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Abstract

In this paper, we provide an algorithm for traversing geometric
graphs which visits all vertices, and reports every vertex and edge
exactly once. To achieve this, we combine a given geometric graph
G with the integer lattice, seen as a graph, in such a way that the
resulting hypothetical graph can be traversed using the algorithm in
[6]. To overcome the problem with hypothetical vertices and edges,
we develop an algorithm for visiting any kth neighborhood of a vertex
in a graph straight-line drawn in the plane using O(log k) memory.
The memory needed to complete the traversal of a geometric graph
then turns out to depend on the maximum ratio of the graph distance
and Euclidean distance for pairs of distinct vertices of G at Euclidean
distance greater than one and less than 2

√
2.

1 Introduction

The problem of graph traversal is one of the fundamental combinatorial
problems. Given as an input an undirected graph G and a vertex v, the
graph traversal problem is to start on v and continue visiting vertices of G
by a sequence of moves along edges of G in such a way that at some point
every vertex of G reachable by a path from v is visited at least once. The
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moves are guided by an edge labelling; every vertex v has the edges incident
to it labelled with integers 1 to d(v) so that labels are a permutation. So a
traversal algorithm at each vertex will choose a label of an edge and then
moves along the edge with that label to the neighbor of the vertex. A problem
related to graph traversal is s, t-connectivity where we are given two vertices
s and t of G, and need to decide whether or not there is a path from s to t
in G. It is obvious that a solution to the graph traversal problem also gives
a solution to the s, t-connectivity problem. Many basic graph algorithms
involve making traversal or determining connectivity.

The time complexity of both problems is well understood and it is linear in
the number of edges of the graph. This can be achieved by classical breadth-
first search or depth-first search algorithms. Note that these algorithms can
solve the two problems also in their directed version, i.e., when the graph
is a directed graph. The space required to run these algorithms is linear as
well, and understanding the space complexity of these problems was a major
problem for several decades.

It was long known [1] that a random walk (a walk that starts at a vertex
and chooses subsequent vertices uniformly at random from current available
neighbors) will visit all the vertices reachable from the original vertex in
polynomial number of steps. The major problem was to derandomize this
simple algorithm without substantially increasing the space.

The first deterministic super-polynomial time algorithm for the traversal
problem is the algorithm by Savitch [15] that needs O(log2 n) space. The first
improvement on this classical result was done by Nisan et al. [10] by showing
that the traversal can be performed in O(log3/2 n) space (the time is still
super-polynomial). Building on this work as well as on related works [11, 14],
Armoni et al. [2] improved the space complexity to O(log4/3 n). Note that the
most space-efficient polynomial time algorithm for the traversal problem was
Nisan’s [12] which required O(log2 n) space. A big improvement was achieved
by Trifonov [16] whose polynomial algorithm required O(log n log log n) space
only. Note at this point that Ω(log n) space is needed for any algorithm
to solve the traversal problem. In 2005, Reingold in his seminal work [13]
solved the long standing problem by presenting an O(log n) space deterministic
polynomial algorithm that solves the traversal problem on any n-vertex graph.

The traversal problem asks to visit every vertex at least once, and in fact
in all the algorithms mentioned above a vertex may be visited many times.
In many applications one needs to have a list of vertices, edges, or some
other combinatorial objects defined on graphs. For example, in Kruskal’s
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minimum cost spanning tree algorithm, one needs an ordered list of edges
by their weights. In the following we describe work on traversal algorithms
which provide such lists. We will refer to such algorithms as traversal with
enumeration algorithms. Note at this point that the edge labelings in the
traversal problem considered above are arbitrary. Also it is easy to see that
the breadth-first search and depth-first search algorithms can be adapted to
traversals with enumeration. However, these algorithms are linear in space
as we mentioned already. We are interested in most space-efficient traversal
with enumeration algorithms. The lists produced by such algorithms are
write-only for the algorithms and contain every vertex/edge exactly once.
The information provided in graphs considered just as purely combinatorial
objects is not enough to achieve this in the same O(log n) space as the original
traversal algorithms. Instead, the research concentrated on graphs embedded
in a space and, hence, considered them as geometric objects.

One of the first traversal algorithms with enumeration was described in
[8], which traverses triangulations of the plane. The main idea is used in all
subsequent works, so we outline it here. One uses the geometric information
from the embedding as part of the input to the traversal algorithm and using
this information orders edges of the triangulation. The trick is that the query
to compare two given edges can be locally computed in O(log n) space. Then
each face will have an “entering edge” (say, first in the order of the three edges)
which will be used to traverse the triangulation as a tree. The embedding
of the triangulation is given using the rotation system (a cyclic ordering of
edges in the embedding of the graph given at every vertex). These orderings
are then used to traverse along faces using O(log n) space and search for the
minimum edges, move from face to face, etc. Therefore such traversal can
be performed in O(log n) space. Moreover, the geometric information can be
further used to determine exact time when to output a visited vertex/edge
to the list. In [3], authors describe a traversal algorithm with enumeration
that can traverse all arrangements of convex polytopes. In [4], the algorithm
is extended to all planar subdivisions and its running time is improved in
[5]. All of the works in [3, 5, 4] consider plane subdivisions. First result
on traversal with enumeration that extends to nonplanar graphs has been
presented in [6]. The authors define a, so called, quasi-planar subdivision
as a graph (straight-line) embedded into the plane, whose vertex set can be
partitioned into two sets Vp and Vc, vertices in Vp induce a plane graph P
(backbone), the outer-face of P does not contain any vertex of Vc, and no
edge of P is crossed by any other edge. One can imagine a quasi-planar graph
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as a plane graph in which every face may contain an arbitrary graph which
joins only to the vertices of the face. A quasi-planar subdivision is said to
satisfy the left-neighbor rule if every vertex of a subgraph inside of a face of
its backbone has a neighbor on the face that is to the left of the vertex or
has a smaller x-coordinate; see Figure 1 for an example. It was proved in [6]
that every quasi-planar subdivision that satisfies the left-neighbor rule can
be traversed with enumeration in O(log n) space and polytime.

x

Figure 1: [6] An example of a quasi-planar subdivision satisfying the left-
neighbour rule. The bold edges and filled vertices are those of the underlying
planar subgraph.

Note at this point that traversal algorithms are often modelled using so
called walking (or jumping) automata on graphs [7]. Such an automaton has
a set of states, and a number of pebbles that represent vertex names and
are used to mark certain vertices temporarily. The pebbles can be moved
from vertex to adjacent vertex (“walk”) or directly to a vertex containing
another pebble (“jump”). The position of the automaton on the graph is
itself marked by a pebble. Thus, walking represents replacing a vertex name
by some adjacent vertex found in the input, and jumping represents copying
a previously recorded vertex name. It follows that the space required by
such an automaton depends on the number of pebbles used, and obviously a
walking automaton that uses c pebbles and can traverse a graph corresponds
to an O(c log n) space traversal algorithm. In this paper we will model our
traversal algorithm using a walking automaton.

We adapt the traversal algorithm from [6] to a traversal algorithm for
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geometric graphs which reports every vertex and every edge exactly once. To
achieve this, we develop a walking automaton for local exploration of graphs
straight-line drawn in the plane (Section 3). This automaton will visit all
vertices within graph distance k (for any fixed k ∈ N) from a given vertex,
and will use as few as k + 1 pebbles, i.e., its space complexity is O(k log n).

Definition 1 (basic notions).

• Let G = (V,E) be a graph. For every v ∈ V we denoted the set
of neighbors of v in G by NG(v) and define NG[v] = NG(v) ∪ {v}.
Moreover, for every A ⊆ V we define NG[A] =

⋃
v∈A NG[v] and set

NG(A) = NG[A] \ A.

• A geometric graph is a (drawing of a) graph having a finite subset V of
the plane as its vertex set, and whose edge set consists of line-segments
between all pairs of distinct points in V with Euclidean distance ≤ 1.

• For every connected geometric graph G of order ≥ 2 we define

r(G) = min
∀x,y∈V (G)

{M : 1 < dE(x, y) < 2
√

2⇒ dG(x, y) ≤MdE(x, y)},

where dG and dE denote the graph distance in G and the Euclidean
distance in the plane, respectively.

We shall use the invariant r(G) to bound the space complexity of a traversal
with enumeration algorithm for G. In particular, we provide such an algorithm
that uses b2

√
2r(G)c pebbles. We call a geometric graph G well-embedded

if r(G) is a constant. Hence as a consequence we obtain a traversal with
enumeration algorithm with O(log n) space complexity for well-embedded
geometric graphs.

The main idea behind such algorithm is to obtain from G, which in general
can have many crossings, a quasi-planar graph satisfying the left-neighbor
rule. We achieve this by fixing a Cartesian coordinate system and assuming,
with no loss of generality (since G is finite), that no vertex of G has an integer
coordinate and no edge of G passes through a point in Z×Z. Then we create
a virtual graph which is an augmentation of G and the grid graph given by
the integer lattice. For traversing the resulting graph, we use an adaptation
of the traversal algorithm in [6] combined with an algorithm (Algorithm 1)
for exploring the kth neighborhood of a vertex in a graph straight-line drawn
in the plane. In the following section, we present the formal construction of
the virtual graph.
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2 The Virtual Graph

In this section we provide details how to augment a geometric graph G with
a grid graph defined on the points of a sub-lattice of the plane.

Definition 2. For every graph G and k ∈ N, we define the kth neighborhood
of a vertex v in G by

Nk
G[v] = {u ∈ V (G) : dG(u, v) ≤ k}. (1)

(We shall drop the subscript G in Nk
G[v] when G is understood from the

context.)

Given a connected geometric graph G, we shall regard the infinite integral
lattice in the plane as an infinite plane graph and denote it by L. For every
v ∈ V (G) we define the square of v, denoted sv, to be the face of L that
encloses v, and cor(sv) to be the lower left corner of sv.

We combine G and L into a new graph G � L as follows. Let LG be
the smallest subgraph of L whose face set contains every sv, v ∈ V (G). Let
C(L,G) be the set of all edges of G that cross an edge of L, and for every
vertex v ∈ V (G) let `v be the line-segment joining v to cor(sv). We now
define the graph G� L by

V (G� L) = V (G) ∪ V (LG), (2)

and
E(G� L) = (E(G) \ C(L,G)) ∪ E(LG) ∪ {`v : v ∈ V (G)}. (3)

See Figure 2 for an example. Again, as G is finite we may assume that
no newly added edge `v passes through a vertex of G. Then, as the planar
graph LG is an induced subgraph of G�L and no edge of L is crossed by any
edge of G, it follows that G� L is a quasi-planar graph with the underlying
plane graph LG. Moreover, as every vertex v of G is incident, via `v, to a
vertex of LG having a smaller x coordinate than that of v, G�L also satisfies
the left-neighbor rule. The only problem with applying the quasi-planar
subdivision traversal algorithm from [6] is that G� L contains hypothetical
vertices and edges which cannot be visited or used by a traversing agent.
But whenever r(G) (or an upper bound for it) is known, this problem will
be resolved. The idea is that the traversing agent on G, denoted Rr, will
simulate a virtual agent, denoted Rv, that will traverse G � L. To be able
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(a) (b)

G

Figure 2: (a): A geometric graph G in the graph LG, (b): The quasi-planar
graph G� L.

to perform this simulation in space bounded by r(G), the traversing agent
and the virtual agent must maintain a constant graph distance from each
other, which turns out to be b2

√
2r(G)c. Then, the local explorations by the

virtual agent can be simulated by traversing agent using b2
√

2r(G)c pebbles.
The virtual agent needs to know only a local portion of G� L . Before each
computation step of Rv (e.g., a test to determine the next edge in the rotation
system) the traversing agent Rr explores a local portion of G to provide the
next arc of G�L that Rv has to test to determine the next step (e.g., moving
along an edge). Determination of such an arc depends not only on the current
position of Rv but also on the last edge of G� L which was traversed by Rv.
If Rv is on a vertex of G, then Rr starts exploration of the graph starting
from that vertex. Moreover, in any step of the game if Rv is moving on an
edge of G, Rr will make the same move. An algorithm for an exploration
used by Rv is described in Section 3 in a more general settings.

In the description of our algorithms each edge e = uv is associated with
two oppositely directed arcs e = (u, v) and its reverse, rev(e) := (v, u). As
G is assumed to be a graph straight-line drawn into the plane, we can define
the successor of an arc e = (u, v), denoted succ(e), as the first arc (v, w)
succeeding rev(e) counterclockwise around v. The predecessor of e, denoted
pred(e), is the arc e′ such that succ(e′) = e. Furthermore, for every vertex
(point) v in the plane, we denote its x and y coordinates by xcor(v) and
ycor(v), respectively. We shall also use the notation of the cone defined by a
triple of the points in the plane, as follows. Suppose a, b, and c are points in
the plane. We denote by ∠(a, b, c) the counter-clockwise angle with apex b
from the ray ba to the ray bc. Then, cone(a, b, c) is the cone with apex b and
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interior angle ∠(a, b, c), including the supporting ray passing through a and
not the one through c, see [6].

3 Local Exploration of Graphs Straight-Line

Drawn in the Plane

Let v be any vertex in a straight-line drawn graph G. Given k ∈ N we want
to visit the kth neighborhood Nk

G[v] of v. We shall follow the depth-first
search tree of G to distribute a set of k + 1 pebbles (initially located at v)
among vertices of the paths of the DFS tree that start from the root v, only
backtracking when we reach a vertex in Nk

G(v) or when every candidate for a
“new” vertex is adjacent to an already pebbled vertex. Here is a more detailed
description of the algorithm.
Here is a more detailed description of the algorithm. Consider a graph G
with a given straight-line drawing in the plane. On input

• any v ∈ V (G), and

• k + 1 pebbles initially located at v,

our algorithm visits every vertex in Nk
G[v] at least once and does not visit

any vertex outside Nk
G[v]. Visiting a vertex is defined by moving at least one

pebble from a neighboring pebbled vertex to this vertex (by which this vertex
will be considered visited then). We move pebbles around in Nk

G[v] using the
operators succ and rev, in a depth-first-search fashion.

At any stage (or iteration) the algorithm will be either in forward (fw) or
backward (bw) mode, and on an arc e of G. Thus, at any time we can define
the state (P, e,mode), where P is the set of currently pebbled vertices (i.e.,
vertices where the algorithm stores at least one pebble), e is the current arc,
and mode ∈ {fw, bw}. The computation of the algorithm can be described as
a sequence of such states.

Exploration in our algorithm can begin on any arc of G with tail v.
But for definiteness we set e0 as the arc with tail(e0) = v having the
smallest counterclockwise angle with the x-axis and set the initial state to be
({tail(e0),head(e0)}, e0, fw).

In our algorithm, changing from a state (P, e,mode) to (P ′, e′,mode′)
depends on mode, adjacency of vertices in N(head(e)) to the other pebbled
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vertices, and whether or not card(P ) = k + 1. Moreover, in such a change of
states we will always have card(P4P ′) = 1 and head(e) = tail(e′).

To visit all vertices in the kth neighborhood of v, we choose the arc e0

starting at v as we described above, and initially put all pebbles at v. The
algorithm then starts moving pebbles in a DFS way, and in such a way that
at any time, the pebbled vertices form the vertex set of an induced path in
G. This condition is essentially maintained by Steps 10-14 of the algorithm
in the forward mode, and by Steps 29-33 in the backward mode. By Steps
10-14, when in a state (P, e, fw), tail(e) is the only pebbled vertex which is
adjacent to head(e). Furthermore, the mode in the next iteration remains
forward only if there is an arc succeeding e whose head is an unpebbled
vertex with no pebbled neighboring vertex except head(e). If no such arc
exist, the algorithms backtracks along rev(e) and the following state will be
(P \ {head(e)}, rev(e), bw) (Steps 15-18). Transition from a state with the
backward mode is similar (Steps 29-33 and 36-38). The algorithm terminates
when it returns to the arc e0, by which time all of the vertices in the kth
neighborhood of v will have been visited. We establish this fact, among other
things, in Theorem 1.

1

2

3

4

5

7

6

Figure 3: An instance of Algorithm 1 on input vertex 1 with the task of
exploring the second neighborhood of vertex 1 that produces a list of 12 states
before it terminates.

1 : ({1, 2}, (1, 2), fw) 2 : ({1}, (2, 1),bw) 3 : ({1, 3}, (1, 3), fw)
4 : ({1, 3, 5}, (3, 5), fw) 5 : ({1, 3}, (5, 3), bw) 6 : ({1, 3, 6}, (3, 6), fw)
7 : ({1, 3}, (6, 3), bw) 8 : ({1}, (3, 1), bw) 9 : ({1, 4}, (1, 4), fw)
10 : ({1, 4, 5}, (4, 5), fw) 11 : ({1, 4}, (5, 4), bw) 12 : ({1}, (4, 1),bw)
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Figure 3 shows an instance of Algorithm 1 for exploring the second neighbor-
hood of vertex 1 in the given graph. The algorithm first recognizes e0 = (1, 2)
as the current arc in the initial state, and places all pebbles but one on
head(e0). Starting from the initial state ({1, 2}, (1, 2), fw), it eventually
reaches the state ({1}, (4, 1), bw) where all the pebbles are back on vertex 1.
Since e0 = succ((4, 1)) that is the terminal state, according to Step 34 in
Algorithm 1.

Algorithm 1 Visiting all vertices in Nk[v]

Input: a straight-line drawing of a graph G in the plane, a vertex v ∈ V (G)
with k + 1 pebbles on v
Objective: Visit all vertices in Nk[v]

1: denote the set of currently pebbled vertices by P .
2: let e0 be the arc with v = tail(e0) and the smallest counterclockwise

angle with x-axis
3: mode← fw
4: Keep one pebble at tail(e0) and move the rest to head(e)
5: P = {head(e0), tail(e0)}
6: e← e0

7: repeat
8: if mode = fw then
9: if |P | < k + 1 then

10: e′ ← succ(e)
11: while head(e′) ∈ (N(P \ {head(e)}) \ P ) do
12: e′ ← succ(rev(e′))
13: end while
14: e← e′

15: if head(e) ∈ P then
16: move all pebbles on tail(e) to head(e)
17: P = P \ {tail(e)}
18: mode← bw
19: else
20: move all but one of the pebbles on tail(e) to head(e)
21: P = P ∪ {head(e)}
22: end if
23: else
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Algorithm 2 Visit all vertices in Nk[v] (continued)

24: move all pebbles from head(e) to tail(e)
25: e← rev(e)
26: mode← bw
27: end if
28: else . When mode = bw
29: e′ ← succ(e)
30: while head(e′) ∈ (N(P \ {head(e)}) \ P ) do
31: e′ ← succ(rev(e′))
32: end while
33: e← e′

34: if e = e0 then move all pebbles on v and terminate.
35: end if
36: if head(e) ∈ P then
37: move all pebbles on tail(e) to head(e)
38: P = P \ {tail(e)}
39: else
40: move all but one of the pebbles on tail(e) to head(e)
41: P = P ∪ {head(e)}
42: mode = fw
43: end if
44: end if
45: until e = e0

Theorem 1. Let G be graph straight-line drawn in the plane, v ∈ V (G), and
e0 an arc of G with tail(e0) = v. Then the following holds:

(a) For every iteration i,

(b) The states at different times are all distinct.

(c) The algorithm terminates after a finite number of iterations.

(d) For every u ∈ Nk[v] there is an iteration i such that u ∈ Pi.

Proof. We denote the state in every ith iteration (i ∈ N ∪ {0}) by state(i) =
(Pi, ei,modei), where i = 0 corresponds to the initial state, so that state(0) =
({v}, e0, fw). (a) We use induction on i. The claim holds for i = 0 and 1,
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since G[P0] is a single vertex, and G[P1] is a 2-path between v and head(e0).
Suppose j ∈ N and the claim holds for every iteration i < j. In the case
modej = fw, head(ej−1) = tail(ej) is the only vertex in Pj−1 which is
adjacent to head(ej). Hence, by induction hypothesis, G[Pj] is an induced
path between v and head(ej). On the other hand, if modej = bw then
Pj := Pj−1 \ head(ej−1) where head(ej−1) = tail(ej). Hence, G[Pj] is the
sub-path of G[Pj−1] between v and head(ej) and the claim follows by the
induction hypothesis.(b) Suppose by the way of contradiction, that there is a
repeated state and let state∗ := (P∗, e∗,mode∗) be the first state that occurs
at least twice during an application of the algorithm. Let iterations i and j
be the first two iterations whose states are equal to state∗. Note that because
of the termination criterion (Step 34), state(0) cannot be repeated; thereby,
i, j > 0. It is not difficult to observe that under our assumptions and due to
how the algorithm extends paths, we have

head(ei−1) = head(ej−1) = tail(e∗).

Let

e∗ = (a, b) & ek = (ck, a) (for k ∈ {i− 1, j − 1}).
Then, by the choice of iterations i and j we have

ci−1 6= cj−1. (4)

Indeed, if ci−1 = cj−1, then it follows that Pi−1 = Pj−1 and modei−1 =
modej−1.

Moreover, for k ∈ {i− 1, j− 1} we have ck ∈ P∗ iff modek = fw. It follows
from this that ck 6∈ N(P∗ \ {a, b}) whenever modek = bw. Observe that in
light of part (a) we also have

bw ∈ {modek : k ∈ {i− 1, j − 1}},

for otherwise we would have ci−1 = cj−1, contradicting (4). Furthermore,
since either ci−1 ∈ cone(cj−1, a, b) or cj−1 ∈ cone(ci−1, a, b), we also have

fw ∈ {modek : k ∈ {i− 1, j − 1}}.

Hence, we may assume that

modei−1 = fw & modej−1 = bw. (5)
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Note that we have

cj−1 ∈ cone(ci−1, a, b) or ci−1 ∈ cone(cj−1, a, b). (6)

But cj−1 ∈ cone(ci−1, a, b) (resp. ci−1 ∈ cone(cj−1, a, b)) implies in iteration
i (resp. j) the algorithm would choose rev(ej−1) (resp. rev(ei−1)) ahead of
e∗, contradicting that state(i) = state∗ = state(j). Therefore, no two states
can be equal. (c) Since the set of possible states is finite, it follows by part
(b) that the termination condition e = e0 will hold after a finite number of
states. (d) For every i ∈ N let Pi+1 be the union of all first components of the
states occurred during an application of the algorithm with k = i+ 1 pebbles.
As every pebbled vertex is joined to v via a path of pebbled vertices, we
have Pi+1⊆N i[v] for each i. We use induction on i to show that the reverse
inclusion also holds. For i = 2 it is easy to see that every vertex in N(v)
appears in P2; i.e. P2 ⊇ N(v). Furthermore, since for every i every state
occurred using i + 1 pebbles will also occur using more than i + 1 pebbles,
{Pi} is an increasing sequence with respect to ⊆. Now, suppose Pi+1 = N i[v]
for some i and let u ∈ V (G) such that dG(v, u) = i + 1 and consider a vertex
w ∈ N(u) ∩N i[v]. By the induction hypothesis and that Pi⊆Pi+1, there is
an iteration j with state (P ′, e′,mode′) in the application of the algorithm
with i + 1 pebbles where w is pebbled for the first time. As such, we will
have mode′ = fw and the vertex head(e′) will have two pebbles in iteration
j. But then all vertices in N(w) \ (N(P ′ \ {head(e′)}), including u, will be
pebbled after iteration j and before head(e′) is unpebbled.

4 A Traversal Algorithm with Enumeration

for Geometric Graphs

Throughout this section, G is a fixed geometric graph. We shall provide an
algorithm for traversal of G using G� L, as defined in Section 2, using a real
robot Rr and a virtual robot Rv. The virtual robot Rv essentially does the
task of traversing G�L, while Rr moves along edges in G with the objective
of simulating G� L for Rv.

The following conditions will be maintained by the algorithm:

• Rr will simulate Rv which will traverse G� L,
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• Rr moves along edges of G and does the task of local exploration of G
to ,

• in the traversal phase, the Euclidean distance between Rr and Rv can
be maintained within the constant value of 2

√
2,

• in the exploration phase Rr can efficiently get back to its initial position
(at the start of the exploration phase), and

• the algorithm reports every vertex or edge of G exactly once.

The entire algorithm consists of two main phases: the preliminary phase with
the goal of finding the minimum edge emin of G � L, as defined in [6] for
quasi-planar graphs, and the traversal phase with the goal of traversing G�L
and reporting every vertex and edge of G exactly once. In both phases, Rv

runs traversal on G�L via executing succ. In order for Rv to execute succ(e)
for some arc e, Rr finds e, essentially by running Algorithm 1. Similarly, all
other queries are handled by Rr.
Preliminary Phase: Since, as one can easily see, emin is also the minimum
arc of LG, it suffices to perform the traversal algorithm on LG until emin is
found. To this end, in stage 0 of the preliminary phase we put Rr at any
vertex v ∈ V (G), choose the minimum arc of sv as the starting arc, and place
Rv in its head. In every subsequent stage, Rv executes succ(e) for some arc e,
which requires Rr to find succ(e) and provide it to Rv by running Algorithm
1. Note that traversing LG can be carried out in accordance with the traversal
algorithm in either[6] or in [5]. In addition, since the vertices of LG are all
virtual and Rr has to remain in V (G), in no stage of the preliminary phase
will Rr and Rv be in the same vertex of G� L. At the end of a stage of the
traversal Rr either stays in its current face of LG or leaves it to a neighboring
face, as described below:

a. If Rv has not left to a new face, Rr does not move.

b. If Rv has left to a new face on an arc e, then starting from its current
vertex, Rr follows Algorithm 1 with k = b2

√
2r(G)c until a vertex of G

in one of the two faces of LG that contain e is found.

The final stage of the preliminary phase is the one in which emin is reached
by the traversing robot Rv.
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Algorithm 3 Traversing a Geometric Graphs G

Input: A graph G ∈ G where G is a class of well-embedded geometric graphs,
and a vertex v ∈ V (G)
Output: The list of (coordinate of) vertices of G

1: let e be the lower arc of sv pointing away from cor(sv)
2: e← e0

3: Rr ← v, Rv ← head(e)
4: repeat . finds emin

5: e← rev(e)
6: Rv ← head(e)
7: while e 6= entryLG

(qfaceLG
(e)) do

8: e← succLG
(e)

9: Rv ← head(e)
10: reposition Rr if necessary
11: end while
12: until e = emin

13: p← left(e)− (0, 1)
14: repeat . start the traversal on G� L
15: e← succ(e)
16: Rv ← head(e)
17: reposition Rr if necessary
18: if p ∈ cone(tail(e),head(e),head(succ(e))) then
19: report tail(e)
20: Rv ← head(e)
21: report every edge tail(e)w ∈ C(LG) such that in the lexico-

graphic order (xcor(tail(e)),ycor(tail(e)) < (xcor(w),ycor(w))
22: end if
23: if e ∈ E(G) and (| tail(e)p| < |head(e)p| or (| tail(e)p| = |head(e)p|

and
−−−−−→
tail(e)p <

−−−−−−→
head(e)p) then

24: report e
25: end if
26: if e = entry(qface(e)) then
27: e← rev (e)
28: else
29: if rev (e) = entry(qface(rev(e)) then
30: e← rev (e)
31: end if
32: end if
33: until e = emin
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Traversal Phase:
The final stage of the preliminary phase defines stage 0 of the traversal

phase. During this phase, as opposed to the preliminary one, Rv traverses
the entire graph G � L, but Rr uses the same shadowing rules as in the
preliminary phase to get within the Euclidean distance of

√
2 from Rv at the

end of each stage. Moreover, whenever Rv gets to a vertex of G, Rr runs
Algorithm 1 until it gets to the same vertex where Rv is positioned. For
reporting vertices and edges we use the same criterion as the one described
in [6] with the exception that hypothetical vertices, i.e. vertices of LG, and
edges, i.e. edges LG and the ones in {`v : v ∈ V (G)}, will not be reported.
Finally, an edge st ∈ CL with (xcor(s),ycor(s)) < (xcor(t),ycor(t)) gets
reported whenever s is reported.

5 Minimum Spanning Tree in Bounded Space

One of the problems that can be tackled using local traversal algorithms
is the problem of finding minimum spanning trees in log space for certain
classes of graphs. In this section we present Algorithm 4 for finding the
minimum spanning tree for connected graphs straight-line embedded in the
plane with an injective edge-weight assignment. Likewise Kruskal’s algorithm
[9], Algorithm 4 considers edges in the increasing order of their weights.
Utilizing local traversal algorithms without mark bits, Algorithm 4 has the
advantage of not requiring global information such as the order or size of the
graph under consideration- all it needs is to keep track of the weight of the
“current” candidate for being included in the minimum spanning tree, and a
couple of pebbles for distinguishing between its end vertices.

Let G be a connected planar graph straight-line embedded in the plane
with an injective edge-weight assignment w : E(G) → (0,∞). Algorithm 4
uses two auxiliary functions next.weight defined on {w(e) : e ∈ E(G)}∪{0}
and discard.weight, defined on {w(e) : e ∈ E(G)}. For every w ∈ {w(e) :
e ∈ E(G)} we define next.weight(w) to be 0 if no edge of G has a weight
> w, and to be min{w(e) : e ∈ E(G) and w(e) > w} otherwise. Moreover,
we define discard.weight(w) to be 1 if there is a path in G between the
end-points of the edge with weight w that has all of its edge-weights < w;
otherwise we put discard.weight(w) = 0. Each of these functions can
be implemented by an adaptation of the traversal algorithm in [5] starting
from any current vertex. As such, next.weight(w) require a traversal of G
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with keeping track of the tentative lightest edge having weight > w, while
discard.weight(w) requires a, possibly partial, traversal of the component
of the current vertex in the graph obtained from G by removing every edge
of a weight ≥ w.

Algorithm 4 Finding a Minimum-Weight Spanning Tree T of G

1: x← next.weight(0)
2: WT ← {x}
3: while x 6= 0 do
4: if next.weight(x) = 0 then return WT

5: else
6: x← next.weight(x)
7: end if
8: if discard.weight(x) = 0 then WT ← WT ∪ {x}
9: end if

10: end while

5.1 Validity of the Algorithm

Lemma 2. Let G be a connected graph with an injective edge-weight assign-
ment w, and let T be the minimum-weight spanning tree of G resulting from
Kruscal’s algorithm. Then, for every edge e of G we have e 6∈ E(T ) iff there
is a cycle C ⊆G containing e with every edge of a wight ≤ w(e).

Proof. For every e ∈ E(G) let Te be the spanning subgraph of G with
E(Te) = {e′ ∈ E(T ) : w(e′) ≤ w(e)}. Moreover, for every e ∈ E(G)\E(T ) let
Ce be the fundamental cycle of e with respect to T . If e ∈ E(G) \E(T ), then
e 6∈ E(Te) and, in view of Kruskal’s algorithm, we will also have Ce − e⊆Te.
This establishes the “only-if” part. For the converse, let e ∈ E(C) where C is
a cycle having every edge of a weight ≤ w(e), and let

W := C +
(∑

Ce′ : e′ ∈ (E(C) \ {e}) \ E(T )
)
,

where the summation is taken in the cycle space of G. Note that E(W ) \
{e}⊆E(Te)⊆E(T ). Moreover, since for every e′ ∈ E(C) \ {e} the edges of
Ce′ are lighter than e, e is an edge in W . Therefore, e ∈ E(G) \ E(T ), as
desired. (Indeed, W is the fundamental cycle Ce of e with respect to T .)
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