= rank
(

A† + γ∗B†
)

,

where Mk is defined in (7). Thus, (m,n, Â, B̂) is a strategically equivalent
game of lowest rank. ⊓⊔
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We now present some examples where we show that each step of the above
algorithm is important in the rank reduction process of the game. If we miss
any of the steps, then the algorithm may not be able to identify the game of
lowest rank. For the following examples, pick r,v ∈ Rm such that r,v 6= 1m

and r 6= v. Similarly, pick c,u ∈ Rn such that c,u 6= 1n and c 6= u. Let
D := 1mu

T + v1T

n.

Example 1 Consider the game with payoff matrices Ã = 2rcT + D, B̃ =
−rc

T−D. Here, a direct application of matrix pencil theory will yield {1, 1, 2} ⊂
Λ>0(Ã, B̃). Thus, if we apply the rank reduction formula without Step 1, then
Ǎ = 2rcT, B̌ = −rc

T, which leads to a rank-1 game. However, if we apply
Step 1, then Ā = 2rcT, B̄ = −rc

T, which will eventually lead to a strategi-
cally equivalent rank-0 game.

Example 2 Consider the game with payoff matrices Ã = 2r(c + 1n)
T, B̃ =

−rc
T, which is a rank 1 game. Then, after Step 1, we get Ā = Ã and B̄ = B̃.

If we skip Step 2 and directly jump to Step 3, then one can have 2 6∈ Λ>0(Ā, B̄).
Step 2 of the algorithm is needed so that we have 2 ∈ Λ>0(A

†, B†). This leads
to a strategically equivalent rank 0 game.

Example 3 Assume that r ⊥ 1m and c ⊥ 1n. Consider the game with payoff
matrices Ã = 2r(c+ 1n)

T + 1mu
T, B̃ = −(r + 1m)cT + v1T

n, which is a rank
3 game. The output of each step of the algorithm is as follows:

1. After Step 1, we get Ā = 2r(c+ 1n)
T and B̄ = −(r + 1m)cT.

2. After Step 2, we get A† = 2rcT and B† = −rc
T.

3. After Step 3, we get γ⋆ = 2.
4. After Step 4, we get Ǎ = 2rcT and B̌ = −2rcT.

Thus, we arrive at a strategically equivalent zero-sum game.

We further note here that the reason for taking the five step process is
to determine the rank of the game in (12), which requires the application

of the Wedderburn rank reduction formula to determine l̂ and ľ. If we are
not interested in determining the rank of the game, then we can follow the
following three step process:

1. Compute (A†,u†
A,v

†
A) = Ξ(Ã) and (B†,u†

B ,v
†
B) = Ξ(B̃).

2. Compute γ∗ := γ∗(A†, B†). Define û and v̂ as

û := u
†
A + γ∗

u
†
B v̂ := v

†
A + γ∗

v
†
B .

3. Output Π†
(

Ã, B̃
)

:=
(

Â, B̂
)

, where Â = Ã− 1mû
T and B̂ = γ∗B̃ − v̂1T

n.

This map Π† outputs a game of the same rank as that of the rank reduction
map Π , but in this case we cannot compute the rank of the game (Â, B̂) using

the expression in (12) since l̂ and ľ are unknown.
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5 A Fast Algorithm for Solving Rank-1 Matrix Pencils

With the recent publication of a polynomial time algorithm for solving rank-1
games in Adsul et al. (2011), it seems interesting to ask the question: given

game (m,n, Ã, B̃), does there exist (Â, B̂) ∈ Υ (Ã, B̃) such that rank
(

Â+ B̂
)

=

1? Our five step process in Subsection 4.3 could answer this question. How-
ever, as we will show in Subsection 7.2, solving the matrix pencil problem, for
m ≤ n, has worst case complexity of O(n4) operations.

Therefore, in this section, we develop a series of results that allow us to
determine whether or not there exists a λ∗ ∈ C such that rank (A+ λ∗B) = 1
by solving for the roots of a single polynomial equation (at worse a quadratic)
and then conducting at most two matrix comparisons. This approach dramat-
ically speeds up solving the matrix pencil problem for the rank-1 case. Let us
begin by stating some facts about rank-1 matrices that will allow us to easily
ascertain when a given matrix is rank-1 and to solve for values of λ∗, when
they exist, such that the matrix pencil, A+ λ∗B, is a rank-1 pencil.

Fact 1 The matrix M in Rm×n is rank-1 if and only if M 6= 0m×n and the
following hold true:

1. Every row (column) of M is a scalar multiple of every other row (column)
of M .

2. Choose any element mi,j of M such that mij 6= 0 and form rj = M (j),
c
T

i = m−1
i,j M(i). Then, M = rjc

T

i .

Theorem 4 Let A,B ∈ Rm×n be such that A,B 6= 0m×n and rank (A+B) >
1. Choose any (i, j) ∈ {1 . . .m} × {1 . . . n} such that ai,j 6= 0. Such an ai,j is
guaranteed to exist since A 6= 0m×n. Construct rj(λ) and ci(λ)

T as

rj(λ) = A(j) + λB(j), ci(λ)
T =

1

ai,j + λbi,j
(A(i) + λB(i)) (13)

Then, there exists λ∗ ∈ C such that rank (A+ λ∗B) = 1 if and only if either:

1. bi,j 6= 0 and rank

(

A+
−ai,j

bi,j
B
)

= 1; or

2. A+ λ∗B = rj(λ
∗)ci(λ

∗)T.

Proof We first prove the forward direction. Suppose there exists λ∗ ∈ C such
that rank (A+ λ∗B) = 1. We split the proof of the forward direction into two
cases:

Case λ∗ =
−ai,j

bi,j
: Suppose that λ∗ =

−ai,j

bi,j
. Since λ∗ ∈ C, this im-

plies bi,j 6= 0. Furthermore, rank (A+ λ∗B) = 1 and λ∗ =
−ai,j

bi,j
implies

rank

(

A+
−ai,j

bi,j
B
)

= 1. In addition, note that λ∗ =
−ai,j

bi,j
implies that ci(λ

∗)

is undefined; therefore, the expression A+ λ∗B = rj(λ
∗)ci(λ

∗)T is undefined
and cannot hold true.
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Case λ∗ 6= −ai,j

bi,j
: Now, suppose λ∗ 6= −ai,j

bi,j
. Then rank

(

A+
−ai,j

bi,j
B
)

6= 1.

Also, ai,j+λ∗bi,j 6= 0, so ci(λ
∗) is well-defined. Then A+λ∗B = rj(λ

∗)ci(λ
∗)T

follows from Fact 1.
Conversely, suppose that bi,j 6= 0 and rank

(

A+
−ai,j

bi,j
B
)

= 1. Then

λ∗ =
−ai,j

bi,j
∈ R ⊂ C and rank (A+ λ∗B) = 1. Of course, as in above,

since ci(λ
∗)T is undefined at λ∗ =

−ai,j

bi,j
by definition, we conclude that

A+ λ∗B 6= rj(λ
∗)ci(λ

∗)T.
Now, suppose A+ λ∗B = rj(λ

∗)ci(λ
∗)T, which implies that ci(λ

∗) is well-

defined. This implies that bi,j = 0 and/or rank

(

A+
−ai,j

bi,j
B
)

6= 1. Further-

more, since λ∗ is the solution to a system ofm×n linear or quadratic equations
with real coefficients, we have λ∗ ∈ C. Then, rank (A+ λ∗B) = 1 follows from
Fact 1. ⊓⊔

It is trivial to determine whether or not bi,j 6= 0 and rank

(

A+
−ai,j

bi,j
B
)

=

1. Thus, we will assume in the sequel that rank
(

A+
−ai,j

bi,j
B
)

6= 1. Let us now

examine the matrix equality A+λB = rj(λ)ci(λ)
T, introduce some additional

notation, and state some lemmas that allow us to determine whether or not
there exists a finite λ∗ such that rank (A+ λ∗B) = 1.

With rj(λ) and ci(λ) as defined in Theorem 4, let us write the following
system of equations: A+ λB = rj(λ)ci(λ)

T, that is,






a1,1 + λb1,1 . . . a1,n + λb1,n
...

. . .
...

am,1 + λbm,1 . . . am,n + λbm,n






(14)

=









(a1,j+λb1,j)(ai,1+λbi,1)
ai,j+λbi,j

. . .
(a1,j+λb1,j)(ai,n+λbi,n)

ai,j+λbi,j

...
. . .

...
(am,j+λbm,j)(ai,1+λbi,1)

ai,j+λbi,j
. . .

(am,j+λbm,j)(ai,n+λbi,n)
ai,j+λbi,j









(15)

Since λ is a scalar variable, it is clear from (15) that (14) only has a solution
(or possibly multiple solutions), λ∗, if λ∗ simultaneously satisfies m×n single-
variable polynomials, where each polynomial is of degree at most 2. Thus, one
could solve allm×n single-variable polynomials and then check whether or not
every solution has a common value. While this procedure is somewhat efficient,
we’ll show below that at most (m− 1)× (n− 1) of the polynomials have finite
solutions and therefore contribute any meaningful information. In addition,
we’ll show that it is sufficient to identify one polynomial that is not the zero
polynomial and then conduct a matrix checking problem for the solution(s) of
that polynomial.

Let us now introduce notation for the polynomial represented by row s and
column t in (15). For (s, t) ∈ {1 . . .m} × {1 . . . n}, let

fs,t(i, j;λ) = as,t + λbs,t −
(as,j + λbs,j)(ai,t + λbi,t)

ai,j + λbi,j
(16)
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From (16), it is clear that when s = i or t = j, then fi,t(i, j;λ) and

fs,j(i, j;λ) are the zero polynomial. In other words, fs,t(i, j; λ̂) = 0 trivially

holds true for all λ̂ ∈ C for one entire column and one entire row of (15). Since

these m+ n− 1 expressions hold true for all λ̂ ∈ C, they lend no information
for determining whether or not there exists λ∗ such that rank (A+ λ∗B) = 1.
Thus, we can disregard these m + n − 1 polynomials and only consider the
remaining (m − 1) × (n − 1) polynomials. We show that at least one of the
remaining (m−1)×(n−1) polynomials is not the zero polynomial and present
a method for determining whether or not there exists a γ∗ such that the pencil
A+ γ∗B is a rank-1 pencil.

Theorem 5 Consider non-zero matrices A,B ∈ Rm×n with rank (A+B) >
1. Pick any (l, k) ∈ {1 . . .m} × {1 . . . n} such that fl,k(i, j;λ) is not the zero

polynomial. Let λ̂1, λ̂2 be solutions to fl,k(i, j;λ) = 0. Then, there exists λ∗ ∈ C

such that rank (A+ λ∗B) = 1 if and only if A+ λ̂1B = rj(λ̂1)ci(λ̂1)
T or/and

A+ λ̂2B = rj(λ̂2)ci(λ̂2)
T, where rj(λ) and ci(λ) are defined in (13).

Proof We divide the proof into three steps:
Step 1: Let us first prove that since rank (A+B) > 1, there exists at

least one pair (l, k) ∈ {1 . . .m} × {1 . . . n} such that fl,k(i, j;λ) is not the
zero polynomial. Suppose, by way of contradiction, that fs,t(i, j;λ) is the zero

polynomial for all (s, t) ∈ {1 . . .m}×{1 . . . n}. This implies that for any λ̂ ∈ C

and for all (s, t) ∈ {1 . . .m} × {1 . . . n}, fs,t(i, j; λ̂) = 0. Furthermore, this

implies that for any λ̂ ∈ C, A + λ̂B = rj(λ̂)ci(λ̂)
T and rank

(

A+ λ̂B
)

= 1.

In particular, rank (A+B) = 1, which is a contradiction.
Step 2: Now, suppose there exists λ∗ ∈ C such that rank (A+ λ∗B) = 1.

Then, by Theorem 4, A+ λ∗B = rj(λ
∗)ci(λ

∗)T. Thus, fs,t(i, j;λ
∗) = 0 for all

(s, t) ∈ {1 . . .m} × {1 . . . n}. In particular, fl,k(i, j;λ
∗) = 0. Therefore, either

λ̂1 = λ∗ or/and λ̂2 = λ∗. It then follows that A+ λ̂1B = rj(λ̂1)ci(λ̂1)
T or/and

A+ λ̂2B = rj(λ̂2)ci(λ̂2)
T.

Step 3: In the other direction, let λ̂1, λ̂2 be solutions to fl,k(i, j;λ) = 0. Note
that fl,k(i, j;λ) = 0 may be a linear equation. In that case, for simplicity, let

λ̂1 = λ̂2. Now, suppose A + λ̂1B = rj(λ̂1)ci(λ̂1)
T and let λ∗ = λ1. Then

A+λ∗B = rj(λ
∗)ci(λ

∗)T and rank (A+ λ∗B) = 1 by Theorem 4. The case of

A+ λ̂2B = rj(λ̂2)ci(λ̂2)
T is similar and therefore omitted. ⊓⊔

Let us use Λ1 : R
m×n × R

m×n → 2C to represent the solution set obtained
from Theorem 5, that is,

Λ1(A,B) =
{

λ∗ ∈ C : rank (A+ λ∗B) = 1
}

. (17)

Note that Λ1(A,B) has a maximum cardinality of 2 and may be empty. Fur-

ther, Theorem 4 implies that if bi,j 6= 0 and rank

(

A+
−ai,j

bi,j
B
)

= 1, then
−ai,j

bi,j
∈ Λ1(A,B).
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Similar to Subsection 4.2, we are only concerned with the real, strictly
positive eigenvalues. Therefore, we define the restricted set of eigenvalues as:

Λ1
>0(A,B) = {λ ∈ R>0|λ ∈ Λ1(A,B)} = Λ1(A,B) ∩ (0,∞).

Unlike Λ>0(A,B) defined in Subsection 4.2, any λ∗ ∈ Λ1
>0(A,B) guarantees

that rank (A+ λ∗B) = 1. Thus, our modified three step process for deter-

mining whether there exists (Â, B̂) ∈ Υ (Ã, B̃) such that rank

(

Â+ B̂
)

= 1

is:

1. Compute (A†,u†
A,v

†
A) = Ξ(Ã) and (B†,u†

B ,v
†
B) = Ξ(B̃).

2. Compute Λ1
>0(A,B).

(a) If Λ1
>0(A,B) 6= ∅, let γ∗ = λ∗ ∈ Λ1

>0(A,B). Define û and v̂ as

û := u
†
A + γ∗

u
†
B v̂ := v

†
A + γ∗

v
†
B.

(b) Output Π†
(

Ã, B̃
)

:=
(

Â, B̂
)

, where Â = Ã − 1mû
T and B̂ = γ∗B̃ −

v̂1T

n.
3. If Λ1

>0(A,B) = ∅, output “No such rank-1 game exists”

Unlike the three step process that we developed in Subsection 4.3, the
output of the process here is either a strategically equivalent rank-1 game or
the fact that no such game exists. In the next section we discuss generic games
and algorithmic implications.

6 Some Results on Rank Reduction in Generic Games

In this section, we collect some natural consequences of Proposition 3 for
reducing the rank of generic games. Recall that a game is determined by the
matrices (Ã, B̃) ∈ R2×(m×n). Thus, one can view R2×(m×n) as the space of all
games. If one picks a generic game from this space, it is natural to ask whether
or not the rank of the game can be reduced and by how much.

It turns out that Proposition 3 allows us to conclude the following two
results, where we only focus on the case of γ = 1 to ease analysis. In the first
result, we focus on generic games in which m = n. It should be noted that the
set of generic games in the space R2×(m×m) with full rank has full measure.
We conclude that for such games, we can reduce the rank only by 1. In the
second result, we consider the case where m < n.

Proposition 1 If m = n, then for almost every (random) game (m,m,A,B),
the rank of the game can only be reduced by 1.

Proof In order to prove the result, we show that the set of games whose rank
can be reduced by two has Lebesgue measure 0. We prove this in two steps:
Step 1: First, recall that for almost every game (m,m,A,B), rank(C) = m.
Note that by Proposition 3, we can reduce the rank of the game by 2 if there
exists x1 satisfying 1T

mx1 = 0 and Cx1 = 1m. Since C is full rank, there exists
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a unique x1 satisfying Cx1 = 1m, which is given by x1 = C−11m. Thus, the
rank of the game can be reduced by 2 if and only if 1T

mC−11m = 0. This
holds if the cofactors of the matrix C sum to zero. The sum of cofactors is a
multivariate polynomial of degree m−1, and thus, the set of points where this
polynomial equals 0 is an (m− 1) dimensional manifold in a m2 dimensional
space. Consequently, the set of all C ∈ R

m×m whose cofactors sum to zero has
Lebesgue measure 0.
Step 2: Now, we note that B = C − A. Since for almost every C, the sum of
cofactors is not zero, we conclude that the for almost every game (m,m,A,B),
the rank can only be reduced by 1. The proof of the result is complete. ⊓⊔

In contrast to the case considered above, we next consider games with
m ≤ n, rank of the sum C of payoff matrices is k ≤ m, 1m ∈ ColSpan(C), and
1n ∈ ColSpan(CT) is satisfied. Let us define this space as Ck:

Ck =
{

C ∈ R
m×n

∣

∣rank(C) = k,1m ∈ ColSpan(C),1n ∈ ColSpan(CT)
}

(18)

Proposition 2 Let 2 ≤ m ≤ n. Consider a rank-k game (m,n,A,B), and

assume that C := A + B ∈ Ck. Split the matrix C as C =

[

C11 C12

C21 C22

]

, where

C11 is a k × k full rank submatrix. Then, the rank of the game can be reduced
by 2 if and only if there exists a vector x12 ∈ Rn−k such that

[

C22 − C21C
−1
11 C12

1T

n−k − 1T

kC
−1
11 C12

]

x12 =

[

1n−k − C21C
−1
11 1k

−1T

kC
−1
11 1k

]

. (19)

Proof Let x1 be such that Cx1 = 1m. Split the matrix C and x1 as

[

x11

x12

]

,

where x11 is a k× 1 vector, and x12 is a (n− k)× 1 vector. We also note here
that if k = m, then C21 and C22 are empty matrices. Now, due to Proposition
3 in Appendix A, we can reduce the rank of the game by 2 if there exists x1

satisfying 1T

nx1 = 0 and Cx1 = 1m. Thus, Cx1 = 1m implies

C11x11 + C12x12 = 1k =⇒ x11 = C−1
11 1k − C−1

11 C12x12,

C21x11 + C22x12 = 1n−k,

=⇒ C22x12 = 1n−k − C21C
−1
11 1k + C21C

−1
11 C12x12,

=⇒
[

C22 − C21C
−1
11 C12

]

x12 =
(

1n−k − C21C
−1
11 1k

)

.

Now, substituting the above expressions in the equation 1T

nx1 = 0 yields

1T

kx11 + 1T

n−kx12 = 1T

kC
−1
11 1k +

(

1T

n−k − 1T

kC
−1
11 C12

)

x12 = 0

=⇒
(

1T

n−k − 1T

kC
−1
11 C12

)

x12 = −1T

kC
−1
11 1k

which yields the result. ⊓⊔
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In (Theobald 2009, Lemma 2.5), the author shows that all m×m games of
rank-m are strategically equivalent to a game of rank m−1. We briefly restate
that lemma here in order to compare and contrast our results.

Lemma 9 (Theobald (2009, Lemma 2.5)) Let (m,m,A,B) be a game of
rank m. Then there exists a game of rank (m− 1) with the same set of Nash
equilibria.

Lemma 10 Consider the game (m,n, Ā, B̄) with n ≥ m ≥ 2, C̄ = Ā + B̄,
and rank

(

C̄
)

= k̄ = m. The game (m,n, Ā, B̄) is strategically equivalent to a
game of rank-(k̄ − 1)

Proof Clearly rank
(

C̄
)

= m implies that there exists x1 ∈ R
n such that

C̄x1 = 1m. The result then directly follows from Theorem 3. ⊓⊔

Our result in Lemma 10 generalizes Lemma 9 to the game (m,n,A,B), with
m ≤ n and rank (A+B) = m. In addition, Theorem 3 further generalizes the
result to hold for certain games that are not full rank. Furthermore, for all
cases, our results are constructive and provide a method for calculating the
lower-rank equivalent game.

7 A Numerical Example and Algorithmic Implications

In this section, we show a small numerical example and discuss the complexity
of our proposed algorithms.

7.1 Numerical Example

Let us consider the following bimatrix game: In this game, m = n = 6 and is
a full rank game.

Ã =

















−32 −98 39 12 −66 −67
0 74 −29 −28 62 21
56 −14 −33 20 −42 −15

−109 −121 −38 −31 −57 −92
6 42 −63 −26 20 1

−40 −84 11 −2 −44 −59

















B̃ =

















−32 −98 39 12 −66 −67
0 74 −29 −28 62 21
56 −14 −33 20 −42 −15

−109 −121 −38 −31 −57 −92
6 42 −63 −26 20 1

−40 −84 11 −2 −44 −59

















Singular values of C̃ = {210.53, 66.25, 59.43, 14.65, 3.44, 1.49}

In the Step 2 of the rank reduction process, we get Λ(Ā, B̄) = {2, 2, 4, 4}, so
we pick γ∗ = 4. After applying Step 4 of the rank reduction process, we arrive
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at the following game, which is strategically equivalent to the game above.

Â =

















−8 −104 60 28 −84 −72
24 68 −8 −12 44 16
80 −20 −12 36 −60 −20
−85 −127 −17 −15 −75 −97
30 36 −42 −10 2 −4
−16 −90 32 14 −62 −64

















B̂ =

















8 104 −60 −28 84 72
−24 −136 8 −4 −132 −68
−80 36 12 −28 68 28
85 49 17 −3 −27 37
−30 −90 42 −2 −74 −38
16 68 −32 −16 24 44

















Singular values of Ĉ = {219.97, 11.96}.

As we see, the lower rank game is a game of rank 2. It is also interesting to
note that if we instead pick γ∗ = 2 (since it also has multiplicity 2), and we
arrive at a different rank-2 game after the rank reduction process is complete.

7.2 Algorithmic Implications

Since our algorithms are algebraic in nature, we use here the common arith-
metic computational cost model where one considers the number of arith-
metic operations and comparisons (Golub and Van Loan 2013; Pan and Chen
1999) as simply ‘operations’. We also, without loss of generality, assume m ≤
n. If this is not the case, one can simply consider the transposed game,
(n,m,BT, AT), and all results in this section still hold.

First, considering the map, Ψ(D), checking conditions 1,2, and 3 is equiv-
alent to determining the rank of a properly augmented matrix. For example,
to check condition 2 one could verify:

rank
([

D 1m

])

= rank(D).

Condition 4 is simply the solution of a linear system. Both solving for rank
and solving a linear system are efficiently computable via a variety of methods,
and can be done in at most O(n3) operations. Computing u and v for the map
Ψ(D) is simply selecting a row (column) of a matrix, a scalar-vector multiplica-
tion, and vector addition, which can all be done in O(n) operations. Similarly,
the map Ξ(D) requires matrix-vector multiplication, matrix multiplication,
and matrix addition, thus can be completed in O(n3) operations.

Calculating γ∗ := γ∗(A†, B†) requires first calculating the TWCF in (9) us-
ing elementary row and column operations. This is equivalent to pre- or post-
multiplying A†, B† by square, nonsingular matrices and requires 4(2m2n +
2mn2) operations. If necessary, calculating (10) is similar, and also requires
4(2m2n+ 2mn2) operations. So, each iteration requires O(n3) operations. At
each iteration of Algorithm 1, the matrices Ai, Bi have dimensions that are
strictly smaller than the original dimensions (mi < m,ni < n); however, the
decrease in dimensionality per iteration is problem dependent. While the algo-
rithm can terminate earlier, it must eventually terminate when Ai, Bi ∈ R1×1,
or after at most m iterations. Thus, at the worst case, with n = m, Algorithm
1 requires O(n4) operations. This still leaves the problem of computing the
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eigenvalues, of (E11,i, Iri), but this only has to be done once, on matrices with
dimensions mi = ni ≤ n. Since eigenvalues can be calculated, up to fixed pre-
cision, ǫ, in O(n3) (Golub and Van Loan 2013, p. 391), (Pan and Chen 1999),
the overall running time is dominated by the running time of O(n4).

Finally, the mapΠ
(

A,B
)

requires vector-vector multiplication and matrix

addition, and can be done in O(mn) operations. Overall, the running time of
the algorithm is, not surprisingly, dominated by solving the matrix pencil
problem and has complexity O(n4).

In comparison, for the special case of rank-1 matrix pencils, the algorithm
presented in Section 5 runs in O(mn) operations. To see this, we first note
that by Fact 1, determining whether a matrix is rank-1 or not is equivalent
to mn divisions and mn comparisons, and therefore O(mn). As mentioned
in Section 5, finding an (s, t) ∈ {1 . . .m} × {1 . . . n} such that fs,t(i, j;λ) is
not the zero polynomial requires a search over a space of (m − 1) × (n − 1),
thus time O(mn). Calculating the coefficients of fs,t(i, j;λ) requires at most
4 scalar multiplications and 3 scalar additions/subtractions, which requires
time O(1). Now, at worst solving fs,t(i, j;λ) = 0 is equivalent to computing
a square root, which has the same complexity as multiplication (Alt 1979).
Furthermore, we note that only one such fs,t(i, j;λ) = 0 must be solved, thus

this step is independent of the size of the game. With candidate values of λ̂
thus determined, checking whether Ā+ λ̂B̄ = ~rj(λ̂)~ci(λ̂)

T requires one vector
outer product and one matrix comparison, thus takes time O(mn). Therefore,
for this special case, we remove the matrix pencil bottleneck and the overall
running time of our algorithm is dictated by the maps Ψ(D) and Ξ(D), with
complexity O(n3).

8 Conclusion

Nonzero-sum games have been shown to be computationally challenging to
solve. In this paper, we present an alternative approach to computing equi-
librium in a certain class of nonzero-sum games. Given a nonzero-sum game,
our approach exploits the strategic equivalence between bimatrix games to
construct a lower rank bimatrix game that is strategically equivalent to the
original game via a positive affine transformation. Moreover, our technique is
constructive, that is, we present an algorithm to reduce the rank of the given
game and this algorithm is efficient (the runtime complexity is dominated by
the execution runtime of the matrix pencil problem).

Our approach has the potential to reduce the rank of the game substantially
in some cases. If the original game can be reduced to a rank-0 (also known
as zero-sum game) or a rank-1 game, then we know that it can be solved
efficiently using algorithms involving linear programs or parameterized linear
programs, respectively. If the game is of low rank or sparse, one can employ
polynomial time approximation algorithms to determine an approximate Nash
equilibrium. Thus, our rank reduction approach substantially expands the class
of games that can be solved in polynomial time.
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One important problem left open for the future is as follows. Recall that
the weakest definition of strategic equivalence was introduced in Liu (1996), in
which two games are strategically equivalent if and only if their best response
correspondences are equal. Can we devise an algorithm that outputs a lower
rank game that preserves the best response correspondence? Such an approach
can further expand the class of games that are solvable in polynomial time.
We leave this problem for future research.

A Proof of Lemma 3

The proof of Lemma 3 is divided into four cases.
Case 1: For this case, we cannot apply the Wedderburn rank reduction formula to

yield a strategically equivalent game. Thus, û = 0n, v̂ = 0m, and l = 0. Case 2: If
1m ∈ ColSpan(D), then there exists x1 ∈ Rn and y1 = ei ∈ Rm such that Dx1 = 1m and

w1 = y
T

1Dx1 = 1. Let û
T = w−1

1 y
T

1D = DT

(i)
and compute D2 using (6) as follows:

D2 = D −w−1
1 Dx1y

T

1D = D − 1mû
T.

Case 3: If 1n ∈ ColSpan(DT), then we apply Case 2’s operation to DT by taking
x1 = ej ∈ Rn and defining v̂ = D(j).

Before we address Case 4, we first state a proposition that is necessary for the proof.
Motivated by (Chu et al. 1995, Theorem 2.1), we have the following proposition that presents
conditions under which a chosen vector is in the row span of the matrix C2 obtained after
one application of (6).

Proposition 3 We use here the same notation as in Theorem 1. Let rank (C) = k, with
k ≥ 2. Let {x1,y1} be vectors associated with a rank-reducing process (so that yT

1Cx1 6= 0).
We have z ∈ ColSpan(CT

2 ) if and only if z ∈ ColSpan(CT) and z ⊥ x1.

Proof Suppose that z ∈ ColSpan(CT

2 ). Then there exists a y2 ∈ Rm such that CT

2 y2 = z.
Choose such a y2 and define v2 as

v2 := y2 −
y
T

2Cx1

y
T

1Cx1
y1. (20)

Directly from Theorem 1, we have

y
T

2C2 = y
T

2C −w−1
1 y

T

2Cx1y
T

1C =

(

y
T

2 −
y
T

2Cx1

y
T

1Cx1
y
T

1

)

C = v
T

2C (21)

Then by (21), z = CT
v2 which implies that z ∈ ColSpan(CT). From the proof of Theorem

1, it is clear that x1 ∈ null(C2). Then

z
T
x1 = y

T

2C2x1 = v
T

2Cx1 = 0,

which implies that z ⊥ x1.
Now, suppose that z ∈ ColSpan(CT) and z ⊥ x1. Since rank (C) ≥ 2, the ColSpan(CT)

is at least a two dimensional subspace, and thus there exists a y1 ∈ Rm such that CT
y1

and z are linearly independent. Choose such a y1. Then, yT

1Cx1 6= 0. Pick y2 such that
CT

y2 = z and compute v2 as in (20). Then,

v2 = y2 −
z
T
x1

y
T

1Cx1
y1 = y2 −

0

y
T

1Cx1
y1 = y2. (22)

Due to (21), we have yT

2C2 = v
T

2C, which implies yT

2C = z from (22). Thus, z ∈ ColSpan(CT

2 ).
⊓⊔
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The requirement of z ∈ ColSpan(CT) and z ⊥ x1 can be equivalently written as

[

C Cx1

z
T 0

] [

x1

−1

]

=

[

0
0

]

. (23)

Case 4(a): If 1m ∈ ColSpan(D), 1n ∈ ColSpan(DT), but the nullspace of

[

D 1m

1T
n 0

]

is

of the form

[

x

0

]

, then Proposition 3 implies that 1n 6∈ ColSpan(D2). Thus, the rank can

only be reduced by l = 1. Using the same operation as in Case 2, we get û = D(i) for any
i ∈ {1, . . . , m}, v̂ = 0m.

Case 4(b): If 1m ∈ ColSpan(D), 1n ∈ ColSpan(DT), and the nullspace of

[

D 1m

1T
n 0

]

contains a vector of the form

[

x

−1

]

, then by Proposition 3, there exists x1,x2 = ej ∈ Rn

and y1 = ei,y2 ∈ Rm such that:

1. w1 = y
T

1Dx1 6= 0. Let Dx1 = 1m, û
T = w−1

1 y
T

1D, and compute D2 using (6) as
follows:

D2 = D −w−1
1 Dx1y

T

1D = D − 1mû
T.

2. y
T

2D2 = 1T
n and w2 = y

T

2D2x2 6= 0. Let v̂ = w−1
2 D2x2 and compute D3 using (6) as

follows:
D3 = D2 − w−1

2 D2x2y
T

2D2 = D2 − v̂1T

n = D − 1mû
T − v̂1T

n.

References

Adler I, Daskalakis C, Papadimitriou CH (2009) A note on strictly competitive games. In:
International Workshop on Internet and Network Economics, Springer, pp 471–474

Adsul B, Garg J, Mehta R, Sohoni M (2011) Rank-1 bimatrix games: a homeomorphism
and a polynomial time algorithm. In: Proceedings of the Forty-Third Annual ACM Sym-
posium on Theory of Computing, ACM, pp 195–204

Adsul B, Garg J, Mehta R, Sohoni M, Von Stengel B (2020) Fast algorithms for rank-1
bimatrix games. Operations Research

Alon N, Lee T, Shraibman A, Vempala S (2013) The approximate rank of a matrix and
its algorithmic applications: approximate rank. In: Proceedings of the forty-fifth annual
ACM symposium on Theory of computing, pp 675–684

Alt H (1979) Square rooting is as difficult as multiplication. Computing 21(3):221–232
Aumann RJ (1961) Almost strictly competitive games. Journal of the Society for Industrial

and Applied Mathematics 9(4):544–550
Barman S (2018) Approximating Nash equilibria and dense subgraphs via an approximate
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