Strong Subgraph Connectivity of Digraphs: A Survey

Yuefang Sun ${ }^{1}$ and Gregory Gutin ${ }^{2}$
${ }^{1}$ Department of Mathematics, Shaoxing University
Zhejiang 312000, P. R. China, yuefangsun2013@163.com
${ }^{2}$ School of Computer Science and Mathematics
Royal Holloway, University of London
Egham, Surrey, TW20 0EX, UK, g.gutin@rhul.ac.uk

Abstract

In this survey we overview known results on the strong subgraph k connectivity and strong subgraph k-arc-connectivity of digraphs. After an introductory section, the paper is divided into four sections: basic results, algorithms and complexity, sharp bounds for strong subgraph k-(arc-)connectivity, minimally strong subgraph (k, ℓ)-(arc-) connected digraphs. This survey contains several conjectures and open problems for further study.

Keywords: Strong subgraph k-connectivity; Strong subgraph k-arcconnectivity; Subdigraph packing; Directed q-linkage; Directed weak q-linkage; Semicomplete digraphs; Symmetric digraphs; Generalized k connectivity; Generalized k-edge-connectivity.

AMS subject classification (2010): $05 \mathrm{C} 20,05 \mathrm{C} 35,05 \mathrm{C} 40,05 \mathrm{C} 70$, 05C75, 05C76, 05C85, 68Q25, 68R10.

1 Introduction

The generalized k-connectivity $\kappa_{k}(G)$ of a graph $G=(V, E)$ was introduced by Hager [14] in $1985(2 \leq k \leq|V|)$. For a graph $G=(V, E)$ and a set $S \subseteq V$ of at least two vertices, an S-Steiner tree or, simply, an S-tree is a subgraph T of G which is a tree with $S \subseteq V(T)$. Two S-trees T_{1} and T_{2} are said to be edge-disjoint if $E\left(T_{1}\right) \cap E\left(T_{2}\right)=\emptyset$. Two edge-disjoint S-trees T_{1} and T_{2} are said to be internally disjoint if $V\left(T_{1}\right) \cap V\left(T_{2}\right)=S$. The generalized local connectivity $\kappa_{S}(G)$ is the maximum number of internally disjoint S-trees in G. For an integer k with $2 \leq k \leq n$, the generalized k-connectivity is defined as

$$
\kappa_{k}(G)=\min \left\{\kappa_{S}(G)|S \subseteq V(G),|S|=k\} .\right.
$$

Observe that $\kappa_{2}(G)=\kappa(G)$. Li, Mao and Sun [18] introduced the following concept of generalized k-edge-connectivity. The generalized local edgeconnectivity $\lambda_{S}(G)$ is the maximum number of edge-disjoint S-trees in G.

For an integer k with $2 \leq k \leq n$, the generalized k-edge-connectivity is defined as

$$
\lambda_{k}(G)=\min \left\{\lambda_{S}(G)|S \subseteq V(G),|S|=k\}\right.
$$

Observe that $\lambda_{2}(G)=\lambda(G)$. Generalized connectivity of graphs has become an established area in graph theory, see a recent monograph [17] by Li and Mao on generalized connectivity of undirected graphs.

To extend generalized k-connectivity to directed graphs, Sun, Gutin, Yeo and Zhang [23] observed that in the definition of $\kappa_{S}(G)$, one can replace "an S-tree" by "a connected subgraph of G containing S." Therefore, Sun et al. [23] defined strong subgraph k-connectivity by replacing "connected" with "strongly connected" (or, simply, "strong") as follows. Let $D=(V, A)$ be a digraph of order n, S a subset of V of size k and $2 \leq k \leq n$. A subdigraph H of D is called an S-strong subgraph if H is strong and $S \subseteq$ $V(H)$. Two S-strong subgraphs D_{1} and D_{2} are said to be arc-disjoint if $A\left(D_{1}\right) \cap A\left(D_{2}\right)=\emptyset$. Two arc-disjoint S-strong subgraphs D_{1} and D_{2} are said to be internally disjoint if $V\left(D_{1}\right) \cap V\left(D_{2}\right)=S$. Let $\kappa_{S}(D)$ be the maximum number of internally disjoint S-strong subgraphs in D. The strong subgraph k-connectivity of D is defined as

$$
\kappa_{k}(D)=\min \left\{\kappa_{S}(D)|S \subseteq V,|S|=k\} .\right.
$$

By definition, $\kappa_{k}(D)=0$ if D is not strong.
As a natural counterpart of the strong subgraph k-connectivity, Sun and Gutin [22] introduced the concept of strong subgraph k-arc-connectivity. Let $D=(V(D), A(D))$ be a digraph of order $n, S \subseteq V$ a k-subset of $V(D)$ and $2 \leq k \leq n$. Let $\lambda_{S}(D)$ be the maximum number of arc-disjoint S-strong digraphs in D. The strong subgraph k-arc-connectivity of D is defined as

$$
\lambda_{k}(D)=\min \left\{\lambda_{S}(D)|S \subseteq V(D),|S|=k\}\right.
$$

By definition, $\lambda_{k}(D)=0$ if D is not strong.
The strong subgraph k-(arc-)connectivity is not only a natural extension of the concept of generalized k-(edge-)connectivity, but also relates to important problems in graph theory. For $k=2, \kappa_{2}(\stackrel{\rightharpoonup}{G})=\kappa(G)$ [23] and $\lambda_{2}(\overleftrightarrow{G})=\lambda(G)$ [22]. Hence, $\kappa_{k}(D)$ and $\lambda_{k}(D)$ could be seen as generalizations of connectivity and edge-connectivity of undirected graphs, respectively. For $k=n, \kappa_{n}(D)=\lambda_{n}(D)$ is the maximum number of arc-disjoint spanning strong subgraphs of D. Moreover, since $\kappa_{S}(G)$ and $\lambda_{S}(G)$ are the number of internally disjoint and arc-disjoint strong subgraphs containing a given set S, respectively, these parameters are relevant to the subdigraph packing problem, see [4-7,11].

Some basic results will be introduced in Section 2, In Section 3, we will sum up the results on algorithms and computational complexity for $\kappa_{S}(D)$, $\kappa_{k}(D), \lambda_{S}(D)$ and $\lambda_{k}(D)$. We will collect many upper and lower bounds for the parameters $\kappa_{k}(D)$ and $\lambda_{k}(D)$ in Section (4) Finally, in Section 5 results on minimally strong subgraph (k, ℓ)-(arc-)connected digraphs will be surveyed.

Additional Terminology and Notation. For a digraph D, its reverse D^{rev} is a digraph with same vertex set and such that $x y \in A\left(D^{\mathrm{rev}}\right)$ if and only if $y x \in A(D)$. A digraph D is symmetric if $D^{\mathrm{rev}}=D$. In other words, a symmetric digraph D can be obtained from its underlying undirected graph G by replacing each edge of G with the corresponding arcs of both directions, that is, $D=\overleftrightarrow{G}$. A 2-cycle $x y x$ of a strong digraph D is called a bridge if $D-\{x y, y x\}$ is disconnected. Thus, a bridge corresponds to a bridge in the underlying undirected graph of D. An orientation of a digraph D is a digraph obtained from D by deleting an arc in each 2 -cycle of D. A digraph D is semicomplete if for every distinct $x, y \in V(D)$ at least one of the arcs $x y, y x$ in in D. We refer the readers to [2,3, 9 for graph theoretical notation and terminology not given here.

2 Basic Results

The following proposition can be easily verified using definitions of $\lambda_{k}(D)$ and $\kappa_{k}(D)$.

Proposition 2.1 [22, [23] Let D be a digraph of order n, and let $k \geq 2$ be an integer. Then

$$
\begin{gather*}
\lambda_{k+1}(D) \leq \lambda_{k}(D) \text { for every } k \leq n-1 \tag{1}\\
\kappa_{k}\left(D^{\prime}\right) \leq \kappa_{k}(D), \lambda_{k}\left(D^{\prime}\right) \leq \lambda_{k}(D) \text { where } D^{\prime} \text { is a spanning subdigraph of } D \tag{3}\\
\kappa_{k}(D) \leq \lambda_{k}(D) \leq \min \left\{\delta^{+}(D), \delta^{-}(D)\right\} \tag{2}
\end{gather*}
$$

By Tillson's decomposition theorem [26], we can determine the exact values for $\kappa_{k}\left(\overleftrightarrow{K}_{n}\right)$ and $\lambda_{k}\left(\overleftrightarrow{K}_{n}\right)$.

Proposition 2.2 [23] For $2 \leq k \leq n$, we have

$$
\kappa_{k}\left(\overleftrightarrow{K}_{n}\right)= \begin{cases}n-1, & \text { if } k \notin\{4,6\} \\ n-2, & \text { otherwise }\end{cases}
$$

Proposition 2.3 [22] For $2 \leq k \leq n$, we have

$$
\lambda_{k}\left(\overleftrightarrow{K}_{n}\right)= \begin{cases}n-1, & \text { if } k \notin\{4,6\}, \text { or, } k \in\{4,6\} \text { and } k<n \\ n-2, & \text { if } k=n \in\{4,6\}\end{cases}
$$

Proposition 2.4 [22] For every fixed $k \geq 2$, a digraph D is strong if and only if $\lambda_{k}(D) \geq 1$.

3 Algorithms and Complexity

3.1 Results for $\kappa_{S}(D)$ and $\kappa_{k}(D)$

For a fixed $k \geq 2$, it is easy to decide whether $\kappa_{k}(D) \geq 1$ for a digraph D : it holds if and only if D is strong. Unfortunately, deciding whether
$\kappa_{S}(D) \geq 2$ is already NP-complete for $S \subseteq V(D)$ with $|S|=k$, where $k \geq 2$ is a fixed integer.

The well-known Directed q-Linkage problem was proved to be NPcomplete even for the case that $q=2$ [13]. The problem is formulated as follows: for a fixed integer $q \geq 2$, given a digraph D and a (terminal) sequence $\left(\left(s_{1}, t_{1}\right), \ldots,\left(s_{q}, t_{q}\right)\right)$ of distinct vertices of D, decide whether D has q vertex-disjoint paths P_{1}, \ldots, P_{q}, where P_{i} starts at s_{i} and ends at t_{i} for all $i \in[q]$.

By using the reduction from the Directed q-Linkage problem, we can prove the following intractability result.

Theorem 3.1 [23] Let $k \geq 2$ and $\ell \geq 2$ be fixed integers. Let D be a digraph and $S \subseteq V(D)$ with $|S|=k$. The problem of deciding whether $\kappa_{S}(D) \geq \ell$ is NP-complete.

In the above theorem, Sun et al. obtained the complexity result of the parameter $\kappa_{S}(D)$ for an arbitrary digraph D. For $\kappa_{k}(D)$, they made the following conjecture.

Conjecture 1 [23] It is NP-complete to decide for fixed integers $k \geq 2$ and $\ell \geq 2$ and a given digraph D whether $\kappa_{k}(D) \geq \ell$.

Recently, Chudnovsky, Scott and Seymour [12] proved the following powerful result.

Theorem 3.2 [12] Let q and c be fixed positive integers. Then the DIRECTED q-LINKAGE problem on a digraph D whose vertex set can be partitioned into c sets each inducing a semicomplete digraph and a terminal sequence $\left(\left(s_{1}, t_{1}\right), \ldots,\left(s_{q}, t_{q}\right)\right)$ of distinct vertices of D, can be solved in polynomial time.

The following nontrivial lemma can be deduced from Theorem 3.2,
Lemma 3.3 [23] Let k and ℓ be fixed positive integers. Let D be a digraph and let $X_{1}, X_{2}, \ldots, X_{\ell}$ be ℓ vertex disjoint subsets of $V(D)$, such that $\left|X_{i}\right| \leq$ k for all $i \in[\ell]$. Let $X=\cup_{i=1}^{\ell} X_{i}$ and assume that every vertex in $V(D) \backslash X$ is adjacent to every other vertex in D. Then we can in polynomial time decide if there exists vertex disjoint subsets $Z_{1}, Z_{2}, \ldots, Z_{\ell}$ of $V(D)$, such that $X_{i} \subseteq Z_{i}$ and $D\left[Z_{i}\right]$ is strongly connected for each $i \in[\ell]$.

Using Lemma 3.3, Sun, Gutin, Yeo and Zhang proved the following result for semicomplete digraphs.

Theorem 3.4 [23] For any fixed integers $k, \ell \geq 2$, we can decide whether $\kappa_{k}(D) \geq \ell$ for a semicomplete digraph D in polynomial time.

Now we turn our attention to symmetric graphs. We start with the following structural result.

Theorem 3.5 [23] For every undirected graph G we have $\kappa_{2}(\overleftrightarrow{G})=\kappa(G)$

Theorem 3.5 immediatly implies the following positive result, which follows from the fact that $\kappa(G)$ can be computed in polynomial time.
Corollary 3.6 [23] For a graph $G, \kappa_{2}(\overleftrightarrow{G})$ can be computed in polynomial time.

Theorem 3.5 states that $\kappa_{k}(\overleftrightarrow{G})=\kappa_{k}(G)$ when $k=2$. However when $k \geq 3$, then $\kappa_{k}(\overleftrightarrow{G})$ is not always equal to $\kappa_{k}(G)$, as can be seen from $\kappa_{3}\left(\overleftrightarrow{K_{3}}\right)=2 \neq 1=\kappa_{3}\left(K_{3}\right)$. Chen, Li, Liu and Mao [10] introduced the following problem, which they proved to be NP-complete.

CLLM Problem: Given a tripartite graph $G=(V, E)$ with a 3-partition $(\bar{U}, \bar{V}, \bar{W})$ such that $|\bar{U}|=|\bar{V}|=|\bar{W}|=q$, decide whether there is a partition of V into q disjoint 3 -sets V_{1}, \ldots, V_{q} such that for every $V_{i}=\left\{v_{i_{1}}, v_{i_{2}}, v_{i_{3}}\right\}$ $v_{i_{1}} \in \bar{U}, v_{i_{2}} \in \bar{V}, v_{i_{3}} \in \bar{W}$ and $G\left[V_{i}\right]$ is connected.

Lemma 3.7 [10] The CLLM Problem is NP-complete.
Now restricted to symmetric digraphs D, for any fixed integer $k \geq 3$, by Lemma 3.7, the problem of deciding whether $\kappa_{S}(D) \geq \ell(\ell \geq 1)$ is NPcomplete for $S \subseteq V(D)$ with $|S|=k$.

Theorem 3.8 [23] For any fixed integer $k \geq 3$, given a symmetric digraph D, ak-subset S of $V(D)$ and an integer $\ell(\ell \geq 1)$, deciding whether $\kappa_{S}(D) \geq$ ℓ, is NP-complete.

The last theorem assumes that k is fixed but ℓ is a part of input. When both k and ℓ are fixed, the problem of deciding whether $\kappa_{S}(D) \geq \ell$ for a symmetric digraph D, is polynomial-time solvable. We will start with the following technical lemma.

Lemma 3.9 [23] Let $k, \ell \geq 2$ be fixed. Let G be a graph and let $S \subseteq V(G)$ be an independent set in G with $|S|=k$. For $i \in[\ell]$, let D_{i} be any set of arcs with both end-vertices in S. Let a forest F_{i} in G be called $\left(S, D_{i}\right)$-acceptable if the digraph $\overleftrightarrow{F_{i}}+D_{i}$ is strong and contains S. In polynomial time, we can decide whether there exists edge-disjoint forests $F_{1}, F_{2}, \ldots, F_{\ell}$ such that F_{i} is $\left(S, D_{i}\right)$-acceptable for all $i \in[\ell]$ and $V\left(F_{i}\right) \cap V\left(F_{j}\right) \subseteq S$ for all $1 \leq i<j \leq \ell$.

Now we can prove the following result by Lemma 3.9,
Theorem 3.10 [23] Let $k, \ell \geq 2$ be fixed. For any symmetric digraph D and $S \subseteq V(D)$ with $|S|=k$ we can in polynomial time decide whether $\kappa_{S}(D) \geq \ell$.

The Directed q-Linkage problem is polynomial-time solvable for planar digraphs [19] and digraphs of bounded directed treewidth [16. However, it seems that we cannot use the approach in proving Theorem 3.4 directly as the structure of minimum-size strong subgraphs in these two classes of digraphs is more complicated than in semicomplete digraphs. Certainly, we cannot exclude the possibility that computing strong subgraph k-connectivity in planar digraphs and/or in digraphs of bounded directed treewidth is NP-complete.

Problem 3.11 [23] What is the complexity of deciding whether $\kappa_{k}(D) \geq \ell$ for fixed integers $k \geq 2$, and $\ell \geq 2$ and a given planar digraph D ?

Problem 3.12 [23] What is the complexity of deciding whether $\kappa_{k}(D) \geq \ell$ for fixed integers $k \geq 2$, and $\ell \geq 2$ and a digraph D of bounded directed treewidth?

It would be interesting to identify large classes of digraphs for which the $\kappa_{k}(D) \geq \ell$ problem can be decided in polynomial time.

3.2 Results for $\lambda_{S}(D)$ and $\lambda_{k}(D)$

Yeo proved that it is an NP-complete problem to decide whether a 2 regular digraph has two arc-disjoint hamiltonian cycles (see, e.g., Theorem 6.6 in [6]). (A digraph is 2-regular if the out-degree and in-degree of every vertex equals 2.) Thus, the problem of deciding whether $\lambda_{n}(D) \geq 2$ is NPcomplete, where n is the order of D. Sun and Gutin [22] extended this result in Theorem 3.13,

Let D be a digraph and let $s_{1}, s_{2}, \ldots, s_{q}, t_{1}, t_{2}, \ldots, t_{q}$ be a collection of not necessarily distinct vertices of D. A weak q-linkage from $\left(s_{1}, s_{2}, \ldots, s_{q}\right)$ to $\left(t_{1}, t_{2}, \ldots, t_{q}\right)$ is a collection of q arc-disjoint paths P_{1}, \ldots, P_{q} such that P_{i} is an $\left(s_{i}, t_{i}\right)$-path for each $i \in[q]$. A digraph $D=(V, A)$ is weakly q linked if it contains a weak q-linkage from $\left(s_{1}, s_{2}, \ldots, s_{q}\right)$ to $\left(t_{1}, t_{2}, \ldots, t_{q}\right)$ for every choice of (not necessarily distinct) vertices $s_{1}, \ldots, s_{q}, t_{1}, \ldots, t_{q}$. The Directed Weak q-Linkage problem is the following. Given a digraph $D=(V, A)$ and distinct vertices $x_{1}, x_{2}, \ldots, x_{q}, y_{1}, y_{2}, \ldots, y_{q}$; decide whether D contains q arc-disjoint paths P_{1}, \ldots, P_{q} such that P_{i} is an $\left(x_{i}, y_{i}\right)$-path. The problem is well-known to be NP-complete already for $q=2$ [13]. By using the reduction from the Directed Weak q-Linkage problem, we can prove the following intractability result.

Theorem 3.13 [22] Let $k \geq 2$ and $\ell \geq 2$ be fixed integers. Let D be a digraph and $S \subseteq V(D)$ with $|S|=k$. The problem of deciding whether $\lambda_{S}(D) \geq \ell$ is NP-complete.

Bang-Jensen and Yeo [6] conjectured the following:
Conjecture 2 For every $\lambda \geq 2$ there is a finite set \mathcal{S}_{λ} of digraphs such that λ-arc-strong semicomplete digraph D contains λ arc-disjoint spanning strong subgraphs unless $D \in \mathcal{S}_{\lambda}$.

Bang-Jensen and Yeo [6] proved the conjecture for $\lambda=2$ by showing that $\left|\mathcal{S}_{2}\right|=1$ and describing the unique digraph S_{4} of \mathcal{S}_{2} of order 4. This result and Theorem 4.4 imply the following:

Theorem 3.14 [22] For a semicomplete digraph D, of order n and an integer k such that $2 \leq k \leq n, \lambda_{k}(D) \geq 2$ if and only if D is 2-arc-strong and $D \not \approx S_{4}$.

Now we turn our attention to symmetric graphs. We start from characterizing symmetric digraphs D with $\lambda_{k}(D) \geq 2$, an analog of Theorem 3.14. To prove it we need the following result of Boesch and Tindell [8] translated from the language of mixed graphs to that of digraphs.

Theorem 3.15 A strong digraph D has a strong orientation if and only if D has no bridge.

Here is the characterization by Sun and Gutin.
Theorem 3.16 [22] For a strong symmetric digraph D of order n and an integer k such that $2 \leq k \leq n, \lambda_{k}(D) \geq 2$ if and only if D has no bridge.

Theorems 3.14 and 3.16 imply the following complexity result, which we believe to be extendable from $\ell=2$ to any natural $\ell \geq 2$.

Corollary 3.17 [22] The problem of deciding whether $\lambda_{k}(D) \geq 2$ is polynomialtime solvable if D is either semicomplete or symmetric digraph of order n and $2 \leq k \leq n$.

Sun and Gutin gave a lower bound on $\lambda_{k}(D)$ for symmetric digraphs D.
Theorem 3.18 [22] For every graph G, we have

$$
\lambda_{k}(\overleftrightarrow{G}) \geq \lambda_{k}(G)
$$

Moreover, this bound is sharp. In particular, we have $\lambda_{2}(\overleftrightarrow{G})=\lambda_{2}(G)$
Theorem 3.18 immediately implies the next result, which follows from the fact that $\lambda(G)$ can be computed in polynomial time.

Corollary 3.19 [22] For a symmetric digraph $D, \lambda_{2}(D)$ can be computed in polynomial time.

Corollaries 3.17 and 3.19 shed some light on the complexity of deciding, for fixed $k, \ell \geq 2$, whether $\lambda_{k}(D) \geq \ell$ for semicomplete and symmetric digraphs D. However, it is unclear what is the complexity above for every fixed $k, \ell \geq 2$. If Conjecture 2 is correct, then the $\lambda_{k}(D) \geq \ell$ problem can be solved in polynomial time for semicomplete digraphs. However, Conjecture [2] seems to be very difficult. It was proved in [23] that for fixed $k, \ell \geq 2$ the problem of deciding whether $\kappa_{k}(D) \geq \ell$ is polynomial-time solvable for both semicomplete and symmetric digraphs, but it appears that the approaches to prove the two results cannot be used for $\lambda_{k}(D)$. Some wellknown results such as the fact that the hamiltonicity problem is NP-complete for undirected 3-regular graphs, indicate that the $\lambda_{k}(D) \geq \ell$ problem for symmetric digraphs may be NP-complete, too.

Problem 3.20 [22] What is the complexity of deciding whether $\lambda_{k}(D) \geq \ell$ for fixed integers $k \geq 2$ and $\ell \geq 2$, and a semicomplete digraph D ?

Problem 3.21 [22] What is the complexity of deciding whether $\lambda_{k}(D) \geq \ell$ for fixed integers $k \geq 2$ and $\ell \geq 2$, and a symmetric digraph D ?

It would be interesting to identify large classes of digraphs for which the $\lambda_{k}(D) \geq \ell$ problem can be decided in polynomial time.

4 Bounds for Strong Subgraph k-(Arc-)Connectivity

4.1 Results for $\kappa_{k}(D)$

By Propositions 2.1 and 2.2, Sun, Gutin, Yeo and Zhang obtained a sharp lower bound and a sharp upper bound for $\kappa_{k}(D)$, where $2 \leq k \leq n$.

Theorem 4.1 [23] Let $2 \leq k \leq n$. For a strong digraph D of order n, we have

$$
1 \leq \kappa_{k}(D) \leq n-1 .
$$

Moreover, both bounds are sharp, and the upper bound holds if and only if $D \cong \overleftrightarrow{K}_{n}, 2 \leq k \leq n$ and $k \notin\{4,6\}$.

Sun and Gutin gave the following sharp upper bound for $\kappa_{k}(D)$ which improves (3) of Proposition 2.1,

Theorem 4.2 [21] For $k \in\{2, \ldots, n\}$ and $n \geq \kappa(D)+k$, we have

$$
\kappa_{k}(D) \leq \kappa(D) .
$$

Moreover, the bound is sharp.

4.2 Results for $\lambda_{k}(D)$

By Propositions 2.1 and 2.2. Sun and Gutin obtained a sharp lower bound and a sharp upper bound for $\lambda_{k}(D)$, where $2 \leq k \leq n$.

Theorem 4.3 [22] Let $2 \leq k \leq n$. For a strong digraph D of order n, we have

$$
1 \leq \lambda_{k}(D) \leq n-1
$$

Moreover, both bounds are sharp, and the upper bound holds if and only if $D \cong \overleftrightarrow{K}_{n}$, where $k \notin\{4,6\}$, or, $k \in\{4,6\}$ and $k<n$.

They also gave the following sharp upper bound for $\lambda_{k}(D)$ which improves (3) of Proposition (2.1,

Theorem 4.4 [22] For $2 \leq k \leq n$, we have

$$
\lambda_{k}(D) \leq \lambda(D)
$$

Moreover, the bound is sharp.
Shiloach [20] proved the following:
Theorem 4.5 [20] A digraph D is weakly k-linked if and only if D is k -arc-strong.

Using Shiloach's Theorem, Sun and Gutin [22] proved the following lower bound for $\lambda_{k}(D)$. Such a bound does not hold for $\kappa_{k}(D)$ since it was shown in [23] using Thomassen's result in [25] that for every ℓ there are digraphs D with $\kappa(D)=\ell$ and $\kappa_{2}(D)=1$.

Proposition 4.6 [22] Let $k \leq \ell=\lambda(D)$. We have $\lambda_{k}(D) \geq\lfloor\ell / k\rfloor$.
For a digraph $D=(V(D), A(D))$, the complement digraph, denoted by D^{c}, is a digraph with vertex set $V\left(D^{c}\right)=V(D)$ such that $x y \in A\left(D^{c}\right)$ if and only if $x y \notin A(D)$.

Given a graph parameter $f(G)$, the Nordhaus-Gaddum Problem is to determine sharp bounds for (1) $f(G)+f\left(G^{c}\right)$ and $(2) f(G) f\left(G^{c}\right)$, and characterize the extremal graphs. The Nordhaus-Gaddum type relations have received wide attention; see a recent survey paper [1] by Aouchiche and Hansen. By using Proposition 2.4, the following Theorem 4.7 concerning such type of a problem for the parameter λ_{k} can be obtained.

Theorem 4.7 [22] For a digraph D with order n, the following assertions holds:
(i) $0 \leq \lambda_{k}(D)+\lambda_{k}\left(D^{c}\right) \leq n-1$. Moreover, both bounds are sharp. In particular, the lower bound holds if and only if $\lambda(D)=\lambda\left(D^{c}\right)=0$.
(ii) $0 \leq \lambda_{k}(D) \lambda_{k}\left(D^{c}\right) \leq\left(\frac{n-1}{2}\right)^{2}$. Moreover, both bounds are sharp. In particular, the lower bound holds if and only if $\lambda(D)=0$ or $\lambda\left(D^{c}\right)=0$.

We now discuss Cartesian products of digraphs. The Cartesian product $G \square H$ of two digraphs G and H is a digraph with vertex set

$$
V(G \square H)=V(G) \times V(H)=\left\{\left(x, x^{\prime}\right) \mid x \in V(G), x^{\prime} \in V(H)\right\}
$$

and arc set

$$
A(G \square H)=\left\{\left(x, x^{\prime}\right)\left(y, y^{\prime}\right) \mid x y \in A(G), x^{\prime}=y^{\prime}, \text { or } x=y, x^{\prime} y^{\prime} \in A(H)\right\}
$$

By definition, we know the Cartesian product is associative and commutative, and $G \square H$ is strongly connected if and only if both G and H are strongly connected [15].

Theorem 4.8 [22] Let G and H be two digraphs. We have

$$
\lambda_{2}(G \square H) \geq \lambda_{2}(G)+\lambda_{2}(H)
$$

Moreover, the bound is sharp.
By Proposition 2.1 and Theorem 4.8, we can obtain precise values for the strong subgraph 2-arc-connectivity of the Cartesian product of some special digraphs, as shown in the Table. Note that $\overleftrightarrow{T}_{m}$ is the symmetric digraph whose underlying undirected graph is a tree of order m.

5 Minimally Strong Subgraph (k, ℓ)-(Arc-)Connected Digraphs

5.1 Results for Minimally Strong Subgraph (k, ℓ)-Connected Digraphs

A digraph $D=(V(D), A(D))$ is called minimally strong subgraph (k, ℓ) connected if $\kappa_{k}(D) \geq \ell$ but for any arc $e \in A(D), \kappa_{k}(D-e) \leq \ell-1$ [21]. By

	\vec{C}_{m}	$\overleftrightarrow{C}_{m}$	$\overleftrightarrow{T}_{m}$	$\overleftrightarrow{K}_{m}$
\vec{C}_{n}	2	3	2	m
$\overleftrightarrow{C}_{n}$	3	4	3	$m+1$
$\overleftrightarrow{T}_{n}$	2	3	2	m
$\overleftrightarrow{K}_{n}$	n	$n+1$	n	$n+m-2$

Table 1. Precise values for the strong subgraph 2-arc-connectivity of some special cases.
the definition of $\kappa_{k}(D)$ and Theorem 4.1, we know $2 \leq k \leq n, 1 \leq \ell \leq n-1$. Let $\mathfrak{F}(n, k, \ell)$ be the set of all minimally strong subgraph (k, ℓ)-connected digraphs with order n. We define

$$
F(n, k, \ell)=\max \{|A(D)| \mid D \in \mathfrak{F}(n, k, \ell)\}
$$

and

$$
f(n, k, \ell)=\min \{|A(D)| \mid D \in \mathfrak{F}(n, k, \ell)\} .
$$

We further define

$$
E x(n, k, \ell)=\{D|D \in \mathfrak{F}(n, k, \ell),|A(D)|=F(n, k, \ell)\}
$$

and

$$
e x(n, k, \ell)=\{D|D \in \mathfrak{F}(n, k, \ell),|A(D)|=f(n, k, \ell)\} .
$$

By the definition of a minimally strong subgraph (k, ℓ)-connected digraph, we can get the following observation.

Proposition 5.1 [21] A digraph D is minimally strong $\operatorname{subgraph}(k, \ell)$ connected if and only if $\kappa_{k}(D)=\ell$ and $\kappa_{k}(D-e)=\ell-1$ for any arc $e \in A(D)$.

A digraph D is minimally strong if D is strong but $D-e$ is not for every arc e of D.

Proposition 5.2 [21] The following assertions hold:
(i) A digraph D is minimally strong subgraph $(k, 1)$-connected if and only if D is minimally strong digraph;
(ii) For $k \neq 4,6, a$ digraph $\underset{\longrightarrow}{D}$ is minimally strong subgraph $(k, n-1)$ connected if and only if $D \cong \overleftrightarrow{K}_{n}$.

The following result characterizes minimally strong subgraph ($2, n-2$)connected digraphs.

Theorem 5.3 [21] A digraph D is minimally strong subgraph $(2, n-2)$ connected if and only if D is a digraph obtained from the complete digraph $\overleftrightarrow{K}_{n}$ by deleting an arc set M such that $\overleftrightarrow{K}_{n}[M]$ is a 3-cycle or a union of $\lfloor n / 2\rfloor$ vertex-disjoint 2-cycles. In particular, we have $f(n, 2, n-2)=$ $n(n-1)-2\lfloor n / 2\rfloor, F(n, 2, n-2)=n(n-1)-3$.

Note that Theorem 5.3 implies that $E x(n, 2, n-2)=\left\{\overleftrightarrow{K_{n}}-M\right\}$ where M is an arc set such that $\overleftrightarrow{K}_{n}[M]$ is a directed 3-cycle, and ex $(n, 2, n-1)=$ $\left\{\overleftrightarrow{K_{n}}-M\right\}$ where M is an arc set such that $\overleftrightarrow{K}_{n}[M]$ is a union of $\lfloor n / 2\rfloor$ vertex-disjoint directed 2 -cycles.

The following result concerns a sharp lower bound for the parameter $f(n, k, \ell)$.

Theorem 5.4 [21] For $2 \leq k \leq n$, we have

$$
f(n, k, \ell) \geq n \ell
$$

Moreover, the following assertions hold:
(i) If $\ell=1$, then $f(n, k, \ell)=n$; (ii) If $2 \leq \ell \leq n-1$, then $f(n, n, \ell)=n \ell$ for $k=n \notin\{4,6\}$; (iii) If n is even and $\ell=n-2$, then $f(n, 2, \ell)=n \ell$.

To prove two upper bounds on the number of arcs in a minimally strong subgraph (k, ℓ)-connected digraph, Sun and Gutin used the following result, see e.g. [2].

Theorem 5.5 Every strong digraph D on n vertices has a strong spanning subgraph H with at most $2 n-2$ arcs and equality holds only if H is a symmetric digraph whose underlying undirected graph is a tree.

Proposition 5.6 [21] We have (i) $F(n, n, \ell) \leq 2 \ell(n-1)$; (ii) For every $k(2 \leq k \leq n), F(n, k, 1)=2(n-1)$ and $E x(n, k, 1)$ consists of symmetric digraphs whose underlying undirected graphs are trees.

The minimally strong subgraph $(2, n-2)$-connected digraphs was characterized in Theorem 5.3, As a simple consequence of the characterization, we can determine the values of $f(n, 2, n-2)$ and $F(n, 2, n-2)$. It would be interesting to determine $f(n, k, n-2)$ and $F(n, k, n-2)$ for every value of $k \geq 3$ since obtaining characterizations of all ($k, n-2$)-connected digraphs for $k \geq 3$ seems a very difficult problem.

Problem 5.7 [21] Determine $f(n, k, n-2)$ and $F(n, k, n-2)$ for every value of $k \geq 3$.

It would also be interesting to find a sharp upper bound for $F(n, k, \ell)$ for all $k \geq 2$ and $\ell \geq 2$.

Problem 5.8 [21] Find a sharp upper bound for $F(n, k, \ell)$ for all $k \geq 2$ and $\ell \geq 2$.

5.2 Results for Minimally Strong Subgraph (k, ℓ)-Arc-Connected Digraphs

A digraph $D=(V(D), A(D))$ is called minimally strong subgraph (k, ℓ) -arc-connected if $\lambda_{k}(D) \geq \ell$ but for any arc $e \in A(D), \lambda_{k}(D-e) \leq \ell-1$. By the definition of $\lambda_{k}(D)$ and Theorem 4.3, we know $2 \leq k \leq n, 1 \leq \ell \leq n-1$. Let $\mathfrak{G}(n, k, \ell)$ be the set of all minimally strong subgraph (k, ℓ)-arc-connected digraphs with order n. We define

$$
G(n, k, \ell)=\max \{|A(D)| \mid D \in \mathfrak{G}(n, k, \ell)\}
$$

and

$$
g(n, k, \ell)=\min \{|A(D)| \mid D \in \mathfrak{G}(n, k, \ell)\} .
$$

We further define

$$
E x^{\prime}(n, k, \ell)=\{D|D \in \mathfrak{G}(n, k, \ell),|A(D)|=G(n, k, \ell)\}
$$

and

$$
e x^{\prime}(n, k, \ell)=\{D|D \in \mathfrak{G}(n, k, \ell),|A(D)|=g(n, k, \ell)\} .
$$

Sun and Gutin [22] gave the following characterizations.
Proposition 5.9 [22] The following assertions hold:
(i) A digraph D is minimally strong subgraph $(k, 1)$-arc-connected if and only if D is minimally strong digraph;
(ii) Let $2 \leq k \leq n$. If $k \notin\{4,6\}$, or, $k \in\{4,6\}$ and $k<n$, then a digraph D is minimally strong subgraph $(k, n-1)$-arc-connected if and only if $D \cong \overleftrightarrow{K}_{n}$.

Theorem 5.10 [22] A digraph D is minimally strong subgraph ($2, n-$ 2)-arc-connected if and only if D is a digraph obtained from the complete digraph $\overleftrightarrow{K}_{n}$ by deleting an arc set M such that $\overleftrightarrow{K}_{n}[M]$ is a union of vertexdisjoint cycles which cover all but at most one vertex of $\overleftrightarrow{K}_{n}$.

Sun and Jin characterized the minimally strong subgraph ($3, n-2$)-arcconnected digraphs.

Theorem 5.11 [24] A digraph D is minimally strong subgraph ($3, n-$ 2)-arc-connected if and only if D is a digraph obtained from the complete digraph $\overleftrightarrow{K}_{n}$ by deleting an arc set M such that $\overleftrightarrow{K}_{n}[M]$ is a union of vertexdisjoint cycles which cover all but at most one vertex of $\overleftrightarrow{K}_{n}$.

Theorems 5.10 and 5.11 imply that the following assertions hold: (i) For $k \in\{2,3\}, E x^{\prime}(n, k, n-2)=\left\{\overleftrightarrow{K_{n}}-M\right\}$ where M is an arc set such that $\overleftrightarrow{K}_{n}[M]$ is a union of vertex-disjoint cycles which cover all but exactly one vertex of $\overleftrightarrow{K}_{n}$. (ii) For $k \in\{2,3\}, e x^{\prime}(n, k, n-2)=\left\{\overleftrightarrow{K_{n}}-M\right\}$ where M is an arc set such that $\overleftrightarrow{K}_{n}[M]$ is a union of vertex-disjoint cycles which cover all vertices of $\overleftrightarrow{K}_{n}$.

Sun and Jin completely determined the precise value for $g(n, k, \ell)$. Note that $(n, k, \ell) \notin\{(4,4,3),(6,6,5)\}$ by Theorem 4.3 and the definition of $g(n, k, \ell)$.

Theorem 5.12 [24] For any triple (n, k, ℓ) with $2 \leq k \leq n, 1 \leq \ell \leq n-1$ such that $(n, k, \ell) \notin\{(4,4,3),(6,6,5)\}$, we have

$$
g(n, k, \ell)=n \ell .
$$

Some results for $G(n, k, \ell)$ were obtained as well.
Proposition 5.13 [24] We have (i) $G(n, n, \ell) \leq 2 \ell(n-1)$; (ii) For every $k(2 \leq k \leq n), G(n, k, 1)=2(n-1)$ and $E x^{\prime}(n, k, 1)$ consists of symmetric digraphs whose underlying undirected graphs are trees; (iii) $G(n, k, n-2)=$ $(n-1)^{2}$ for $k \in\{2,3\}$.

Note that the precise values of $g(n, k, \ell)$ for each pair of k and ℓ and the precise values of $G(n, k, n-2)$ for $k \in\{2,3\}$ were determined. Hence, similar to problems 5.7 and 5.8, the following problems are also interesting.

Problem 5.14 [24] Determine $G(n, k, n-2)$ for every value of $k \geq 2$.
Problem 5.15 [24] Find a sharp upper bound for $G(n, k, \ell)$ for all $k \geq 2$ and $\ell \geq 2$.

Acknowledgements. Yuefang Sun was supported by National Natural Science Foundation of China (No.11401389) and China Scholarship Council (No.201608330111). Gregory Gutin was partially supported by Royal Society Wolfson Research Merit Award.

References

[1] M. Aouchiche, P. Hansen, A survey of Nordhaus-Gaddum type relations, Discrete Appl. Math. 161(4/5), 2013, 466-546.
[2] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications, 2nd Edition, Springer, London, 2009.
[3] J. Bang-Jensen and G. Gutin, Basic Terminology, Notation and Results, in Classes of Directed Graphs (J. Bang-Jensen and G. Gutin, eds.), Springer, 2018.
[4] J. Bang-Jensen and J. Huang, Decomposing locally semicomplete digraphs into strong spanning subdigraphs, J. Combin. Theory Ser. B 102, 2012, 701-714.
[5] J. Bang-Jensen and M. Kriesell, Disjoint sub(di)graphs in digraphs, Electron. Notes Discrete Math. 34, 2009, 179-183.
[6] J. Bang-Jensen and A. Yeo, Decomposing k-arc-strong tournaments into strong spanning subdigraphs, Combinatorica 24(3), 2004, 331-349.
[7] J. Bang-Jensen and A. Yeo, Arc-disjoint spanning sub(di)graphs in Digraphs, Theoret. Comput. Sci. 438, 2012, 48-54.
[8] F. Boesch and R. Tindell, Robbins' theorem for mixed multigraphs, Amer. Math. Monthly 87, 1980, 716-719.
[9] J.A. Bondy and U.S.R. Murty, Graph Theory, Springer, Berlin, 2008.
[10] L. Chen, X. Li, M. Liu and Y. Mao, A solution to a conjecture on the generalized connectivity of graphs, J. Combin. Optim. 33(1), 2017, 275-282.
[11] J. Cheriyan and M.R. Salavatipour, Hardness and approximation results for packing Steiner trees, Algorithmica 45, 2006, 21-43.
[12] M. Chudnovsky, A. Scott and P.D. Seymour. Disjoint paths in unions of tournaments. arXiv:1604.02317, April 2016.
[13] S. Fortune, J. Hopcroft and J. Wyllie, The directed subgraphs homeomorphism problem, Theoret. Comput. Sci. 10, 1980, 111-121.
[14] M. Hager, Pendant tree-connectivity, J. Combin. Theory Ser. B 38, 1985, 179-189.
[15] R.H. Hammack, Digraphs Products, in J. Bang-Jensen and G. Gutin (eds.), Classes of Directed Graphs, Springer, 2018.
[16] T. Johnson, N. Robertson, P.D. Seymour and R. Thomas, Directed Tree-Width, J. Combin. Th. Ser. B 82(1), 2001, 138-154.
[17] X. Li and Y. Mao, Generalized Connectivity of Graphs, Springer, Switzerland, 2016.
[18] X. Li, Y. Mao and Y. Sun, On the generalized (edge-)connectivity of graphs, Australas. J. Combin. 58(2), 2014, 304-319.
[19] A. Schrijver, Finding k partially disjoint paths in a directed planar graph. SIAM J. Comput. 23(4), 1994, 780-788.
[20] Y. Shiloach, Edge-disjoint branching in directed multigraphs, Inf. Process. Lett. 8(1), 1979, 24-27.
[21] Y. Sun, G. Gutin, Strong subgraph k-connectivity bounds, arXiv:1803.00281v1 [cs.DM] 1 Mar 2018.
[22] Y. Sun, G. Gutin, Strong subgraph k-arc-connectivity, arXiv:1805.01687v1 [cs.DM] 4 May 2018.
[23] Y. Sun, G. Gutin, A. Yeo, X. Zhang, Strong subgraph k-connectivity, arXiv:1803.00284v1 [cs.DM] 1 Mar 2018.
[24] Y. Sun, Z. Jin, Minimally strong subgraph (k, ℓ)-arc-connected digraphs, in preparation.
[25] C. Thomassen, Highly connected non-2-linked digraphs, Combinatorica 11(4), 1991, 393-395.
[26] T.W. Tillson, A Hamiltonian decomposition of $K_{2 m}^{*}, 2 m \geq 8$, J. Combin. Theory Ser. B 29(1), 1980, 68-74.

