Strong Subgraph Connectivity of Digraphs: A Survey

Yuefang Sun¹ and Gregory Gutin²

¹ Department of Mathematics, Shaoxing University
Zhejiang 312000, P. R. China, yuefangsun2013@163.com

² School of Computer Science and Mathematics
Royal Holloway, University of London
Egham, Surrey, TW20 0EX, UK, g.gutin@rhul.ac.uk

Abstract

In this survey we overview known results on the strong subgraph k-connectivity and strong subgraph k-arc-connectivity of digraphs. After an introductory section, the paper is divided into four sections: basic results, algorithms and complexity, sharp bounds for strong subgraph k-(arc-)connectivity, minimally strong subgraph (k, ℓ) -(arc-) connected digraphs. This survey contains several conjectures and open problems for further study.

Keywords: Strong subgraph k-connectivity; Strong subgraph k-arc-connectivity; Subdigraph packing; Directed q-linkage; Directed weak q-linkage; Semicomplete digraphs; Symmetric digraphs; Generalized k-connectivity; Generalized k-edge-connectivity.

AMS subject classification (2010): 05C20, 05C35, 05C40, 05C70, 05C75, 05C76, 05C85, 68Q25, 68R10.

1 Introduction

The generalized k-connectivity $\kappa_k(G)$ of a graph G = (V, E) was introduced by Hager [14] in 1985 $(2 \le k \le |V|)$. For a graph G = (V, E) and a set $S \subseteq V$ of at least two vertices, an S-Steiner tree or, simply, an S-tree is a subgraph T of G which is a tree with $S \subseteq V(T)$. Two S-trees T_1 and T_2 are said to be edge-disjoint if $E(T_1) \cap E(T_2) = \emptyset$. Two edge-disjoint S-trees T_1 and T_2 are said to be internally disjoint if $V(T_1) \cap V(T_2) = S$. The generalized local connectivity $\kappa_S(G)$ is the maximum number of internally disjoint S-trees in G. For an integer K with $K \subseteq K$ is the generalized K-connectivity is defined as

$$\kappa_k(G) = \min\{\kappa_S(G) \mid S \subseteq V(G), |S| = k\}.$$

Observe that $\kappa_2(G) = \kappa(G)$. Li, Mao and Sun [18] introduced the following concept of generalized k-edge-connectivity. The generalized local edge-connectivity $\lambda_S(G)$ is the maximum number of edge-disjoint S-trees in G.

For an integer k with $2 \leq k \leq n$, the generalized k-edge-connectivity is defined as

$$\lambda_k(G) = \min\{\lambda_S(G) \mid S \subseteq V(G), |S| = k\}.$$

Observe that $\lambda_2(G) = \lambda(G)$. Generalized connectivity of graphs has become an established area in graph theory, see a recent monograph [17] by Li and Mao on generalized connectivity of undirected graphs.

To extend generalized k-connectivity to directed graphs, Sun, Gutin, Yeo and Zhang [23] observed that in the definition of $\kappa_S(G)$, one can replace "an S-tree" by "a connected subgraph of G containing S." Therefore, Sun et al. [23] defined strong subgraph k-connectivity by replacing "connected" with "strongly connected" (or, simply, "strong") as follows. Let D = (V, A) be a digraph of order n, S a subset of V of size k and $0 \le k \le n$. A subdigraph $0 \le k \le n$ of $0 \le k \le n$ and $0 \le k \le n$ of $0 \le n$ of

$$\kappa_k(D) = \min\{\kappa_S(D) \mid S \subseteq V, |S| = k\}.$$

By definition, $\kappa_k(D) = 0$ if D is not strong.

As a natural counterpart of the strong subgraph k-connectivity, Sun and Gutin [22] introduced the concept of strong subgraph k-arc-connectivity. Let D = (V(D), A(D)) be a digraph of order $n, S \subseteq V$ a k-subset of V(D) and $2 \le k \le n$. Let $\lambda_S(D)$ be the maximum number of arc-disjoint S-strong digraphs in D. The strong subgraph k-arc-connectivity of D is defined as

$$\lambda_k(D) = \min\{\lambda_S(D) \mid S \subseteq V(D), |S| = k\}.$$

By definition, $\lambda_k(D) = 0$ if D is not strong.

The strong subgraph k-(arc-)connectivity is not only a natural extension of the concept of generalized k-(edge-)connectivity, but also relates to important problems in graph theory. For k=2, $\kappa_2(\overrightarrow{G})=\kappa(G)$ [23] and $\lambda_2(\overrightarrow{G})=\lambda(G)$ [22]. Hence, $\kappa_k(D)$ and $\lambda_k(D)$ could be seen as generalizations of connectivity and edge-connectivity of undirected graphs, respectively. For k=n, $\kappa_n(D)=\lambda_n(D)$ is the maximum number of arc-disjoint spanning strong subgraphs of D. Moreover, since $\kappa_S(G)$ and $\lambda_S(G)$ are the number of internally disjoint and arc-disjoint strong subgraphs containing a given set S, respectively, these parameters are relevant to the subdigraph packing problem, see [4–7,11].

Some basic results will be introduced in Section 2. In Section 3, we will sum up the results on algorithms and computational complexity for $\kappa_S(D)$, $\kappa_k(D)$, $\lambda_S(D)$ and $\lambda_k(D)$. We will collect many upper and lower bounds for the parameters $\kappa_k(D)$ and $\lambda_k(D)$ in Section 4. Finally, in Section 5, results on minimally strong subgraph (k, ℓ) -(arc-)connected digraphs will be surveyed.

Additional Terminology and Notation. For a digraph D, its reverse D^{rev} is a digraph with same vertex set and such that $xy \in A(D^{\mathrm{rev}})$ if and only if $yx \in A(D)$. A digraph D is symmetric if $D^{\mathrm{rev}} = D$. In other words, a symmetric digraph D can be obtained from its underlying undirected graph G by replacing each edge of G with the corresponding arcs of both directions, that is, D = G. A 2-cycle xyx of a strong digraph D is called a bridge if $D - \{xy, yx\}$ is disconnected. Thus, a bridge corresponds to a bridge in the underlying undirected graph of D. An orientation of a digraph D is a digraph obtained from D by deleting an arc in each 2-cycle of D. A digraph D is semicomplete if for every distinct $x, y \in V(D)$ at least one of the arcs xy, yx in in D. We refer the readers to [2,3,9] for graph theoretical notation and terminology not given here.

2 Basic Results

The following proposition can be easily verified using definitions of $\lambda_k(D)$ and $\kappa_k(D)$.

Proposition 2.1 [22, 23] Let D be a digraph of order n, and let $k \geq 2$ be an integer. Then

$$\lambda_{k+1}(D) \le \lambda_k(D) \text{ for every } k \le n-1$$
 (1)

$$\kappa_k(D') \le \kappa_k(D), \lambda_k(D') \le \lambda_k(D)$$
 where D' is a spanning subdigraph of D
(2)

$$\kappa_k(D) \le \lambda_k(D) \le \min\{\delta^+(D), \delta^-(D)\}$$
(3)

By Tillson's decomposition theorem [26], we can determine the exact values for $\kappa_k(\overrightarrow{K}_n)$ and $\lambda_k(\overrightarrow{K}_n)$.

Proposition 2.2 [23] For $2 \le k \le n$, we have

$$\kappa_k(\overleftrightarrow{K}_n) = \begin{cases} n-1, & \text{if } k \notin \{4,6\}; \\ n-2, & \text{otherwise.} \end{cases}$$

Proposition 2.3 [22] For $2 \le k \le n$, we have

$$\lambda_k(\overleftrightarrow{K}_n) = \left\{ \begin{array}{ll} n-1, & \text{if } k \not\in \{4,6\}, \text{ or, } k \in \{4,6\} \text{ and } k < n; \\ n-2, & \text{if } k = n \in \{4,6\}. \end{array} \right.$$

Proposition 2.4 [22] For every fixed $k \geq 2$, a digraph D is strong if and only if $\lambda_k(D) \geq 1$.

3 Algorithms and Complexity

3.1 Results for $\kappa_S(D)$ and $\kappa_k(D)$

For a fixed $k \geq 2$, it is easy to decide whether $\kappa_k(D) \geq 1$ for a digraph D: it holds if and only if D is strong. Unfortunately, deciding whether

 $\kappa_S(D) \ge 2$ is already NP-complete for $S \subseteq V(D)$ with |S| = k, where $k \ge 2$ is a fixed integer.

The well-known DIRECTED q-LINKAGE problem was proved to be NP-complete even for the case that q=2 [13]. The problem is formulated as follows: for a fixed integer $q \geq 2$, given a digraph D and a (terminal) sequence $((s_1,t_1),\ldots,(s_q,t_q))$ of distinct vertices of D, decide whether D has q vertex-disjoint paths P_1,\ldots,P_q , where P_i starts at s_i and ends at t_i for all $i \in [q]$.

By using the reduction from the DIRECTED q-LINKAGE problem, we can prove the following intractability result.

Theorem 3.1 [23] Let $k \geq 2$ and $\ell \geq 2$ be fixed integers. Let D be a digraph and $S \subseteq V(D)$ with |S| = k. The problem of deciding whether $\kappa_S(D) \geq \ell$ is NP-complete.

In the above theorem, Sun et al. obtained the complexity result of the parameter $\kappa_S(D)$ for an arbitrary digraph D. For $\kappa_k(D)$, they made the following conjecture.

Conjecture 1 [23] It is NP-complete to decide for fixed integers $k \geq 2$ and $\ell \geq 2$ and a given digraph D whether $\kappa_k(D) \geq \ell$.

Recently, Chudnovsky, Scott and Seymour [12] proved the following powerful result.

Theorem 3.2 [12] Let q and c be fixed positive integers. Then the DIRECTED q-LINKAGE problem on a digraph D whose vertex set can be partitioned into c sets each inducing a semicomplete digraph and a terminal sequence $((s_1, t_1), \ldots, (s_q, t_q))$ of distinct vertices of D, can be solved in polynomial time.

The following nontrivial lemma can be deduced from Theorem 3.2.

Lemma 3.3 [23] Let k and ℓ be fixed positive integers. Let D be a digraph and let $X_1, X_2, \ldots, X_{\ell}$ be ℓ vertex disjoint subsets of V(D), such that $|X_i| \leq k$ for all $i \in [\ell]$. Let $X = \bigcup_{i=1}^{\ell} X_i$ and assume that every vertex in $V(D) \setminus X$ is adjacent to every other vertex in D. Then we can in polynomial time decide if there exists vertex disjoint subsets $Z_1, Z_2, \ldots, Z_{\ell}$ of V(D), such that $X_i \subseteq Z_i$ and $D[Z_i]$ is strongly connected for each $i \in [\ell]$.

Using Lemma 3.3, Sun, Gutin, Yeo and Zhang proved the following result for semicomplete digraphs.

Theorem 3.4 [23] For any fixed integers $k, \ell \geq 2$, we can decide whether $\kappa_k(D) \geq \ell$ for a semicomplete digraph D in polynomial time.

Now we turn our attention to symmetric graphs. We start with the following structural result.

Theorem 3.5 [23] For every undirected graph G we have $\kappa_2(\overleftrightarrow{G}) = \kappa(G)$.

Theorem 3.5 immediatly implies the following positive result, which follows from the fact that $\kappa(G)$ can be computed in polynomial time.

Corollary 3.6 [23] For a graph G, $\kappa_2(\overleftarrow{G})$ can be computed in polynomial time

Theorem 3.5 states that $\kappa_k(\overleftarrow{G}) = \kappa_k(G)$ when k = 2. However when $k \geq 3$, then $\kappa_k(\overleftarrow{G})$ is not always equal to $\kappa_k(G)$, as can be seen from $\kappa_3(\overleftarrow{K_3}) = 2 \neq 1 = \kappa_3(K_3)$. Chen, Li, Liu and Mao [10] introduced the following problem, which they proved to be NP-complete.

CLLM PROBLEM: Given a tripartite graph G=(V,E) with a 3-partition $(\overline{U},\overline{V},\overline{W})$ such that $|\overline{U}|=|\overline{V}|=|\overline{W}|=q$, decide whether there is a partition of V into q disjoint 3-sets V_1,\ldots,V_q such that for every $V_i=\{v_{i_1},v_{i_2},v_{i_3}\}$ $v_{i_1}\in\overline{U},v_{i_2}\in\overline{V},v_{i_3}\in\overline{W}$ and $G[V_i]$ is connected.

Lemma 3.7 [10] The CLLM Problem is NP-complete.

Now restricted to symmetric digraphs D, for any fixed integer $k \geq 3$, by Lemma 3.7, the problem of deciding whether $\kappa_S(D) \geq \ell$ ($\ell \geq 1$) is NP-complete for $S \subseteq V(D)$ with |S| = k.

Theorem 3.8 [23] For any fixed integer $k \geq 3$, given a symmetric digraph D, a k-subset S of V(D) and an integer ℓ ($\ell \geq 1$), deciding whether $\kappa_S(D) \geq \ell$, is NP-complete.

The last theorem assumes that k is fixed but ℓ is a part of input. When both k and ℓ are fixed, the problem of deciding whether $\kappa_S(D) \geq \ell$ for a symmetric digraph D, is polynomial-time solvable. We will start with the following technical lemma.

Lemma 3.9 [23] Let $k, \ell \geq 2$ be fixed. Let G be a graph and let $S \subseteq V(G)$ be an independent set in G with |S| = k. For $i \in [\ell]$, let D_i be any set of arcs with both end-vertices in S. Let a forest F_i in G be called (S, D_i) -acceptable if the digraph $F_i + D_i$ is strong and contains S. In polynomial time, we can decide whether there exists edge-disjoint forests F_1, F_2, \ldots, F_ℓ such that F_i is (S, D_i) -acceptable for all $i \in [\ell]$ and $V(F_i) \cap V(F_i) \subseteq S$ for all $1 \leq i < j \leq \ell$.

Now we can prove the following result by Lemma 3.9:

Theorem 3.10 [23] Let $k, \ell \geq 2$ be fixed. For any symmetric digraph D and $S \subseteq V(D)$ with |S| = k we can in polynomial time decide whether $\kappa_S(D) \geq \ell$.

The DIRECTED q-LINKAGE problem is polynomial-time solvable for planar digraphs [19] and digraphs of bounded directed treewidth [16]. However, it seems that we cannot use the approach in proving Theorem 3.4 directly as the structure of minimum-size strong subgraphs in these two classes of digraphs is more complicated than in semicomplete digraphs. Certainly, we cannot exclude the possibility that computing strong subgraph k-connectivity in planar digraphs and/or in digraphs of bounded directed treewidth is NP-complete.

Problem 3.11 [23] What is the complexity of deciding whether $\kappa_k(D) \ge \ell$ for fixed integers $k \ge 2$, and $\ell \ge 2$ and a given planar digraph D?

Problem 3.12 [23] What is the complexity of deciding whether $\kappa_k(D) \geq \ell$ for fixed integers $k \geq 2$, and $\ell \geq 2$ and a digraph D of bounded directed treewidth?

It would be interesting to identify large classes of digraphs for which the $\kappa_k(D) \geq \ell$ problem can be decided in polynomial time.

3.2 Results for $\lambda_S(D)$ and $\lambda_k(D)$

Yeo proved that it is an NP-complete problem to decide whether a 2-regular digraph has two arc-disjoint hamiltonian cycles (see, e.g., Theorem 6.6 in [6]). (A digraph is 2-regular if the out-degree and in-degree of every vertex equals 2.) Thus, the problem of deciding whether $\lambda_n(D) \geq 2$ is NP-complete, where n is the order of D. Sun and Gutin [22] extended this result in Theorem 3.13.

Let D be a digraph and let $s_1, s_2, \ldots, s_q, t_1, t_2, \ldots, t_q$ be a collection of not necessarily distinct vertices of D. A weak q-linkage from (s_1, s_2, \ldots, s_q) to (t_1, t_2, \ldots, t_q) is a collection of q arc-disjoint paths P_1, \ldots, P_q such that P_i is an (s_i, t_i) -path for each $i \in [q]$. A digraph D = (V, A) is weakly q-linked if it contains a weak q-linkage from (s_1, s_2, \ldots, s_q) to (t_1, t_2, \ldots, t_q) for every choice of (not necessarily distinct) vertices $s_1, \ldots, s_q, t_1, \ldots, t_q$. The DIRECTED WEAK q-Linkage problem is the following. Given a digraph D = (V, A) and distinct vertices $x_1, x_2, \ldots, x_q, y_1, y_2, \ldots, y_q$; decide whether D contains q arc-disjoint paths P_1, \ldots, P_q such that P_i is an (x_i, y_i) -path. The problem is well-known to be NP-complete already for q = 2 [13]. By using the reduction from the DIRECTED WEAK q-Linkage problem, we can prove the following intractability result.

Theorem 3.13 [22] Let $k \geq 2$ and $\ell \geq 2$ be fixed integers. Let D be a digraph and $S \subseteq V(D)$ with |S| = k. The problem of deciding whether $\lambda_S(D) \geq \ell$ is NP-complete.

Bang-Jensen and Yeo [6] conjectured the following:

Conjecture 2 For every $\lambda \geq 2$ there is a finite set S_{λ} of digraphs such that λ -arc-strong semicomplete digraph D contains λ arc-disjoint spanning strong subgraphs unless $D \in S_{\lambda}$.

Bang-Jensen and Yeo [6] proved the conjecture for $\lambda = 2$ by showing that $|S_2| = 1$ and describing the unique digraph S_4 of S_2 of order 4. This result and Theorem 4.4 imply the following:

Theorem 3.14 [22] For a semicomplete digraph D, of order n and an integer k such that $2 \le k \le n$, $\lambda_k(D) \ge 2$ if and only if D is 2-arc-strong and $D \not\cong S_4$.

Now we turn our attention to symmetric graphs. We start from characterizing symmetric digraphs D with $\lambda_k(D) \geq 2$, an analog of Theorem 3.14. To prove it we need the following result of Boesch and Tindell [8] translated from the language of mixed graphs to that of digraphs.

Theorem 3.15 A strong digraph D has a strong orientation if and only if D has no bridge.

Here is the characterization by Sun and Gutin.

Theorem 3.16 [22] For a strong symmetric digraph D of order n and an integer k such that $2 \le k \le n$, $\lambda_k(D) \ge 2$ if and only if D has no bridge.

Theorems 3.14 and 3.16 imply the following complexity result, which we believe to be extendable from $\ell = 2$ to any natural $\ell \geq 2$.

Corollary 3.17 [22] The problem of deciding whether $\lambda_k(D) \geq 2$ is polynomialtime solvable if D is either semicomplete or symmetric digraph of order n and $2 \leq k \leq n$.

Sun and Gutin gave a lower bound on $\lambda_k(D)$ for symmetric digraphs D.

Theorem 3.18 [22] For every graph G, we have

$$\lambda_k(\overleftrightarrow{G}) \ge \lambda_k(G).$$

Moreover, this bound is sharp. In particular, we have $\lambda_2(\overleftarrow{G}) = \lambda_2(G)$.

Theorem 3.18 immediately implies the next result, which follows from the fact that $\lambda(G)$ can be computed in polynomial time.

Corollary 3.19 [22] For a symmetric digraph D, $\lambda_2(D)$ can be computed in polynomial time.

Corollaries 3.17 and 3.19 shed some light on the complexity of deciding, for fixed $k, \ell \geq 2$, whether $\lambda_k(D) \geq \ell$ for semicomplete and symmetric digraphs D. However, it is unclear what is the complexity above for every fixed $k, \ell \geq 2$. If Conjecture 2 is correct, then the $\lambda_k(D) \geq \ell$ problem can be solved in polynomial time for semicomplete digraphs. However, Conjecture 2 seems to be very difficult. It was proved in [23] that for fixed $k, \ell \geq 2$ the problem of deciding whether $\kappa_k(D) \geq \ell$ is polynomial-time solvable for both semicomplete and symmetric digraphs, but it appears that the approaches to prove the two results cannot be used for $\lambda_k(D)$. Some well-known results such as the fact that the hamiltonicity problem is NP-complete for undirected 3-regular graphs, indicate that the $\lambda_k(D) \geq \ell$ problem for symmetric digraphs may be NP-complete, too.

Problem 3.20 [22] What is the complexity of deciding whether $\lambda_k(D) \geq \ell$ for fixed integers $k \geq 2$ and $\ell \geq 2$, and a semicomplete digraph D?

Problem 3.21 [22] What is the complexity of deciding whether $\lambda_k(D) \geq \ell$ for fixed integers $k \geq 2$ and $\ell \geq 2$, and a symmetric digraph D?

It would be interesting to identify large classes of digraphs for which the $\lambda_k(D) \geq \ell$ problem can be decided in polynomial time.

4 Bounds for Strong Subgraph k-(Arc-)Connectivity

4.1 Results for $\kappa_k(D)$

By Propositions 2.1 and 2.2, Sun, Gutin, Yeo and Zhang obtained a sharp lower bound and a sharp upper bound for $\kappa_k(D)$, where $2 \le k \le n$.

Theorem 4.1 [23] Let $2 \le k \le n$. For a strong digraph D of order n, we have

$$1 \le \kappa_k(D) \le n - 1.$$

Moreover, both bounds are sharp, and the upper bound holds if and only if $D \cong \overrightarrow{K}_n$, $2 \le k \le n$ and $k \notin \{4,6\}$.

Sun and Gutin gave the following sharp upper bound for $\kappa_k(D)$ which improves (3) of Proposition 2.1.

Theorem 4.2 [21] For $k \in \{2, ..., n\}$ and $n \ge \kappa(D) + k$, we have

$$\kappa_k(D) \leq \kappa(D)$$
.

Moreover, the bound is sharp.

4.2 Results for $\lambda_k(D)$

By Propositions 2.1 and 2.2, Sun and Gutin obtained a sharp lower bound and a sharp upper bound for $\lambda_k(D)$, where $2 \le k \le n$.

Theorem 4.3 [22] Let $2 \le k \le n$. For a strong digraph D of order n, we have

$$1 \le \lambda_k(D) \le n - 1$$
.

Moreover, both bounds are sharp, and the upper bound holds if and only if $D \cong \overrightarrow{K}_n$, where $k \notin \{4,6\}$, or, $k \in \{4,6\}$ and k < n.

They also gave the following sharp upper bound for $\lambda_k(D)$ which improves (3) of Proposition 2.1.

Theorem 4.4 [22] For $2 \le k \le n$, we have

$$\lambda_k(D) \le \lambda(D)$$
.

Moreover, the bound is sharp.

Shiloach [20] proved the following:

Theorem 4.5 [20] A digraph D is weakly k-linked if and only if D is k-arc-strong.

Using Shiloach's Theorem, Sun and Gutin [22] proved the following lower bound for $\lambda_k(D)$. Such a bound does not hold for $\kappa_k(D)$ since it was shown in [23] using Thomassen's result in [25] that for every ℓ there are digraphs D with $\kappa(D) = \ell$ and $\kappa_2(D) = 1$.

Proposition 4.6 [22] Let $k \le \ell = \lambda(D)$. We have $\lambda_k(D) \ge \lfloor \ell/k \rfloor$.

For a digraph D = (V(D), A(D)), the complement digraph, denoted by D^c , is a digraph with vertex set $V(D^c) = V(D)$ such that $xy \in A(D^c)$ if and only if $xy \notin A(D)$.

Given a graph parameter f(G), the Nordhaus-Gaddum Problem is to determine sharp bounds for (1) $f(G) + f(G^c)$ and (2) $f(G)f(G^c)$, and characterize the extremal graphs. The Nordhaus-Gaddum type relations have received wide attention; see a recent survey paper [1] by Aouchiche and Hansen. By using Proposition 2.4, the following Theorem 4.7 concerning such type of a problem for the parameter λ_k can be obtained.

Theorem 4.7 [22] For a digraph D with order n, the following assertions holds:

- (i) $0 \le \lambda_k(D) + \lambda_k(D^c) \le n 1$. Moreover, both bounds are sharp. In particular, the lower bound holds if and only if $\lambda(D) = \lambda(D^c) = 0$.
- (ii) $0 \le \lambda_k(D)\lambda_k(D^c) \le (\frac{n-1}{2})^2$. Moreover, both bounds are sharp. In particular, the lower bound holds if and only if $\lambda(D) = 0$ or $\lambda(D^c) = 0$.

We now discuss Cartesian products of digraphs. The Cartesian product $G \square H$ of two digraphs G and H is a digraph with vertex set

$$V(G \square H) = V(G) \times V(H) = \{(x, x') \mid x \in V(G), x' \in V(H)\}\$$

and arc set

$$A(G \square H) = \{(x, x')(y, y') \mid xy \in A(G), x' = y', \text{ or } x = y, x'y' \in A(H)\}.$$

By definition, we know the Cartesian product is associative and commutative, and $G \square H$ is strongly connected if and only if both G and H are strongly connected [15].

Theorem 4.8 [22] Let G and H be two digraphs. We have

$$\lambda_2(G \square H) \ge \lambda_2(G) + \lambda_2(H).$$

Moreover, the bound is sharp.

By Proposition 2.1 and Theorem 4.8, we can obtain precise values for the strong subgraph 2-arc-connectivity of the Cartesian product of some special digraphs, as shown in the Table. Note that \overrightarrow{T}_m is the symmetric digraph whose underlying undirected graph is a tree of order m.

5 Minimally Strong Subgraph (k, ℓ) -(Arc-)Connected Digraphs

5.1 Results for Minimally Strong Subgraph (k, ℓ) -Connected Digraphs

A digraph D = (V(D), A(D)) is called minimally strong subgraph (k, ℓ) connected if $\kappa_k(D) \ge \ell$ but for any arc $e \in A(D)$, $\kappa_k(D - e) \le \ell - 1$ [21]. By

	\overrightarrow{C}_m	\overleftrightarrow{C}_m	\overleftrightarrow{T}_m	\overleftrightarrow{K}_m
\overrightarrow{C}_n	2	3	2	m
\overleftrightarrow{C}_n	3	4	3	m+1
\overleftrightarrow{T}_n	2	3	2	m
\overleftrightarrow{K}_n	n	n+1	n	n + m - 2

Table 1. Precise values for the strong subgraph 2-arc-connectivity of some special cases.

the definition of $\kappa_k(D)$ and Theorem 4.1, we know $2 \le k \le n, 1 \le \ell \le n-1$. Let $\mathfrak{F}(n,k,\ell)$ be the set of all minimally strong subgraph (k,ℓ) -connected digraphs with order n. We define

$$F(n, k, \ell) = \max\{|A(D)| \mid D \in \mathfrak{F}(n, k, \ell)\}\$$

and

$$f(n,k,\ell) = \min\{|A(D)| \mid D \in \mathfrak{F}(n,k,\ell)\}.$$

We further define

$$Ex(n, k, \ell) = \{D \mid D \in \mathfrak{F}(n, k, \ell), |A(D)| = F(n, k, \ell)\}$$

and

$$ex(n, k, \ell) = \{D \mid D \in \mathfrak{F}(n, k, \ell), |A(D)| = f(n, k, \ell)\}.$$

By the definition of a minimally strong subgraph (k, ℓ) -connected digraph, we can get the following observation.

Proposition 5.1 [21] A digraph D is minimally strong subgraph (k, ℓ) connected if and only if $\kappa_k(D) = \ell$ and $\kappa_k(D - e) = \ell - 1$ for any arc $e \in A(D)$.

A digraph D is minimally strong if D is strong but D-e is not for every arc e of D.

Proposition 5.2 [21] The following assertions hold:

- (i) A digraph D is minimally strong subgraph (k, 1)-connected if and only if D is minimally strong digraph;
- (ii) For $k \neq 4, 6$, a digraph D is minimally strong subgraph (k, n-1)-connected if and only if $D \cong \overset{\longleftarrow}{K}_n$.

The following result characterizes minimally strong subgraph (2, n-2)connected digraphs.

Theorem 5.3 [21] A digraph D is minimally strong subgraph (2, n-2)-connected if and only if D is a digraph obtained from the complete digraph K_n by deleting an arc set M such that $K_n[M]$ is a 3-cycle or a union of $\lfloor n/2 \rfloor$ vertex-disjoint 2-cycles. In particular, we have $f(n, 2, n-2) = n(n-1) - 2\lfloor n/2 \rfloor$, F(n, 2, n-2) = n(n-1) - 3.

Note that Theorem 5.3 implies that $Ex(n,2,n-2)=\{\overrightarrow{K_n}-M\}$ where M is an arc set such that $\overrightarrow{K}_n[M]$ is a directed 3-cycle, and $ex(n,2,n-1)=\{\overrightarrow{K_n}-M\}$ where M is an arc set such that $\overrightarrow{K}_n[M]$ is a union of $\lfloor n/2 \rfloor$ vertex-disjoint directed 2-cycles.

The following result concerns a sharp lower bound for the parameter $f(n,k,\ell)$.

Theorem 5.4 [21] For $2 \le k \le n$, we have

$$f(n, k, \ell) \ge n\ell$$
.

Moreover, the following assertions hold:

(i) If $\ell = 1$, then $f(n, k, \ell) = n$; (ii) If $2 \le \ell \le n - 1$, then $f(n, n, \ell) = n\ell$ for $k = n \notin \{4, 6\}$; (iii) If n is even and $\ell = n - 2$, then $f(n, 2, \ell) = n\ell$.

To prove two upper bounds on the number of arcs in a minimally strong subgraph (k, ℓ) -connected digraph, Sun and Gutin used the following result, see e.g. [2].

Theorem 5.5 Every strong digraph D on n vertices has a strong spanning subgraph H with at most 2n-2 arcs and equality holds only if H is a symmetric digraph whose underlying undirected graph is a tree.

Proposition 5.6 [21] We have (i) $F(n,n,\ell) \leq 2\ell(n-1)$; (ii) For every k ($2 \leq k \leq n$), F(n,k,1) = 2(n-1) and Ex(n,k,1) consists of symmetric digraphs whose underlying undirected graphs are trees.

The minimally strong subgraph (2, n-2)-connected digraphs was characterized in Theorem 5.3. As a simple consequence of the characterization, we can determine the values of f(n,2,n-2) and F(n,2,n-2). It would be interesting to determine f(n,k,n-2) and F(n,k,n-2) for every value of $k \geq 3$ since obtaining characterizations of all (k,n-2)-connected digraphs for $k \geq 3$ seems a very difficult problem.

Problem 5.7 [21] Determine f(n, k, n-2) and F(n, k, n-2) for every value of k > 3.

It would also be interesting to find a sharp upper bound for $F(n, k, \ell)$ for all $k \geq 2$ and $\ell \geq 2$.

Problem 5.8 [21] Find a sharp upper bound for $F(n, k, \ell)$ for all $k \geq 2$ and $\ell \geq 2$.

5.2 Results for Minimally Strong Subgraph (k, ℓ) -Arc-Connected Digraphs

A digraph D=(V(D),A(D)) is called minimally strong subgraph (k,ℓ) arc-connected if $\lambda_k(D) \geq \ell$ but for any arc $e \in A(D)$, $\lambda_k(D-e) \leq \ell-1$. By
the definition of $\lambda_k(D)$ and Theorem 4.3, we know $2 \leq k \leq n, 1 \leq \ell \leq n-1$.
Let $\mathfrak{G}(n,k,\ell)$ be the set of all minimally strong subgraph (k,ℓ) -arc-connected
digraphs with order n. We define

$$G(n, k, \ell) = \max\{|A(D)| \mid D \in \mathfrak{G}(n, k, \ell)\}\$$

and

$$g(n, k, \ell) = \min\{|A(D)| \mid D \in \mathfrak{G}(n, k, \ell)\}.$$

We further define

$$Ex'(n, k, \ell) = \{D \mid D \in \mathfrak{G}(n, k, \ell), |A(D)| = G(n, k, \ell)\}$$

and

$$ex'(n, k, \ell) = \{D \mid D \in \mathfrak{G}(n, k, \ell), |A(D)| = g(n, k, \ell)\}.$$

Sun and Gutin [22] gave the following characterizations.

Proposition 5.9 [22] The following assertions hold:

- (i) A digraph D is minimally strong subgraph (k, 1)-arc-connected if and only if D is minimally strong digraph;
- (ii) Let $2 \le k \le n$. If $k \notin \{4,6\}$, or, $k \in \{4,6\}$ and k < n, then a digraph D is minimally strong subgraph (k,n-1)-arc-connected if and only if $D \cong \overset{\frown}{K}_n$.

Theorem 5.10 [22] A digraph D is minimally strong subgraph (2, n-2)-arc-connected if and only if D is a digraph obtained from the complete digraph K_n by deleting an arc set M such that $K_n[M]$ is a union of vertex-disjoint cycles which cover all but at most one vertex of K_n .

Sun and Jin characterized the minimally strong subgraph (3, n-2)-arc-connected digraphs.

Theorem 5.11 [24] A digraph D is minimally strong subgraph (3, n-2)-arc-connected if and only if D is a digraph obtained from the complete digraph K_n by deleting an arc set M such that $K_n[M]$ is a union of vertex-disjoint cycles which cover all but at most one vertex of K_n .

Theorems 5.10 and 5.11 imply that the following assertions hold: (i) For $k \in \{2,3\}$, $Ex'(n,k,n-2) = \{\overrightarrow{K_n} - M\}$ where M is an arc set such that $\overrightarrow{K}_n[M]$ is a union of vertex-disjoint cycles which cover all but exactly one vertex of \overrightarrow{K}_n . (ii) For $k \in \{2,3\}$, $ex'(n,k,n-2) = \{\overrightarrow{K_n} - M\}$ where M is an arc set such that $\overrightarrow{K}_n[M]$ is a union of vertex-disjoint cycles which cover all vertices of \overrightarrow{K}_n .

Sun and Jin completely determined the precise value for $g(n, k, \ell)$. Note that $(n, k, \ell) \notin \{(4, 4, 3), (6, 6, 5)\}$ by Theorem 4.3 and the definition of $g(n, k, \ell)$.

Theorem 5.12 [24] For any triple (n, k, ℓ) with $2 \le k \le n, 1 \le \ell \le n - 1$ such that $(n, k, \ell) \notin \{(4, 4, 3), (6, 6, 5)\}$, we have

$$g(n, k, \ell) = n\ell$$
.

Some results for $G(n, k, \ell)$ were obtained as well.

Proposition 5.13 [24] We have (i) $G(n, n, \ell) \leq 2\ell(n-1)$; (ii) For every k ($2 \leq k \leq n$), G(n, k, 1) = 2(n-1) and Ex'(n, k, 1) consists of symmetric digraphs whose underlying undirected graphs are trees; (iii) $G(n, k, n-2) = (n-1)^2$ for $k \in \{2,3\}$.

Note that the precise values of $g(n, k, \ell)$ for each pair of k and ℓ and the precise values of G(n, k, n-2) for $k \in \{2, 3\}$ were determined. Hence, similar to problems 5.7 and 5.8, the following problems are also interesting.

Problem 5.14 [24] Determine G(n, k, n-2) for every value of $k \geq 2$.

Problem 5.15 [24] Find a sharp upper bound for $G(n, k, \ell)$ for all $k \geq 2$ and $\ell \geq 2$.

Acknowledgements. Yuefang Sun was supported by National Natural Science Foundation of China (No.11401389) and China Scholarship Council (No.201608330111). Gregory Gutin was partially supported by Royal Society Wolfson Research Merit Award.

References

- [1] M. Aouchiche, P. Hansen, A survey of Nordhaus-Gaddum type relations, Discrete Appl. Math. 161(4/5), 2013, 466–546.
- [2] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications, 2nd Edition, Springer, London, 2009.
- [3] J. Bang-Jensen and G. Gutin, Basic Terminology, Notation and Results, in *Classes of Directed Graphs* (J. Bang-Jensen and G. Gutin, eds.), Springer, 2018.
- [4] J. Bang-Jensen and J. Huang, Decomposing locally semicomplete digraphs into strong spanning subdigraphs, J. Combin. Theory Ser. B 102, 2012, 701–714.
- [5] J. Bang-Jensen and M. Kriesell, Disjoint sub(di)graphs in digraphs, Electron. Notes Discrete Math. 34, 2009, 179–183.
- [6] J. Bang-Jensen and A. Yeo, Decomposing k-arc-strong tournaments into strong spanning subdigraphs, Combinatorica 24(3), 2004, 331–349.
- [7] J. Bang-Jensen and A. Yeo, Arc-disjoint spanning sub(di)graphs in Digraphs, Theoret. Comput. Sci. 438, 2012, 48–54.

- [8] F. Boesch and R. Tindell, Robbins' theorem for mixed multigraphs, Amer. Math. Monthly 87, 1980, 716–719.
- [9] J.A. Bondy and U.S.R. Murty, Graph Theory, Springer, Berlin, 2008.
- [10] L. Chen, X. Li, M. Liu and Y. Mao, A solution to a conjecture on the generalized connectivity of graphs, J. Combin. Optim. 33(1), 2017, 275–282.
- [11] J. Cheriyan and M.R. Salavatipour, Hardness and approximation results for packing Steiner trees, Algorithmica 45, 2006, 21–43.
- [12] M. Chudnovsky, A. Scott and P.D. Seymour. Disjoint paths in unions of tournaments. arXiv:1604.02317, April 2016.
- [13] S. Fortune, J. Hopcroft and J. Wyllie, The directed subgraphs homeomorphism problem, Theoret. Comput. Sci. 10, 1980, 111–121.
- [14] M. Hager, Pendant tree-connectivity, J. Combin. Theory Ser. B 38, 1985, 179–189.
- [15] R.H. Hammack, Digraphs Products, in J. Bang-Jensen and G. Gutin (eds.), *Classes of Directed Graphs*, Springer, 2018.
- [16] T. Johnson, N. Robertson, P.D. Seymour and R. Thomas, Directed Tree-Width, J. Combin. Th. Ser. B 82(1), 2001, 138–154.
- [17] X. Li and Y. Mao, Generalized Connectivity of Graphs, Springer, Switzerland, 2016.
- [18] X. Li, Y. Mao and Y. Sun, On the generalized (edge-)connectivity of graphs, Australas. J. Combin. 58(2), 2014, 304–319.
- [19] A. Schrijver, Finding k partially disjoint paths in a directed planar graph. SIAM J. Comput. 23(4), 1994, 780–788.
- [20] Y. Shiloach, Edge-disjoint branching in directed multigraphs, Inf. Process. Lett. 8(1), 1979, 24–27.
- [21] Y. Sun, G. Gutin, Strong subgraph k-connectivity bounds, arXiv:1803.00281v1 [cs.DM] 1 Mar 2018.
- [22] Y. Sun, G. Gutin, Strong subgraph k-arc-connectivity, arXiv:1805.01687v1 [cs.DM] 4 May 2018.
- [23] Y. Sun, G. Gutin, A. Yeo, X. Zhang, Strong subgraph k-connectivity, arXiv:1803.00284v1 [cs.DM] 1 Mar 2018.
- [24] Y. Sun, Z. Jin, Minimally strong subgraph (k, ℓ) -arc-connected digraphs, in preparation.
- [25] C. Thomassen, Highly connected non-2-linked digraphs, Combinatorica 11(4), 1991, 393–395.
- [26] T.W. Tillson, A Hamiltonian decomposition of K_{2m}^* , $2m \geq 8$, J. Combin. Theory Ser. B 29(1), 1980, 68–74.