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Let p be a prime e be a positive integer, q = pe, and let Fq denote the finite field of q

elements. Let m, n, 1 ≤ m, n ≤ q − 1, be integers. The monomial digraph D = D(q; m, n)
is defined as follows: the vertex set of D is F

2
q , and ((x1, x2), (y1, y2)) is an arc in D if

x2 + y2 = xm

1 yn

1 . In this note we study the question of isomorphism of monomial digraphs
D(q; m1, n1) and D(q; m2, n2). Several necessary conditions and several sufficient condi-
tions for the isomorphism are found. We conjecture that one simple sufficient condition is
also a necessary one.

1. Introduction

For all terms related to digraphs which are not defined below, see Bang-Jensen and
Gutin2. In this paper, by a directed graph (or simply digraph) D we mean a pair
(V,A), where V = V (D) is the set of vertices and A = A(D) ⊆ V × V is the set of
arcs. For an arc (u, v), the first vertex u is called its tail and the second vertex v is
called its head; we also denote such an arc by u → v. If (u, v) is an arc, we call v
an out-neighbor of u, and u an in-neighbor of v. The number of out-neighbors of u
is called the out-degree of u, and the number of in-neighbors of u — the in-degree

of u. For an integer k ≥ 2, a walk W from x1 to xk in D is an alternating sequence
W = x1a1x2a2x3 . . . xk−1ak−1xk of vertices xi ∈ V and arcs aj ∈ A such that the tail
of ai is xi and the head of ai is xi+1 for every i, 1 ≤ i ≤ k− 1. Whenever the labels
of the arcs of a walk are not important, we use the notation x1 → x2 → · · · → xk for
the walk, and say that we have an x1xk-walk. In a digraph D, a vertex y is reachable

from a vertex x if there exists a walk from x to y in D. In particular, a vertex is
reachable from itself. A digraph D is strongly connected (or, just strong) if, for every
pair x, y of distinct vertices in D, y is reachable from x and x is reachable from y.
A strong component of a digraph D is a maximal induced subdigraph of D that is
strong. If x and y are vertices of a digraph D, then the distance from x to y in D,

1
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denoted dist(x, y), is the minimum length of an xy-walk, if y is reachable from x,
and otherwise dist(x, y) = ∞. The distance from a set X to a set Y of vertices in
D is

dist(X,Y ) = max{dist(x, y) : x ∈ X, y ∈ Y }.

The diameter of D is defined as dist(V, V ), and it is denoted by diam(D).
Let p be a prime, e a positive integer, and q = pe. Let Fq denote the finite field

of q elements, and F
∗
q = Fq \ {0}.

Let F2
q denote the Cartesian product Fq ×Fq, and let f : F2

q → Fq be an arbitrary
function. We define a digraph D = D(q; f) as follows: V (D) = F

2
q, and there is an

arc from a vertex x = (x1, x2) to a vertex y = (y1, y2) if and only if

x2 + y2 = f(x1, y1).

If (x,y) is an arc in D, then y is uniquely determined by x and y1, and x is
uniquely determined by y and x1. Hence, each vertex of D has both its in-degree
and out-degree equal to q.

By Lagrange’s interpolation, f can be uniquely represented by a bivariate poly-
nomial of degree at most q − 1 in each of the variables. If f(x, y) = xmyn, where
m,n are integers, 1 ≤ m,n ≤ q− 1, we call D a monomial digraph, and denote it by
D(q;m,n). Digraph D(3; 1, 2) is depicted in Fig. 1. As for every a ∈ Fq, aq = a, we
will assume in the notation D(q;m,n) that 1 ≤ m,n ≤ q− 1. It is clear, that x → y

in D(q;m,n) if and only if y → x in D(q;n,m). Hence, one digraph is obtained
from the other by reversing the direction of every arc. In general, these digraphs are
not isomorphic, but if one of them is strong so is the other and their diameters are
equal. Also, if one of them contains a path or cycle, then the other contains a path
or a cycle of the same length.

(1, 0) (0, 0) (2, 0)

(2, 1) (1, 1) (2, 2) (1, 2)

(0, 2) (0, 1)

Fig. 1. The digraph D(3; 1, 2): x2 + y2 = x1y2
1 .

The digraphs D(q; f) and D(q;m,n) are directed analogues of some algebraically
defined graphs, which have been studied extensively and have many applications: see
Lazebnik and Woldar12, and a recent survey by Lazebnik, Sun, and Wang11.
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The study of digraphs D(q; f) started with the questions of connectivity and di-
ameter. The questions of strong connectivity of digraphs D(q; f) and D(q;m,n)
and descriptions of their components were completely answered by Kodess and
Lazebnik9. The problem of determining the diameter of a component of D(q; f)
for an arbitrary prime power q and an arbitrary f turned out to be rather difficult.
A number of results concerning some instances of this problem for strong monomial
digraphs were obtained by Kodess, Lazebnik, Smith, and Sporre10.

As the order of D(q;m,n) is q2, it is clear that digraphs D1 = D(q1;m1, n1) and
D2 = D(q2;m2, n2) are isomorphic (denoted as D1

∼= D2) only if q1 = q2. Hence, the
isomorphism problem for monomial digraphs can be stated as follows: find necessary
and sufficient conditions on q,m1, n1,m2, n2 such that D1

∼= D2. Though we are still
unable to solve the problem, all our partial results support the following conjecture.

Conjecture 1.1. [Kodess8] Let q be a prime power, and let m1, n1,m2, n2 be be

integers from {1, 2, . . . , , q − 1}. Then D(q;m1, n1) ∼= D(q;m2, n2) if and only if

there exists an integer k, coprime with q − 1, such that

m2 ≡ km1 mod (q − 1),

n2 ≡ kn1 mod (q − 1).

The sufficiency part of the conjecture is easy to demonstrate, and we do it in Section
3 (Theorem 3.1). We verified the necessity of these conditions with a computer for
all prime powers q, 2 ≤ q ≤ 97. In the case m1 = m2 = 1 (hence, n1 = n2), the
necessity of the conditions was verified for all odd prime powers q, 3 ≤ q ≤ 509.

Our interest in the isomorphism problem for monomial digraphs D(q;m,n) and
Conjecture 1.1 is two-fold. First, due to the existence of a simple isomorphism cri-
terion for similarly constructed bipartite graphs G(q;m,n) (see Theorem 1.1 below)
defined as follows. Each partition of the vertex set of G(q;m,n), which are denoted
by P and L, is a copy of F2

q, and two vertices (p1, p2) ∈ P and (l1, l2) ∈ L are adjacent
if and only if p2 + l2 = pm

1 l
n
1 . Secondly, due to applications of graphs G(q;m,n) and

their generalizations to a number of problems in extremal graph theory11,12. We
also note that our conjecture is similar in spirit to the 1967 conjecture of Ádám’s1

that states that two circulant graphs Cay(Zn, S) and Cay(Zn, T ), T, S ⊆ Zn, are
isomorphic if and only if S = mT for some m ∈ Z

∗
n. While Ádám’s conjecture

was soon shown to be false (Elspas and Turner5), a number of questions surround-
ing it have since drawn considerable attention (see surveys of Klin, Muzychuk, and
Pöschel7, and Pálfy15, or more recent works of Muzychuk13,14, and Evdokimov
and Ponomarekno6).

For any integer a, we let gcd(a, q − 1) denote the greatest common divisor of a
and q − 1.

Theorem 1.1. [Dmytrenko, Lazebnik, and Viglione4] G(q;m1, n1) ∼= G(q;m2, n2)
if and only if {gcd(m1, q − 1), gcd(n1, q − 1)} = {gcd(m2, q − 1), gcd(n2, q − 1)} as

multisets.



May 24, 2021 20:34 WSPC/INSTRUCTION FILE
IsomMonGraphs_Kodess_Lazebnik_final_JICN

4

For every digraph D(q; f), one can define a bipartite graph G(q; f), the bipartite

cover of D(q; f), in the following way. Each partition X and Y of the vertex set
of G(q; f) is defined to be a copy of V (D(q; f)), and a vertex x = (x1, x2) ∈ X

is joined to a vertex y = (y1, y2) ∈ Y in G(q; f) if and only if x → y in D(q; f).
This construction is of special interest to us in view of the following proposition
that provides us with the first non-trivial necessary condition for isomorphism of
monomial digraphs.

Proposition 1.1. If D(q;m1, n1) ∼= D(q;m2, n2), then G(q;m1, n1) ∼= G(q;m2, n2)
and {gcd(m1, q − 1), gcd(n1, q − 1)} = {gcd(m2, q − 1), gcd(n2, q − 1)} as multisets.

The first part of Proposition 1.1 simply states that two isomorphic digraphs have iso-
morphic bipartite covers, and the second part follows from Theorem 1.1. In contrast
to the case of the monomial bipartite graphs, this necessary condition of Proposition
1.1 is far from being sufficient for the isomorphism of monomial digraphs.

In the following section we discuss some general properties of isomorphisms of
monomial digraphs. In Section 3 we prove the sufficiency of Conjecture 1.1 and
present several other sufficient or necessary conditions on the parameters of iso-
morphic monomial digraphs. In Section 4 we finish the note with some concluding
remarks.

2. Some general properties of isomorphisms of monomial digraphs

Suppose digraphs D1 = D(q;m1, n1) and D2 = D(q;m2, n2) are isomorphic via an
isomorphism φ : V (D1) → V (D2), (x, y) 7→ φ((x, y)) = (φ1((x, y)), φ2((x, y)). For
brevity, we will write φ(x, y) for φ((x, y)). Functions φ1 and φ2 can be considered
polynomial functions of two variables on Fq of degree at most q − 1 with respect to
each variable.

A polynomial h ∈ Fq[X1, . . . ,Xn] is called a permutation polynomial in n vari-
ables on Fq if the equation h(x1, . . . , xn) = α has exactly qn−1 solutions in F

n
q for

each α ∈ Fq. For n = 1, this definition implies that the function on Fq induced by h
is a bijection, and in this case h is called just a permutation polynomial on Fq.

The following theorem describes some properties of the functions induced by the
polynomials φ1 = f and φ2 = g, and imposes a strong restriction on the form of g.

Theorem 2.1. Let q be an odd prime power, D1 = D(q;m1, n1) ∼= D2 =
D(q;m2, n2) with an isomorphism given in the form

φ : V (D1) → V (D2), (x, y) 7→ (f(x, y), g(x, y))

for some f, g ∈ Fq[X,Y ] of degree at most q − 1 in each of the variables. Then the

following statements hold.

(i) f and g are permutation polynomials in two variables on Fq.

(ii) If m1 6= n1, then f(x, y) = 0 if and only if x = 0.
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(iii) If m1 6= n1, then g is a polynomial of indeterminant Y only, and is of the form

g(Y ) = aq−2Y
q−2 + aq−4Y

q−4 + · · · + a1Y,

where all ai ∈ Fq, i = 1, . . . , q − 2. Moreover, g is a permutation polynomial on

Fq.

Proof. As φ is a bijection, the system
{

f(x, y) = a,

g(x, y) = b,

has a solution for every pair (a, b) ∈ F
2
q. Fix an a and let b vary through all of Fq.

This gives q distinct solutions (xi, yi), i = 0, . . . , q − 1, of the system. Note that
for every i, we have f(xi, yi) = a, so these are q distinct points at which f takes
on the value a. Assume that for some (x∗, y∗) distinct from each (xi, yi) we have
f(x∗, y∗) = a. As g(xi, yi) runs through all of Fq, we have g(x∗, y∗) = g(xi, yi) for
some i. Then, for this i, we have

φ(x∗, y∗) =
(

f(x∗, y∗), g(x∗, y∗)
)

=
(

f(xi, yi), g(xi, yi)
)

= φ(xi, yi),

contradicting the choice of (x∗, y∗). Hence, the equation f(x, y) = α has exactly q

solutions for each α ∈ Fq, and so f is a permutation polynomial in two variables on
Fq. The proof of the statement for g is similar. This proves part (i).

Since φ is an isomorphism, the following two equations

x2 + y2 = xm1

1 yn1

1 , (2.5)

g(x1, x2) + g(y1, y2) = f(x1, x2)m2 · f(y1, y2)n2 (2.6)

are equivalent.
From (2.5), y2 = xm1

1 yn1

1 −x2, and substituting this expression for y2 in (2.6) we
have

g(x1, x2) + g(y1, x
m1

1 yn1

1 − x2) = f(x1, x2)m2 · f(y1, x
m1

1 yn1

1 − x2)n2 , (2.7)

for all x1, x2, y1 ∈ Fq. Let (a, b) ∈ F
2
q be such that f(a, b) = 0 (its existence follows

from part (i)). Set (x1, x2) = (a, b), and set y1 = s. Then (2.7) yields

g(a, b) + g(s, am1sn1 − b) = 0, for all s ∈ Fq. (2.8)

Likewise from (2.5), x2 = xm1

1 yn1

1 − y2. Substituting this expression for x2 in (2.6),
and setting x1 = t and (y1, y2) = (a, b), we obtain

g(t, tm1an1 − b) + g(a, b) = 0, for all t ∈ Fq. (2.9)

Hence, (2.8) and (2.9) yield

g(s, am1sn1 − b) = g(t, an1tm1 − b) = −g(a, b), for all s, t ∈ Fq.



May 24, 2021 20:34 WSPC/INSTRUCTION FILE
IsomMonGraphs_Kodess_Lazebnik_final_JICN

6

From part (i), g is a permutation polynomial in two variables, and we conclude that
the set

{(s, am1sn1 − b), (t, an1tm1 − b) : s, t ∈ Fq}

contains exactly q elements. As (s, am1sn1 − b) = (t, an1tm1 − b) implies s = t, we
obtain that am1tn1 − b = an1tm1 − b for all t ∈ Fq. Since m1 6= n1, this implies a = 0
as, otherwise the polynomial X |m1−n1| −a|m1−n1| ∈ Fq[X] of degree |m1 −n1| ≤ q−2
has q roots.

Thus, f(a, b) = 0 implies a = 0. From part (i), f is a permutation polynomial
in two variables. Let {(ai, bi)}

q
i=1 be the set of q distinct points at which f is zero.

Then ai = 0 for all i, and all bi must be distinct. That is, f(0, b) = 0 for any b ∈ Fq.
This proves part (ii).

We now turn to the proof of part (iii). We just concluded that f(a, b) = 0 implies
a = 0. Substituting a = 0 in (2.9) we obtain

g(t,−b) = −g(0, b), for all b, t ∈ Fq. (2.12)

Write g(X,Y ) = Y g1(X,Y ) + ĝ(X) for some g1 ∈ Fq[X,Y ], and ĝ ∈ Fq[X] of degree
at most q − 1. Now from (2.12), we have g(x, 0) = ĝ(x) = −g(0, 0) for every x ∈ Fq.
Since the degree of ĝ is at most q− 1, it follows that ĝ(X) is a constant polynomial.
Also from (2.12), g(0, 0) = ĝ(0) = −g(0, 0), and, as q is odd, ĝ is the zero polynomial.
Thus g(X,Y ) = Y g1(X,Y ) for some g1 ∈ Fq[X,Y ], where the degree of g1 in Y is
at most q − 2.

Using (2.12) again, we find that

g1(t,−b) = g1(0, b), for all b ∈ F
∗
q, t ∈ Fq. (2.13)

Write g1(X,Y ) = Xh1(X,Y ) + h2(Y ), where h1 ∈ Fq[X,Y ], h2 ∈ Fq[Y ]. By (2.13),
for all t ∈ Fq and all b ∈ F

∗
q we have

g1(t,−b) = th1(t,−b) + h2(−b) = g1(0, b) = h2(b). (2.14)

For t = 0, it implies that h2(b) = h2(−b) for all b ∈ F
∗
q, and since q is odd, and the

degree of h2 is at most q − 2, we have h2(Y ) =
∑(q−3)/2

i=0 ãiY
2i for some ãi ∈ Fq,

0 ≤ i ≤ (q− 3)/2. From (2.14), it now follows that for every t ∈ Fq and every b ∈ F
∗
q,

th1(t,−b) = 0, and so h1(t,−b) = 0 for all b, t ∈ F
∗
q. Write h1(X,Y ) as

h1 = h1(X,Y ) = cq−2(Y )Xq−2 + cq−3(Y )Xq−3 + · · · + c1(Y )X + c0(Y ),

where all ci ∈ Fq[Y ] are of degree at most q−2. For any fixed b ∈ F
∗
q, the polynomial

h1(−b, Y ) of degree at most q − 2 has q − 1 roots. Hence, ci(−b) = 0 for all i,
0 ≤ i ≤ q − 2, and so all ci(Y ) are zero polynomials. Thus, h1(X,Y ) is the zero
polynomial. Therefore,

g(X,Y ) = Y g1(X,Y ) = Y (Xh1(X,Y ) + h2(Y )) = Y h2(Y ) =
(q−3)/2

∑

i=0

ã2iY
2i+1.



May 24, 2021 20:34 WSPC/INSTRUCTION FILE
IsomMonGraphs_Kodess_Lazebnik_final_JICN

7

Set ai+1 = ã2i for all i, 0 ≤ i ≤ (q − 3)/2, so

g(Y ) = aq−2Y
q−2 + aq−4Y

q−4 + · · · + a1Y. (2.17)

Every permutation polynomial in two variables, which is actually a polynomial of
one variable, has to be a permutation polynomial. By part (i), and by the last
expression for g as g(Y ), we obtain that g is a permutation polynomial. This ends
the proof of part (iii), and of the theorem.

Theorem 2.1 will be used in the proof of Theorem 3.2 of the next section.

3. Conditions on the parameters of isomorphic monomial digraphs

We begin with the proof of the sufficiency part of Conjecture 1.1, and provide several
more sufficient conditions for the isomorphism of monomial digraphs in Corollary 3.1.
Then we obtain several necessary conditions for monomial digraphs to be isomorphic.

Theorem 3.1. Suppose there exists an integer k such that gcd(k, q − 1) = 1 and

m2 ≡ km1 mod (q − 1),

n2 ≡ kn1 mod (q − 1).

Then D(q;m1, n1) ∼= D(q;m2, n2).

Proof. Define the mapping φ : V (D(q;m2, n2)) → V (D(q;m1, n1)) via the rule

φ : (x, y) 7→ (xk, y).

As gcd(k, q − 1) = 1, φ is bijective and we check that φ preserves adjacency and
non-adjacency. Let (x1, x2) → (y1, y2) in D(q;m2, n2). Then x2 + y2 = xm2

1 yn2

1 . We
have

φ(x1, x2) = (xk
1 , x2),

φ(y1, y2) = (yk
1 , y2),

and

x2 + y2 = xm2

1 yn2

1 ⇔ x2 + y2 = (xk
1)m1(yk

1 )n1 .

Hence, (φ(x1, x2), φ(y1, y2)) = ((xk
1 , x2), (yk

1 , y2)) is an arc in D(q;m1, n1), and φ is
indeed an isomorphism from D(q;m2, n2) to D(q;m1, n1).

Corollary 3.1. The following statements hold.

(i) If gcd(m, q−1) = 1, then D(q;m,n) ∼= D(q; 1, n′), for some integer n′ such that

mn′ ≡ n mod (q − 1).
(ii) If mn ≡ 1 mod (q − 1), then D(q;m, 1) ∼= D(q; 1, n), and D(q;m,n) ∼=

D(q; 1, n2) ∼= D(q;m2, 1).
(iii) If m+ n ≡ 0 mod (q − 1), then D(q;m,n) ∼= D(q;n,m).
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(iv) If D(q;m1, n1) ∼= D(q;m2, n2) and m1 = n1, then m2 = n2, and gcd(m1, q−1) =
gcd(m2, q − 1).

(v) If gcd(m, q − 1) = gcd(n, q − 1), then D(q;m,m) ∼= D(q;n, n).

Proof. Part (i) is straightforward. As gcd(m, q − 1) = 1, there exists an integer k
such that gcd(k, q − 1) = 1 and 1 ≡ km mod (q− 1). Let n′ ≡ kn mod (q− 1). By
Theorem 3.1, D(q;m,n) ∼= D(q; 1, n′).

For part (ii), mn ≡ 1 mod (q−1) is equivalent to gcd(m, q−1) = gcd(n, q−1) =
1, and the conclusion follows directly from Theorem 3.1 by taking k equal m or n.

For part (iii), we need to show that D(q;m,−m) ∼= D(q; −m,m). As gcd(−1, q−

1) = 1, the statement follows from Theorem 3.1.
Let us prove part (iv). If m1 = n1, then for every arc of D1, the opposite arc is

also an arc of D1. As D1
∼= D2, for every arc of D2, the opposite arc is also an arc

of D2. Consider an arc of D2 of the form (a, b) → (1, am2 − b). Then D2 contains
the opposite arc (1, am2 − b) → (a, b) only if an2 = am2 . Taking a to be a primitive
element of Fq, we obtain m2 = n2. Then the equality gcd(m1, q−1) = gcd(m2, q−1)
follows from Proposition 1.1.

For part (v), let m1 = n1 = m and m2 = n2 = n. We use the following number-
theoretic result: if gcd(m, q − 1) = gcd(n, q − 1), then there exists an integer k
coprime with q − 1 such that mk ≡ n mod (q − 1). For a proof of a more general
related result see4 or Viglione16. Hence the conditions of Theorem 3.1 are met, and
D(q;m,m) ∼= D(q;n, n).

The following statement provides some information on the automorphism groups
of monomial digraphs. The proof is trivial, and we omit it.

Proposition 3.1. For any c ∈ F
∗
q, the mapping ψc : (x, y) 7→ (cx, cm+ny) is an

automorphism of D(q;m,n). In particular, the group of automorphisms of D(q;m,n)
contains a cyclic subgroup of order q − 1 generated by ψg, where 〈g〉 = F

∗
q.

It is well known that F
∗
q, viewed as a multiplicative group, is a cyclic group of

order q − 1. For any integer n, let

An = {xn : x ∈ F
∗
q}, In = {x ∈ F

∗
q : xn = 1}.

By standard theory of cyclic groups, |An| = (q − 1)/ gcd(n, q − 1), and |In| =
gcd(n, q − 1).

In the following theorem we collect some independent necessary conditions on
the parameters of isomorphic monomial digraphs.

Theorem 3.2. Let D1 = D(q;m1, n1), D2 = D(q;m2, n2) and D1
∼= D2, where q

is an odd prime power. Then

(i) gcd(m1, q − 1) = gcd(m2, q − 1) and gcd(n1, q − 1) = gcd(n2, q − 1).
(ii) gcd(m1 + n1, q − 1) = gcd(m2 + n2, q − 1).



May 24, 2021 20:34 WSPC/INSTRUCTION FILE
IsomMonGraphs_Kodess_Lazebnik_final_JICN

9

(iii) gcd(m1 − n1, q − 1) = gcd(m2 − n2, q − 1).

Moreover, the conditions (i) – (iii) are independent in the sense that no two of

them imply the remaining one.

Proof. For (i), by Proposition 1.1, we have {gcd(m1, q − 1), gcd(n1, q − 1)} =
{gcd(m2, q − 1), gcd(n2, q − 1)} as multisets. Therefore, in order to prove both
equalities in (i), it is sufficient to prove only one of them. We will show that
gcd(n1, q − 1) = gcd(n2, q − 1).

Let φ : D1 → D2 be an isomorphism. It follows from Theorem 2.1 that φ(0, 0) =
(0, 0). As (1, 0) is an out-neighbor of (0, 0) in D1, φ(1, 0) is an out-neighbor of (0, 0)
in D2, distinct from (0, 0). The adjacency equation in D2 implies that φ(1, 0) =
(c, 0), for some c ∈ F

∗
q. By Proposition 3.1, composing φ with ψc−1, we obtain an

isomorphism φ1 : D1 → D2, such that (0, 0) 7→ (0, 0) and (1, 0) 7→ (1, 0). Let f and
g be the polynomials described in Theorem 2.1, so that φ1((a, b)) = (f(a, b), g(b))
for every (a, b) ∈ V (D1).

The out-neighbors of the vertex (1, 0) distinct from (0, 0) in D1 and in D2 have
the form (x, xn1) and (x, xn2), respectively, for every x ∈ F

∗
q. As φ1 maps (0, 0) to

(0, 0) and (1, 0) to (1, 0), we obtain that for every x ∈ F
∗
q there exists a unique

y ∈ F
∗
q such that (f(x, xn1), g(xn1)) = (y, yn2). As g is a permutation polynomial

on Fq, and g(0) = 0, we obtain that g(An1
) = An2

, and so |An1
| = |An2

|. As
|Ani

| = (q − 1)/gcd(n, q − 1)i, i = 1, 2, we obtain gcd(n1, q − 1) = gcd(n2, q − 1).
This ends the proof of (i).

For (ii), we count the number of distinct nonzero second coordinates of the
vertices of D = D(q;m,n) which have a loop on them. As q is odd, there exists a
loop on a vertex (x, y) of D if and only if

(x, y) → (x, y) ⇔ 2y = xm+n ⇔ y =
1
2
xm+n ⇔ (x, y) = (x,

1
2
xm+n).

Therefore, the number of distinct nonzero second coordinates of the vertices of D
which have a loop on them is

|Am+n| =
q − 1

gcd(m+ n, q − 1)
.

Now, if φ : D1 → D2 is an isomorphism, then φ maps the set of loops of D1 to
the set of loops of D2 bijectively. As φ(0, 0) = (0, 0), and both D1 and D2 have
a loop on (0, 0), an argument similar to that of part (i) (based on the fact that
g is a permutation polynomial and g(0) = 0) yields |Am1+n1

| = |Am2+n2
|. Hence,

gcd(m1 + n1, q − 1) = gcd(m2 + n2, q − 1), and part (ii) is now proved.

For (iii), we compute the number of 2-cycles in D = D(q;m,n), which we denote
by c2 = c2(q;m,n). If (x1, x2) → (y1, y2) → (x1, x2) is a 2-cycle in D, then

x2 + y2 = xm
1 y

n
1 = xn

1y
m
1 , (x1, x2) 6= (y1, y2). (3.10)
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To compute c2, we count the number of solutions (x1, x2, y1, y2) ∈ F
4
q of this system.

There are q(q− 1) solutions if x1 = 0 and y1 6= 0, and the same number if x1 6= 0
and y1 = 0. If x1 = y1 = 0, then x2 = −y2 can be chosen in q − 1 ways. Thus there
are

q(q − 1) + q(q − 1) + (q − 1) = (2q + 1)(q − 1)

solutions with x1y1 = 0.
If x1y1 6= 0, then (3.10) implies (x1y

−1
1 )m−n = 1. If x1 = y1, then choose x2 6=

1
2x

m+n
1 in q− 1 ways, so the value of y2 is determined uniquely and is different from

x2. This case yields (q − 1)2 solutions. If x1 6= y1, x1 can be chosen in q − 1 ways,
and y1 in |Im−n| − 1 = gcd(m−n, q− 1) − 1 ways, and x2 in q ways. Hence, in total
there are

(2q+1)(q−1)+(q−1)2+q(q−1)(gcd(m−n, q−1)−1) = q(q−1)(2+gcd(m−n, q−1))

solutions to (3.10). As vertices (x1, x2) and (y1, y2) can we swapped in this count,
the number of 2-cycles is half of this:

c2(q;m,n) =
1
2
q(q − 1)(2 + gcd(m− n, q − 1)).

If D1 and D2 are isomorphic, they have the same number of 2-cycles, and
c2(q;m1, n1) = c2(q;m2, n2) yields gcd(m1 −n1, q− 1) = gcd(m2 −n2, q− 1), ending
the proof of part (iii).

We now show that conditions (i), (ii), and (iii) are independent. Let q = 11. Then
(m1, n1) = (1, 1) and (m2, n2) = (1, 3) satisfy (i) and (ii), but not (iii); (m1, n1) =
(1, 2) and (m2, n2) = (1, 4) satisfy (i) and (iii), but not (ii); (m1, n1) = (1, 2) and
(m2, n2) = (1, 10) satisfy (ii) and (iii), but not (i).

Remark 3.1. The conditions of Theorem 3.2 do not imply those of Conjecture 1.1.
For instance, let m1 = m2 = 1, n1 = 4, n2 = 12 with q = 17. Then gcd(m1, q− 1) =
gcd(m2, q − 1) = 1, gcd(n1, q − 1) = gcd(n2, q − 1) = 4, gcd(m1 + n1, q − 1) =
gcd(m2 + n2, q − 1) = 1, and gcd(m1 − n1, q − 1) = gcd(m2 − n2, q − 1) = 1. The
digraphs D(17; 1, 4) and D(17; 1, 12) are not isomorphic, for otherwise they have
the same number of isomorphic copies of the digraph shown in Fig. 2. This in turn
implies, via a discussion in Coulter, De Winter, Kodess, and Lazebnik3, that the
trinomials X5 −2X+1 and X13 −2X+1 have the same number of roots in F17. This
however is easily seen to be false. Of course, the non-isomorphism of these digraphs
can be also easily established by a computer.

4. Concluding remarks

Let N(D,H) denote the number of isomorphic copies of digraph H in digraph D.
One can attempt to solve the isomorphism problem by finding a “test digraph” H
such that N(D1,H) = N(D2,H) if and only if D1

∼= D2. Similarly, one can try to
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resolve the problem by finding a “test family” of digraphs H satisfying N(D1,H) =
N(D2,H) for all H ∈ H if only if D1

∼= D2. This approach was successful in the
case of the aforementioned undirected class of graphs G(q;m,n)4,16. It is worth
noting that K2,2 (same as 4-cycle) was a good “test graph” in that case: for fixed
m,n and sufficiently large q, the equality of numbers of 4-cycles in G(q;m1, n1) and
G(q;m2, n2) implied the isomorphism of the graphs. In order to obtain the result for
all q, the number of copies of other Ks,t-subgraphs had to be counted. This approach
however fails for monomial digraphs D(q;m,n) when the “test digraphs” are strong
directed cycles: for every odd prime power q, the digraphs D1 = D(q; q−1

2 , q−1) and
D2 = D(q; q−1, q−1

2 ) are not isomorphic by Theorem 3.2, but have the same number
of strong directed cycles of any lengths, since every arc x → y in D1 corresponds
to the arc y → x in D2. It can also be shown that conditions of Theorem 3.2 imply
that D(q;m1, n1) and D(q;m2, n2) have equal number of copies isomorphic to

−→
K2,2

with all arcs directed from one partition to the other, and so this digraph cannot be
a “test digraph” either.

So far we were unable to find a good “test family” to replicate the success with
monomial bipartite graphs for monomial digraphs. One difficulty is that counting
N(D,H) in monomial digraphs is much harder, even for small digraphs H. Another
difficulty was with finding good candidates for H, even after utilizing all necessary
conditions and extensive experiments with computer.

α β

Fig. 2. The digraph K.

On the other hand, understanding the equality of N(D1,K) = N(D2,K) in
monomial digraphs D1 and D2 for digraph K of Fig. 2 led to a “digraph-theoretic
proof” that the numbers of solutions of certain polynomial equations over finite
fields were equal, and the latter was not clear to us at first from just algebraic
considerations (see3).
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