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Abstract

In this survey we overview known results on the strong subgraph k-
connectivity and strong subgraph k-arc-connectivity of digraphs. After
an introductory section, the paper is divided into four sections: basic
results, algorithms and complexity, sharp bounds for strong subgraph
k-(arc-)connectivity, minimally strong subgraph (k, ℓ)-(arc-) connected
digraphs. This survey contains several conjectures and open problems
for further study.
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1 Introduction

The generalized k-connectivity κk(G) of a graph G = (V,E) was intro-
duced by Hager [14] in 1985 (2 ≤ k ≤ |V |). For a graph G = (V,E) and a
set S ⊆ V of at least two vertices, an S-Steiner tree or, simply, an S-tree is a
subgraph T of G which is a tree with S ⊆ V (T ). Two S-trees T1 and T2 are
said to be edge-disjoint if E(T1) ∩ E(T2) = ∅. Two edge-disjoint S-trees T1

and T2 are said to be internally disjoint if V (T1)∩ V (T2) = S. The general-
ized local connectivity κS(G) is the maximum number of internally disjoint
S-trees in G. For an integer k with 2 ≤ k ≤ n, the generalized k-connectivity
is defined as

κk(G) = min{κS(G) | S ⊆ V (G), |S| = k}.

Observe that κ2(G) = κ(G). Li, Mao and Sun [18] introduced the follow-
ing concept of generalized k-edge-connectivity. The generalized local edge-
connectivity λS(G) is the maximum number of edge-disjoint S-trees in G.
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For an integer k with 2 ≤ k ≤ n, the generalized k-edge-connectivity is
defined as

λk(G) = min{λS(G) | S ⊆ V (G), |S| = k}.

Observe that λ2(G) = λ(G). Generalized connectivity of graphs has become
an established area in graph theory, see a recent monograph [17] by Li and
Mao on generalized connectivity of undirected graphs.

To extend generalized k-connectivity to directed graphs, Sun, Gutin, Yeo
and Zhang [23] observed that in the definition of κS(G), one can replace
“an S-tree” by “a connected subgraph of G containing S.” Therefore, Sun
et al. [23] defined strong subgraph k-connectivity by replacing “connected”
with “strongly connected” (or, simply, “strong”) as follows. Let D = (V,A)
be a digraph of order n, S a subset of V of size k and 2 ≤ k ≤ n. A
subdigraph H of D is called an S-strong subgraph if H is strong and S ⊆
V (H). Two S-strong subgraphs D1 and D2 are said to be arc-disjoint if
A(D1)∩A(D2) = ∅. Two arc-disjoint S-strong subgraphsD1 andD2 are said
to be internally disjoint if V (D1)∩V (D2) = S. Let κS(D) be the maximum
number of internally disjoint S-strong subgraphs in D. The strong subgraph
k-connectivity of D is defined as

κk(D) = min{κS(D) | S ⊆ V, |S| = k}.

By definition, κk(D) = 0 if D is not strong.
As a natural counterpart of the strong subgraph k-connectivity, Sun and

Gutin [22] introduced the concept of strong subgraph k-arc-connectivity.
Let D = (V (D), A(D)) be a digraph of order n, S ⊆ V a k-subset of V (D)
and 2 ≤ k ≤ n. Let λS(D) be the maximum number of arc-disjoint S-strong
digraphs in D. The strong subgraph k-arc-connectivity of D is defined as

λk(D) = min{λS(D) | S ⊆ V (D), |S| = k}.

By definition, λk(D) = 0 if D is not strong.
The strong subgraph k-(arc-)connectivity is not only a natural exten-

sion of the concept of generalized k-(edge-)connectivity, but also relates to

important problems in graph theory. For k = 2, κ2(
←→
G ) = κ(G) [23] and

λ2(
←→
G ) = λ(G) [22]. Hence, κk(D) and λk(D) could be seen as general-

izations of connectivity and edge-connectivity of undirected graphs, respec-
tively. For k = n, κn(D) = λn(D) is the maximum number of arc-disjoint
spanning strong subgraphs of D. Moreover, since κS(G) and λS(G) are the
number of internally disjoint and arc-disjoint strong subgraphs containing
a given set S, respectively, these parameters are relevant to the subdigraph
packing problem, see [4–7,11].

Some basic results will be introduced in Section 2. In Section 3, we will
sum up the results on algorithms and computational complexity for κS(D),
κk(D), λS(D) and λk(D). We will collect many upper and lower bounds
for the parameters κk(D) and λk(D) in Section 4. Finally, in Section 5,
results on minimally strong subgraph (k, ℓ)-(arc-)connected digraphs will be
surveyed.
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Additional Terminology and Notation. For a digraph D, its reverse
Drev is a digraph with same vertex set and such that xy ∈ A(Drev) if and
only if yx ∈ A(D). A digraph D is symmetric if Drev = D. In other words, a
symmetric digraph D can be obtained from its underlying undirected graph
G by replacing each edge of G with the corresponding arcs of both directions,

that is, D =
←→
G . A 2-cycle xyx of a strong digraph D is called a bridge if

D − {xy, yx} is disconnected. Thus, a bridge corresponds to a bridge in
the underlying undirected graph of D. An orientation of a digraph D is a
digraph obtained from D by deleting an arc in each 2-cycle of D. A digraph
D is semicomplete if for every distinct x, y ∈ V (D) at least one of the arcs
xy, yx in in D. We refer the readers to [2,3,9] for graph theoretical notation
and terminology not given here.

2 Basic Results

The following proposition can be easily verified using definitions of λk(D)
and κk(D).

Proposition 2.1 [22, 23] Let D be a digraph of order n, and let k ≥ 2 be
an integer. Then

λk+1(D) ≤ λk(D) for every k ≤ n− 1 (1)

κk(D
′) ≤ κk(D), λk(D

′) ≤ λk(D) where D′ is a spanning subdigraph of D
(2)

κk(D) ≤ λk(D) ≤ min{δ+(D), δ−(D)} (3)

By Tillson’s decomposition theorem [26], we can determine the exact

values for κk(
←→
K n) and λk(

←→
K n).

Proposition 2.2 [23] For 2 ≤ k ≤ n, we have

κk(
←→
K n) =

{

n− 1, if k 6∈ {4, 6};
n− 2, otherwise.

Proposition 2.3 [22] For 2 ≤ k ≤ n, we have

λk(
←→
K n) =

{

n− 1, if k 6∈ {4, 6}, or, k ∈ {4, 6} and k < n;
n− 2, if k = n ∈ {4, 6}.

Proposition 2.4 [22] For every fixed k ≥ 2, a digraph D is strong if and
only if λk(D) ≥ 1.

3 Algorithms and Complexity

3.1 Results for κS(D) and κk(D)

For a fixed k ≥ 2, it is easy to decide whether κk(D) ≥ 1 for a digraph
D: it holds if and only if D is strong. Unfortunately, deciding whether
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κS(D) ≥ 2 is already NP-complete for S ⊆ V (D) with |S| = k, where k ≥ 2
is a fixed integer.

The well-known Directed q-Linkage problem was proved to be NP-
complete even for the case that q = 2 [13]. The problem is formulated
as follows: for a fixed integer q ≥ 2, given a digraph D and a (terminal)
sequence ((s1, t1), . . . , (sq, tq)) of distinct vertices of D, decide whether D
has q vertex-disjoint paths P1, . . . , Pq, where Pi starts at si and ends at ti
for all i ∈ [q].

By using the reduction from the Directed q-Linkage problem, we can
prove the following intractability result.

Theorem 3.1 [23] Let k ≥ 2 and ℓ ≥ 2 be fixed integers. Let D be a
digraph and S ⊆ V (D) with |S| = k. The problem of deciding whether
κS(D) ≥ ℓ is NP-complete.

In the above theorem, Sun et al. obtained the complexity result of the
parameter κS(D) for an arbitrary digraph D. For κk(D), they made the
following conjecture.

Conjecture 1 [23] It is NP-complete to decide for fixed integers k ≥ 2 and
ℓ ≥ 2 and a given digraph D whether κk(D) ≥ ℓ.

Recently, Chudnovsky, Scott and Seymour [12] proved the following pow-
erful result.

Theorem 3.2 [12] Let q and c be fixed positive integers. Then the Di-

rected q-Linkage problem on a digraph D whose vertex set can be par-
titioned into c sets each inducing a semicomplete digraph and a terminal
sequence ((s1, t1), . . . , (sq, tq)) of distinct vertices of D, can be solved in poly-
nomial time.

The following nontrivial lemma can be deduced from Theorem 3.2.

Lemma 3.3 [23] Let k and ℓ be fixed positive integers. Let D be a digraph
and let X1,X2, . . . ,Xℓ be ℓ vertex disjoint subsets of V (D), such that |Xi| ≤
k for all i ∈ [ℓ]. Let X = ∪ℓi=1Xi and assume that every vertex in V (D) \X
is adjacent to every other vertex in D. Then we can in polynomial time
decide if there exists vertex disjoint subsets Z1, Z2, . . . , Zℓ of V (D), such
that Xi ⊆ Zi and D[Zi] is strongly connected for each i ∈ [ℓ].

Using Lemma 3.3, Sun, Gutin, Yeo and Zhang proved the following result
for semicomplete digraphs.

Theorem 3.4 [23] For any fixed integers k, ℓ ≥ 2, we can decide whether
κk(D) ≥ ℓ for a semicomplete digraph D in polynomial time.

Now we turn our attention to symmetric graphs. We start with the
following structural result.

Theorem 3.5 [23] For every undirected graph G we have κ2(
←→
G ) = κ(G).
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Theorem 3.5 immediatly implies the following positive result, which fol-
lows from the fact that κ(G) can be computed in polynomial time.

Corollary 3.6 [23] For a graph G, κ2(
←→
G ) can be computed in polynomial

time.

Theorem 3.5 states that κk(
←→
G ) = κk(G) when k = 2. However when

k ≥ 3, then κk(
←→
G ) is not always equal to κk(G), as can be seen from

κ3(
←→
K3) = 2 6= 1 = κ3(K3). Chen, Li, Liu and Mao [10] introduced the

following problem, which they proved to be NP-complete.

CLLM Problem: Given a tripartite graphG = (V,E) with a 3-partition
(U, V ,W ) such that |U | = |V | = |W | = q, decide whether there is a partition
of V into q disjoint 3-sets V1, . . . , Vq such that for every Vi = {vi1 , vi2 , vi3}
vi1 ∈ U, vi2 ∈ V , vi3 ∈W and G[Vi] is connected.

Lemma 3.7 [10] The CLLM Problem is NP-complete.

Now restricted to symmetric digraphs D, for any fixed integer k ≥ 3,
by Lemma 3.7, the problem of deciding whether κS(D) ≥ ℓ (ℓ ≥ 1) is NP-
complete for S ⊆ V (D) with |S| = k.

Theorem 3.8 [23] For any fixed integer k ≥ 3, given a symmetric digraph
D, a k-subset S of V (D) and an integer ℓ (ℓ ≥ 1), deciding whether κS(D) ≥
ℓ, is NP-complete.

The last theorem assumes that k is fixed but ℓ is a part of input. When
both k and ℓ are fixed, the problem of deciding whether κS(D) ≥ ℓ for a
symmetric digraph D, is polynomial-time solvable. We will start with the
following technical lemma.

Lemma 3.9 [23] Let k, ℓ ≥ 2 be fixed. Let G be a graph and let S ⊆ V (G)
be an independent set in G with |S| = k. For i ∈ [ℓ], let Di be any set of arcs
with both end-vertices in S. Let a forest Fi in G be called (S,Di)-acceptable

if the digraph
←→
Fi +Di is strong and contains S. In polynomial time, we can

decide whether there exists edge-disjoint forests F1, F2, . . . , Fℓ such that Fi is
(S,Di)-acceptable for all i ∈ [ℓ] and V (Fi)∩V (Fj) ⊆ S for all 1 ≤ i < j ≤ ℓ.

Now we can prove the following result by Lemma 3.9:

Theorem 3.10 [23] Let k, ℓ ≥ 2 be fixed. For any symmetric digraph D
and S ⊆ V (D) with |S| = k we can in polynomial time decide whether
κS(D) ≥ ℓ.

The Directed q-Linkage problem is polynomial-time solvable for pla-
nar digraphs [19] and digraphs of bounded directed treewidth [16]. How-
ever, it seems that we cannot use the approach in proving Theorem 3.4
directly as the structure of minimum-size strong subgraphs in these two
classes of digraphs is more complicated than in semicomplete digraphs. Cer-
tainly, we cannot exclude the possibility that computing strong subgraph
k-connectivity in planar digraphs and/or in digraphs of bounded directed
treewidth is NP-complete.
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Problem 3.11 [23] What is the complexity of deciding whether κk(D) ≥ ℓ
for fixed integers k ≥ 2, and ℓ ≥ 2 and a given planar digraph D?

Problem 3.12 [23] What is the complexity of deciding whether κk(D) ≥ ℓ
for fixed integers k ≥ 2, and ℓ ≥ 2 and a digraph D of bounded directed
treewidth?

It would be interesting to identify large classes of digraphs for which the
κk(D) ≥ ℓ problem can be decided in polynomial time.

3.2 Results for λS(D) and λk(D)

Yeo proved that it is an NP-complete problem to decide whether a 2-
regular digraph has two arc-disjoint hamiltonian cycles (see, e.g., Theorem
6.6 in [6]). (A digraph is 2-regular if the out-degree and in-degree of every
vertex equals 2.) Thus, the problem of deciding whether λn(D) ≥ 2 is NP-
complete, where n is the order of D. Sun and Gutin [22] extended this result
in Theorem 3.13.

Let D be a digraph and let s1, s2, . . . , sq, t1, t2, . . . , tq be a collection of
not necessarily distinct vertices of D. A weak q-linkage from (s1, s2, . . . , sq)
to (t1, t2, . . . , tq) is a collection of q arc-disjoint paths P1, . . . , Pq such that
Pi is an (si, ti)-path for each i ∈ [q]. A digraph D = (V,A) is weakly q-
linked if it contains a weak q-linkage from (s1, s2, . . . , sq) to (t1, t2, . . . , tq) for
every choice of (not necessarily distinct) vertices s1, . . . , sq, t1, . . . , tq. The
Directed Weak q-Linkage problem is the following. Given a digraph
D = (V,A) and distinct vertices x1, x2, . . . , xq, y1, y2, . . . , yq; decide whether
D contains q arc-disjoint paths P1, . . . , Pq such that Pi is an (xi, yi)-path.
The problem is well-known to be NP-complete already for q = 2 [13]. By
using the reduction from the Directed Weak q-Linkage problem, we can
prove the following intractability result.

Theorem 3.13 [22] Let k ≥ 2 and ℓ ≥ 2 be fixed integers. Let D be a
digraph and S ⊆ V (D) with |S| = k. The problem of deciding whether
λS(D) ≥ ℓ is NP-complete.

Bang-Jensen and Yeo [6] conjectured the following:

Conjecture 2 For every λ ≥ 2 there is a finite set Sλ of digraphs such
that λ-arc-strong semicomplete digraph D contains λ arc-disjoint spanning
strong subgraphs unless D ∈ Sλ.

Bang-Jensen and Yeo [6] proved the conjecture for λ = 2 by showing that
|S2| = 1 and describing the unique digraph S4 of S2 of order 4. This result
and Theorem 4.4 imply the following:

Theorem 3.14 [22] For a semicomplete digraph D, of order n and an
integer k such that 2 ≤ k ≤ n, λk(D) ≥ 2 if and only if D is 2-arc-strong
and D 6∼= S4.
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Now we turn our attention to symmetric graphs. We start from charac-
terizing symmetric digraphs D with λk(D) ≥ 2, an analog of Theorem 3.14.
To prove it we need the following result of Boesch and Tindell [8] translated
from the language of mixed graphs to that of digraphs.

Theorem 3.15 A strong digraph D has a strong orientation if and only if
D has no bridge.

Here is the characterization by Sun and Gutin.

Theorem 3.16 [22] For a strong symmetric digraph D of order n and an
integer k such that 2 ≤ k ≤ n, λk(D) ≥ 2 if and only if D has no bridge.

Theorems 3.14 and 3.16 imply the following complexity result, which we
believe to be extendable from ℓ = 2 to any natural ℓ ≥ 2.

Corollary 3.17 [22] The problem of deciding whether λk(D) ≥ 2 is polynomial-
time solvable if D is either semicomplete or symmetric digraph of order n
and 2 ≤ k ≤ n.

Sun and Gutin gave a lower bound on λk(D) for symmetric digraphs D.

Theorem 3.18 [22] For every graph G, we have

λk(
←→
G ) ≥ λk(G).

Moreover, this bound is sharp. In particular, we have λ2(
←→
G ) = λ2(G).

Theorem 3.18 immediately implies the next result, which follows from
the fact that λ(G) can be computed in polynomial time.

Corollary 3.19 [22] For a symmetric digraph D, λ2(D) can be computed
in polynomial time.

Corollaries 3.17 and 3.19 shed some light on the complexity of deciding,
for fixed k, ℓ ≥ 2, whether λk(D) ≥ ℓ for semicomplete and symmetric
digraphs D. However, it is unclear what is the complexity above for every
fixed k, ℓ ≥ 2. If Conjecture 2 is correct, then the λk(D) ≥ ℓ problem can be
solved in polynomial time for semicomplete digraphs. However, Conjecture
2 seems to be very difficult. It was proved in [23] that for fixed k, ℓ ≥ 2
the problem of deciding whether κk(D) ≥ ℓ is polynomial-time solvable
for both semicomplete and symmetric digraphs, but it appears that the
approaches to prove the two results cannot be used for λk(D). Some well-
known results such as the fact that the hamiltonicity problem is NP-complete
for undirected 3-regular graphs, indicate that the λk(D) ≥ ℓ problem for
symmetric digraphs may be NP-complete, too.

Problem 3.20 [22] What is the complexity of deciding whether λk(D) ≥ ℓ
for fixed integers k ≥ 2 and ℓ ≥ 2, and a semicomplete digraph D?

Problem 3.21 [22] What is the complexity of deciding whether λk(D) ≥ ℓ
for fixed integers k ≥ 2 and ℓ ≥ 2, and a symmetric digraph D?

It would be interesting to identify large classes of digraphs for which the
λk(D) ≥ ℓ problem can be decided in polynomial time.
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4 Bounds for Strong Subgraph k-(Arc-)Connectivity

4.1 Results for κk(D)

By Propositions 2.1 and 2.2, Sun, Gutin, Yeo and Zhang obtained a sharp
lower bound and a sharp upper bound for κk(D), where 2 ≤ k ≤ n.

Theorem 4.1 [23] Let 2 ≤ k ≤ n. For a strong digraph D of order n, we
have

1 ≤ κk(D) ≤ n− 1.

Moreover, both bounds are sharp, and the upper bound holds if and only if

D ∼=
←→
K n, 2 ≤ k ≤ n and k 6∈ {4, 6}.

Sun and Gutin gave the following sharp upper bound for κk(D) which
improves (3) of Proposition 2.1.

Theorem 4.2 [21] For k ∈ {2, . . . , n} and n ≥ κ(D) + k, we have

κk(D) ≤ κ(D).

Moreover, the bound is sharp.

4.2 Results for λk(D)

By Propositions 2.1 and 2.2, Sun and Gutin obtained a sharp lower bound
and a sharp upper bound for λk(D), where 2 ≤ k ≤ n.

Theorem 4.3 [22] Let 2 ≤ k ≤ n. For a strong digraph D of order n, we
have

1 ≤ λk(D) ≤ n− 1.

Moreover, both bounds are sharp, and the upper bound holds if and only if

D ∼=
←→
K n, where k 6∈ {4, 6}, or, k ∈ {4, 6} and k < n.

They also gave the following sharp upper bound for λk(D) which im-
proves (3) of Proposition 2.1.

Theorem 4.4 [22] For 2 ≤ k ≤ n, we have

λk(D) ≤ λ(D).

Moreover, the bound is sharp.

Shiloach [20] proved the following:

Theorem 4.5 [20] A digraph D is weakly k-linked if and only if D is k-
arc-strong.

Using Shiloach’s Theorem, Sun and Gutin [22] proved the following lower
bound for λk(D). Such a bound does not hold for κk(D) since it was shown
in [23] using Thomassen’s result in [25] that for every ℓ there are digraphs
D with κ(D) = ℓ and κ2(D) = 1.
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Proposition 4.6 [22] Let k ≤ ℓ = λ(D). We have λk(D) ≥ ⌊ℓ/k⌋.

For a digraph D = (V (D), A(D)), the complement digraph, denoted by
Dc, is a digraph with vertex set V (Dc) = V (D) such that xy ∈ A(Dc) if
and only if xy 6∈ A(D).

Given a graph parameter f(G), the Nordhaus-Gaddum Problem is to
determine sharp bounds for (1) f(G)+ f(Gc) and (2) f(G)f(Gc), and char-
acterize the extremal graphs. The Nordhaus-Gaddum type relations have
received wide attention; see a recent survey paper [1] by Aouchiche and
Hansen. By using Proposition 2.4, the following Theorem 4.7 concerning
such type of a problem for the parameter λk can be obtained.

Theorem 4.7 [22] For a digraph D with order n, the following assertions
holds:
(i) 0 ≤ λk(D) + λk(D

c) ≤ n − 1. Moreover, both bounds are sharp. In
particular, the lower bound holds if and only if λ(D) = λ(Dc) = 0.
(ii) 0 ≤ λk(D)λk(D

c) ≤ (n−1

2
)2. Moreover, both bounds are sharp. In

particular, the lower bound holds if and only if λ(D) = 0 or λ(Dc) = 0.

We now discuss Cartesian products of digraphs. The Cartesian product
G✷H of two digraphs G and H is a digraph with vertex set

V (G✷H) = V (G)× V (H) = {(x, x′) | x ∈ V (G), x′ ∈ V (H)}

and arc set

A(G✷H) = {(x, x′)(y, y′) | xy ∈ A(G), x′ = y′, or x = y, x′y′ ∈ A(H)}.

By definition, we know the Cartesian product is associative and commu-
tative, and G✷H is strongly connected if and only if both G and H are
strongly connected [15].

Theorem 4.8 [22] Let G and H be two digraphs. We have

λ2(G✷H) ≥ λ2(G) + λ2(H).

Moreover, the bound is sharp.

By Proposition 2.1 and Theorem 4.8, we can obtain precise values for the
strong subgraph 2-arc-connectivity of the Cartesian product of some special

digraphs, as shown in the Table. Note that
←→
T m is the symmetric digraph

whose underlying undirected graph is a tree of order m.

5 Minimally Strong Subgraph (k, ℓ)-(Arc-)Connected
Digraphs

5.1 Results for Minimally Strong Subgraph (k, ℓ)-Connected
Digraphs

A digraph D = (V (D), A(D)) is called minimally strong subgraph (k, ℓ)-
connected if κk(D) ≥ ℓ but for any arc e ∈ A(D), κk(D− e) ≤ ℓ− 1 [21]. By
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−→

Cm

←→

C m

←→

T m

←→

K m

−→

Cn 2 3 2 m

←→

C n 3 4 3 m + 1

←→

T n 2 3 2 m

←→

K n n n + 1 n n + m − 2

Table 1. Precise values for the strong subgraph 2-arc-connectivity of some special cases.

the definition of κk(D) and Theorem 4.1, we know 2 ≤ k ≤ n, 1 ≤ ℓ ≤ n−1.
Let F(n, k, ℓ) be the set of all minimally strong subgraph (k, ℓ)-connected
digraphs with order n. We define

F (n, k, ℓ) = max{|A(D)| | D ∈ F(n, k, ℓ)}

and
f(n, k, ℓ) = min{|A(D)| | D ∈ F(n, k, ℓ)}.

We further define

Ex(n, k, ℓ) = {D | D ∈ F(n, k, ℓ), |A(D)| = F (n, k, ℓ)}

and
ex(n, k, ℓ) = {D | D ∈ F(n, k, ℓ), |A(D)| = f(n, k, ℓ)}.

By the definition of a minimally strong subgraph (k, ℓ)-connected di-
graph, we can get the following observation.

Proposition 5.1 [21] A digraph D is minimally strong subgraph (k, ℓ)-
connected if and only if κk(D) = ℓ and κk(D − e) = ℓ − 1 for any arc
e ∈ A(D).

A digraph D is minimally strong if D is strong but D− e is not for every
arc e of D.

Proposition 5.2 [21] The following assertions hold:
(i) A digraph D is minimally strong subgraph (k, 1)-connected if and only if
D is minimally strong digraph;
(ii) For k 6= 4, 6, a digraph D is minimally strong subgraph (k, n − 1)-

connected if and only if D ∼=
←→
K n.

The following result characterizes minimally strong subgraph (2, n − 2)-
connected digraphs.
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Theorem 5.3 [21] A digraph D is minimally strong subgraph (2, n − 2)-
connected if and only if D is a digraph obtained from the complete digraph
←→
K n by deleting an arc set M such that

←→
K n[M ] is a 3-cycle or a union

of ⌊n/2⌋ vertex-disjoint 2-cycles. In particular, we have f(n, 2, n − 2) =
n(n− 1)− 2⌊n/2⌋, F (n, 2, n − 2) = n(n− 1)− 3.

Note that Theorem 5.3 implies that Ex(n, 2, n − 2) = {
←→
Kn −M} where

M is an arc set such that
←→
K n[M ] is a directed 3-cycle, and ex(n, 2, n−1) =

{
←→
Kn −M} where M is an arc set such that

←→
K n[M ] is a union of ⌊n/2⌋

vertex-disjoint directed 2-cycles.
The following result concerns a sharp lower bound for the parameter

f(n, k, ℓ).

Theorem 5.4 [21] For 2 ≤ k ≤ n, we have

f(n, k, ℓ) ≥ nℓ.

Moreover, the following assertions hold:
(i) If ℓ = 1, then f(n, k, ℓ) = n; (ii) If 2 ≤ ℓ ≤ n− 1, then f(n, n, ℓ) = nℓ
for k = n 6∈ {4, 6}; (iii) If n is even and ℓ = n− 2, then f(n, 2, ℓ) = nℓ.

To prove two upper bounds on the number of arcs in a minimally strong
subgraph (k, ℓ)-connected digraph, Sun and Gutin used the following result,
see e.g. [2].

Theorem 5.5 Every strong digraph D on n vertices has a strong spanning
subgraph H with at most 2n − 2 arcs and equality holds only if H is a
symmetric digraph whose underlying undirected graph is a tree.

Proposition 5.6 [21] We have (i) F (n, n, ℓ) ≤ 2ℓ(n − 1); (ii) For every
k (2 ≤ k ≤ n), F (n, k, 1) = 2(n − 1) and Ex(n, k, 1) consists of symmetric
digraphs whose underlying undirected graphs are trees.

The minimally strong subgraph (2, n − 2)-connected digraphs was char-
acterized in Theorem 5.3. As a simple consequence of the characterization,
we can determine the values of f(n, 2, n− 2) and F (n, 2, n− 2). It would be
interesting to determine f(n, k, n − 2) and F (n, k, n − 2) for every value of
k ≥ 3 since obtaining characterizations of all (k, n − 2)-connected digraphs
for k ≥ 3 seems a very difficult problem.

Problem 5.7 [21] Determine f(n, k, n − 2) and F (n, k, n − 2) for every
value of k ≥ 3.

It would also be interesting to find a sharp upper bound for F (n, k, ℓ) for
all k ≥ 2 and ℓ ≥ 2.

Problem 5.8 [21] Find a sharp upper bound for F (n, k, ℓ) for all k ≥ 2
and ℓ ≥ 2.
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5.2 Results for Minimally Strong Subgraph (k, ℓ)-Arc-Connected
Digraphs

A digraph D = (V (D), A(D)) is called minimally strong subgraph (k, ℓ)-
arc-connected if λk(D) ≥ ℓ but for any arc e ∈ A(D), λk(D− e) ≤ ℓ− 1. By
the definition of λk(D) and Theorem 4.3, we know 2 ≤ k ≤ n, 1 ≤ ℓ ≤ n−1.
LetG(n, k, ℓ) be the set of all minimally strong subgraph (k, ℓ)-arc-connected
digraphs with order n. We define

G(n, k, ℓ) = max{|A(D)| | D ∈ G(n, k, ℓ)}

and
g(n, k, ℓ) = min{|A(D)| | D ∈ G(n, k, ℓ)}.

We further define

Ex′(n, k, ℓ) = {D | D ∈ G(n, k, ℓ), |A(D)| = G(n, k, ℓ)}

and
ex′(n, k, ℓ) = {D | D ∈ G(n, k, ℓ), |A(D)| = g(n, k, ℓ)}.

Sun and Gutin [22] gave the following characterizations.

Proposition 5.9 [22] The following assertions hold:
(i) A digraph D is minimally strong subgraph (k, 1)-arc-connected if and only
if D is minimally strong digraph;
(ii) Let 2 ≤ k ≤ n. If k 6∈ {4, 6}, or, k ∈ {4, 6} and k < n, then a digraph D

is minimally strong subgraph (k, n−1)-arc-connected if and only if D ∼=
←→
K n.

Theorem 5.10 [22] A digraph D is minimally strong subgraph (2, n −
2)-arc-connected if and only if D is a digraph obtained from the complete

digraph
←→
K n by deleting an arc set M such that

←→
K n[M ] is a union of vertex-

disjoint cycles which cover all but at most one vertex of
←→
K n.

Sun and Jin characterized the minimally strong subgraph (3, n− 2)-arc-
connected digraphs.

Theorem 5.11 [24] A digraph D is minimally strong subgraph (3, n −
2)-arc-connected if and only if D is a digraph obtained from the complete

digraph
←→
K n by deleting an arc set M such that

←→
K n[M ] is a union of vertex-

disjoint cycles which cover all but at most one vertex of
←→
K n.

Theorems 5.10 and 5.11 imply that the following assertions hold: (i) For

k ∈ {2, 3}, Ex′(n, k, n − 2) = {
←→
Kn −M} where M is an arc set such that

←→
K n[M ] is a union of vertex-disjoint cycles which cover all but exactly one

vertex of
←→
K n. (ii) For k ∈ {2, 3}, ex

′(n, k, n − 2) = {
←→
Kn −M} where M is

an arc set such that
←→
K n[M ] is a union of vertex-disjoint cycles which cover

all vertices of
←→
K n.

Sun and Jin completely determined the precise value for g(n, k, ℓ). Note
that (n, k, ℓ) 6∈ {(4, 4, 3), (6, 6, 5)} by Theorem 4.3 and the definition of
g(n, k, ℓ).
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Theorem 5.12 [24] For any triple (n, k, ℓ) with 2 ≤ k ≤ n, 1 ≤ ℓ ≤ n− 1
such that (n, k, ℓ) 6∈ {(4, 4, 3), (6, 6, 5)}, we have

g(n, k, ℓ) = nℓ.

Some results for G(n, k, ℓ) were obtained as well.

Proposition 5.13 [24] We have (i) G(n, n, ℓ) ≤ 2ℓ(n − 1); (ii) For every
k (2 ≤ k ≤ n), G(n, k, 1) = 2(n − 1) and Ex′(n, k, 1) consists of symmetric
digraphs whose underlying undirected graphs are trees; (iii) G(n, k, n− 2) =
(n− 1)2 for k ∈ {2, 3}.

Note that the precise values of g(n, k, ℓ) for each pair of k and ℓ and
the precise values of G(n, k, n − 2) for k ∈ {2, 3} were determined. Hence,
similar to problems 5.7 and 5.8, the following problems are also interesting.

Problem 5.14 [24] Determine G(n, k, n − 2) for every value of k ≥ 2.

Problem 5.15 [24] Find a sharp upper bound for G(n, k, ℓ) for all k ≥ 2
and ℓ ≥ 2.
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