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We propose a method for correcting image distortion due to camera lenses by calibrating
intrinsic camera parameters. The proposed method is based on image registration and
doesn’t require point-to-point correspondence. Parameters of three successive transfor-
mations –– view change, radial distortion and illumination change –– are estimated using
the Gauss-Newton method. Estimating all 19 unknowns simultaneously, we introduce
the implicit function theorem for calculating the Jacobian. To avoid local minima, we
first estimate parameters for view change and employ coarse-to-fine minimization. Ex-
perimental results using real images demonstrate the robustness and the usefulness of
the proposed method.

Keywords: distortion correction, intrinsic camera parameters, camera calibration, non-
linear optimization

1. Introduction

1.1. Background

Calibrating a camera and correcting image distortion are important processes for
computer vision. Many approaches on calibrating extrinsic camera parameters or
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recovering 3D structure (for examples, see 1,2,3,4) formulate the problems with-
out considering distortion because of simplicity. However, distortion is inevitable
when we use an ordinary lens installed on an inexpensive camera or a zoom lens;
sometimes a point may be displaced more than ten pixels around the corner of
the image due to distortion. Although self-calibration with a fundamental matrix5

has been studied well recently, such studies don’t take into account barrel or pin
cushion distortion. Pre-calibration of intrinsic camera parameters and correction
of distorted image are thus required preprocesses for such research and to produce
quality images.

For researchers’ convenience, some computer codes to calibrate intrinsic pa-
rameters have been made available through the internet (e.g., Tsai’s method6,7

implementation,8 or Intel CV library9). However, such ordinary techniques10,11,12,13

require a number of correspondences between a point in the image and a feature
point at the known three-dimensional coordinates (on a plane or on some structure
like a cube or a house) to estimate the parameters of the transformation of the
corresponding points.

When the correspondences are established manually, errors can be generated
by human operation and this compromises reliability. Moreover, it takes much
time and patience. For example, it is too hard to measure distortion parameters
repeatedly as changes in camera zooming.

An alternative procedure is to detect markers such as corners,10,11 circles,13

curves14 or intersections. This can be performed by edge detection or template
matching techniques that can be performed on a subpixel accuracy. However, an-
other correspondence problem arises: When there are many feature points in a
space, how do we decide which should correspond to a point on an image? The
problem increases as the number of the markers increases in order to improve the
estimation accuracy. Even if the problem can be avoided,15 the number of points
for the correspondence is still limited.

In this paper, we propose a new method for correcting image distortion due to
camera lenses by calibrating intrinsic camera parameters. The proposed method
establishes the correspondence between a calibration pattern (the ideal image) and
a distorted picture of the pattern taken by a camera. The correspondence is based
on an image registration that is often used for motion analysis. The estimation is
expected to be more precise than approaches involving marker detection because
this method uses all points of the image rather than just using relatively few marker
points. The proposed method estimates the parameters of the transformations of a
plane under perspective projection, radial distortion and spatial linear illumination
change by a nonlinear optimization technique that minimizes the residuals between
two images.

1.2. Image registration for distortion

The basic idea is that correspondence between points is necessary for calibra-
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tion: registration can satisfy this requirement. The proposed method establishes
the correspondence between an ideal calibration pattern I1 and a distorted image
I2 of the printed pattern observed by a camera. The observation is modeled by
three transformations (see Fig.1); view change u, distortion d, and illumination
variation H . I2 is regarded as an image generated from I1 by applying the three
functions. Using the image registration technique, the proposed method estimates
the parameters of the functions by minimizing the difference between I1 and I2,
that is, the sum of the squares of the intensity residuals between the two images.

The procedure of the proposed method is as follows. First, prepare calibration
pattern I1. Any digital image (taken by a digital camera, scanned photo or CG)
can be used as the pattern. Second, print the pattern on a sheet of paper using a
printer (we assume that the printer makes an ideal print). Third, use the camera to
be calibrated to acquire an image I2 of the printed pattern I1. Finally, register the
pattern I1 and the observed image I2 to determine the parameters of the functions
u, d and H .

Some researchers use the image registration to calibrate extrinsic camera
parameters1 or mosaicing.2,16 The problems with employing the image registra-
tion technique in a straightforward manner are that a nonlinear function f (the
inverse of d) is often used to model the distortion, and that the function d is not
expressed in a closed-form but is rather implemented by an iterative procedure. We
require that the gradient of d is known to be used by gradient-based optimization,
however, it is difficult to obtain the gradient because d is a procedure. Although
this problem occurs when the distortion parameters are estimated, there is no ac-
count taken of it in fish-eye lens mosaicing.16 We introduce the implicit function
theorem17,18 to obtain the Jacobian of d, not d itself. This enables us to see the
registration-based intrinsic/extrinsic parameter calibration as a unified approach
including lens distortion and illumination variation.

Some registration-based methods have been developed,16,19 but they require
rotating a camera around a projection center for taking two (or more) pictures. In
contrast, our method needs only one picture from any viewpoint.

In section 2, we explain models of image transformation including view change,
distortion and illumination variation. We then describe the algorithm of registration
based on a nonlinear optimization in section 3. Finally, we present the experimental
results in section 4.

2. Models of Transformations

In this section, we describe the model of transformation between the calibration
pattern I1 and the observed image I2. The transformation comprises three subse-
quent operations. The first is a change of view from pattern I1 to a printed sheet
in a 3D space, the second is the displacement from the projection of the sheet due
to distortion, and the last is the illumination change that alters the intensity of the
pattern.
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Figure 1: Observation I2 of the calibration pattern I1 modeled by three transfor-
mations.

2.1. Modeling view change

Given two images of the same planar object from different viewpoints, the rela-
tionship between them is described by a planar perspective motion model with eight
parameters.2,20 As shown in Fig.2, I1 and I2 can be considered as the different views
of the same plane because of the following reason. Since I1 is just a digital image,
I1 is a plane exactly identical to the image plane. The printed sheet is regarded as
a plane transformed from the plane of I1, and I2 is the projection of the sheet onto
the image plane having a slight displacement due to the distortion.

The model warps a point p = (x, y)T on I1 into the corresponding point on I2,
pu = (xu, yu)T , using the function u of θu = (θu

1 , . . . , θu
8 )T as follows.2

pu = u(p, θu) =
1

θu
1 x+θu

2y+1

(
θu
3x+θu

4y+θu
5

θu
6x+θu

7y+θu
8

)
(1)

The Jacobian of u is given2 by

∂u

∂θu =
(−x2 −xy x y 1 0 0 0
−xy −y2 0 0 0 x y 1

)
(2)

2.2. Modeling distortion

The relationships between undistorted and distorted coordinates in an image
(shown in Fig.3) are often modeled by five intrinsic camera parameters21,6: the ra-
dial distortion parameters κ1 and κ2, the coordinates of image center (cx, cy)T , and
the horizontal scale factor sx. We write these parameters as θd = (θd

1 , . . . , θd
5) =

(κ1, κ2, cx, cy, sx)T . Although we consider only the radial distortion, the following
discussion can also be applied when another model involving decentering distortion22,23

is employed.
Distortion is represented with respect to the image center (cx, cy)T . Let pu =

(xu, yu)T be a point in I2 without considering distortion, that is, pu = u(p); pu

is moved to pd = (xd, yd)T by the radial distortion. Here we have two functions
between pu and pd.

pd = d(pu, θd) (3)
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Figure 2: Relationship between I1 and I2.
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Figure 3: Distortion model

pu = f(pd, θd)=


 xd−cx

sx
(1+κ1R

2+κ2R
4)+cx

(yd−cy)(1+κ1R
2+κ2R

4)+cy


 (4)

where R =
√

((xd − cx)/sx)2 + (yd − cy)2. f and d are the inverse of each other,
and d is not a closed-form function of pu but is implemented by an iterative
procedure21 (see Appendix A).

In addition to the Jacobian of u, the Jacobian of d is also needed for a gradient
method. Here we introduce the implicit function theorem17 for systems18. This
theorem can represent the Jacobian of d as an explicit form through f . Let F be
a function of q = (pu, θd) and pd represented by

F (q, pd) = pu − f(pd, θd) (5)

If F (q, d(q)) = 0 is satisfied for ∀q, then pd = d(q) is called an implicit function
determined by F (q, pd) = 0. In our case, the condition is theoretically always
satisfied because we defined d as the inverse of f , and numerically Eq.(5) is almost
0 (it can be less than 10−10).

According to the theorem, the Jacobian is given by the following equations.

∂d

∂q
= − ∂F

∂pd

−1 ∂F

∂q
= − ∂F

∂pd

−1 (
∂F

∂pu

∂F

∂θd

)

= −
(

∂F

∂pd

−1∂F

∂pu

∂F

∂pd

−1∂F

∂θd

)
(6)

unless
∂F

∂pd
is singular. On the other hand, the Jacobian can also be decomposed
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into two parts as follows.
∂d

∂q
=

(
∂d

∂pu

∂d

∂θd

)
(7)

Therefore, the second part is the desired gradient of d.

∂d

∂θd
= − ∂F

∂pd

−1 ∂F

∂θd
= − ∂f

∂pd

−1 ∂f

∂θd
(8)

The first part is the differential of d with respect to pu = u(p) (this is also used in
the later formulation).

∂d

∂pu
= − ∂F

∂pd

−1 ∂F

∂pu
=

∂f

∂pd

−1

(9)

According to Eq.(4), the elements of the Jacobian are as follows.24

∂f

∂θd
=




R2 xd − cx

sx
R2(yd − cy)

R4 xd − cx

sx
R4(yd − cy)

∂xu

∂cx

∂yu

∂cx
∂xu

∂cy

∂yu

∂cy

∂xu

∂sx

∂yu

∂sx




,
∂f

∂pd
=




1− ∂xu

∂cx
−∂yu

∂cx

−∂xu

∂cy
1− ∂yu

∂cy


 (10)

where

∂xu

∂cx
= 1− 1

sx
(1 + κ1R

2 + κ2R
4)− 2(κ1 + 2κ2R

2)
(xd − cx)2

sx
3

(11)

∂yu

∂cx
= −2(κ1 + 2κ2R

2)
xd − cx

sx
2

(yd − cy) (12)

∂xu

∂cy
= −2(κ1 + 2κ2R

2)
xd − cx

sx
(yd − cy) (13)

∂yu

∂cy
= 1− (1 + κ1R

2 + κ2R
4)− 2(yd − cy)2(κ1 + 2κ2R

2) (14)

∂xu

∂sx
=
−(xd − cx)

sx
2

(1 + κ1R
2 + κ2R

4)− 2(κ1 + 2κ2R
2)

(xd − cx)3

sx
4

(15)

∂yu

∂sx
= −2(yd − cy)(κ1 + 2κ2R

2)
(xd − cx)2

sx
3

(16)

2.3. Modeling illumination variation

A point p in I1 is transformed into the point pd in I2 by view change and
distortion. However, the intensities of the corresponding points will not be identical
because gray level of the sheet on which I1 is printed is different from the original
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one. The intensity of I2 also depends on the exposure of the camera, illumination
of the environment, and so on.

We take the following function as a model of intensity change:

H(I(p), p, θh) = (θh
1 + θh

2x + θh
3y)I(p) + (θh

4 + θh
5 x + θh

6y) (17)

where θh = (θh
1 , . . . , θh

6 )T . This model represents both the gain and bias as spa-
tial linear functions. This is not an exact model, but it can deal with simple
changes in illumination.25 There has been an attempt to eliminate the variations
in illumination,26 although it is not applicable to our case because it finds basis
images from a set of images containing at least three different planes in a scene.

3. Minimization with Some Arrangements

In this section, we describe how to estimate the parameters of the functions u,
d and H . Image registration seeks to minimize the residuals ri of intensities of the
two images, I1 and I2.

ri = I1(pi)−H(I2(pd
i ), p

d
i , θ

h) (18)

pd
i = d(pu

i , θd) (19)

pu
i = u(pi, θ

u) (20)

The function to be totally minimized is the sum of squares of the residuals over the
image I1.

min
θ

∑
i

ri
2 , pi ∈ I1 (21)

where θ = (θ1, . . . , θ19)T = (θu, θd, θh)T .
Estimating the parameters θ, the objective function is minimized by the Gauss-

Newton method, a nonlinear optimization technique.27 The parameters are updated
with some initial value by the following rule.

θ ← θ + α δθ (22)

The decent direction δθ = (δθ1, . . . , δθ19)T is calculated as follows27:

δθ = −(JT J)−1JT r (23)

J =
∂r

∂θ
(24)

where r = (r1, r2, . . .)T . This is the same as the least square formulation, that is,
the system of linear equations28 written as

∑
i

∑
l

∂ri

∂θk

∂ri

∂θl
δθl = −

∑
i

ri
∂ri

∂θk
(25)
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for k = 1, . . . , 19 (the number of parameters). The partial derivatives are the ele-
ments of the following Jacobian obtained by the chain rule of vector differentiation.27

∂r

∂θ
=

( ∂r

∂θu

∂r

∂θd

∂r

∂θh

)
(26)

∂r

∂θu =
∂r

∂H

(
∂H

∂I2

∂I2

∂pd
+

∂H

∂pd

)
∂d

∂pu

∂u

∂θu

= −
(

∂H

∂I2
∇I2(pd) +

∂H

∂pd

)
∂f

∂pd

−1 ∂u

∂θu (27)

∂r

∂θd
=

∂r

∂H

(
∂H

∂I2

∂I2

∂pd
+

∂H

∂pd

)
∂d

∂θd

=
(

∂H

∂I2
∇I2(pd) +

∂H

∂pd

)
∂f

∂pd

−1 ∂f

∂θd
(28)

∂r

∂θh
= −(I2(pd) xdI2(pd) ydI2(pd) 1 xd yd) (29)

Once the direction is decided by solving the system of equations in Eq.(25), the
step length α is optimized by line minimization.29 Update by Eq.(22) is repeated
until it converges. At each iteration, the parameters estimated in the previous
iteration are used for the current Jacobian.

3.1. Interpolating pixel value

When we want to obtain the intensity of a pixel whose coordinate is not on the
integer grid (as frequently occurs), we need to interpolate the intensity using the
values of the pixels that are already located on the grid. For this purpose, we use
the bilinear interpolation30 , a simple and fast method, which interpolates using the
values of four neighboring pixels on a rectilinear grid.

3.2. Initial state

At the beginning of the iteration, we use the following initial value for each of
the parameters:

θu ← (0, 0, 1, 0, 0, 0, 1, 0)T (30)

θd ← (κ0
1, 0,

w

2
,
h

2
, 1)T (31)

θh ← (1, 0, 0, 0, 0, 0)T (32)

where w and h represent the width and height of I2, and κ0
1 is the initial value

randomly selected for κ1 to prevent the differentials of κ1 and κ2 (Eqs.(11)∼(14))
from always being 0 by initializing κ1 = κ2 = 0. We empirically choose κ0

1 ∈
[−10−7, 10−7].

3.3. Partial optimization
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If there is a large error in estimates at the beginning of the minimization, the
estimation is unstable because the number of parameters is relatively large, and θh

changes the intensity of the observed image.
Even though, the initial values of the estimates are always set to the values

mentioned above and the minimization sometimes falls into a local minimum. To
avoid the instability in the early stage of estimation, we perform the optimization
for only some of the parameters, not all of them; only θu is estimated, while θd

and θh are unchanged. This is called search space decomposition.31 There is no
guarantee of convergence, but it reduces the dimension of the search space and
stabilize the estimation. After the estimation of θu converges, we estimate all of
the parameters.

However, a good initialization is needed for a large distortion (see section 4.2).

3.4. Coarse-to-fine

To reduce computational time and to perform precise estimation even when
there is a relatively large error in the initial state, we employ a strategy for shifting
from a coarse resolution to a fine resolution (known as coarse-to-fine strategy. 19)
First, we use blurred images with a large Gaussian kernel then change the filter to
a smaller Gaussian kernel and repeat the optimization.

3.5. Correcting distortion

After estimating the parameters of the distortion θd, we can correct the distor-
tion and obtain the corrected image I ′

2 by using the following relation.

I ′2(p) = I2(d(p, θd)) (33)

Once we obtain the distortion parameters, we can use them for correction as long
as the lens zoom is unchanged.

4. Experimental Results

4.1. Correcting distortion

We conducted experiments with the proposed method using real images taken by
a camera having a zoom lens. We used a scanned photograph as the calibration pat-
tern (shown in Fig.4), printed it with a laser monochrome printer (Apple Laserwriter

16/600 PS), and then captured images of the printed sheet by a CCD video camera
(Sony EVI-D30) with a video capture device (IO-DATA GV-VCP2M/PCI) installed in
a PC. We placed the printed pattern in front of the camera almost parallel to the
image plane. The captured image of the pattern is shown in Fig.5(a). We also took
an image of a grid pattern (shown in Fig.5(c)) to help visualize the correction of
distortion.

Figure 5(b) and (d) show the images corrected by Eq.(33) with the estimated
parameters using Fig.5(a) as I2. In the corrected image Fig.5(d), the curved lines
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Figure 4: Calibration pattern (640×480)

(a) (b)

(c) (d)

Figure 5: Experiment results of the proposed method. (a) Image of the calibration
pattern taken by the camera at the widest view angle (640×480). (b) Corrected
image of (a). (c) Image of the grid pattern. (d) Corrected image of (c).
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Figure 6: Convergence of the estimation. Horizontal axis is the number of iterations
to update the estimates; vertical axis represents the sum of squares divided by the
number of points in I1.

on the grid pattern in the distorted image are corrected to straight lines, so the
proposed method works well. The computational time was about 20 minutes on
a PC (866MHz CPU, GNU C++ and CLAPACK). However, the optimization had
almost converged after fewer than 30 iterations.

We can see the convergence in Fig.6, which shows the sum of the squares of the
intensity residuals of the first 25 iterations. As we mentioned in section 3.3, only
θu was estimated in the early stage of the iteration while θd and θh were fixed to
their initial value. After the estimation of θu had converged (16 iterations), the
minimization using all parameters began and converged after several iterations.

To visualize the convergence, we produced a synthetic image which is trans-
formed from I1 by using u, d and H with current estimates at every step. Each
image of Fig.7 illustrates the difference between I2 and the synthesized image. At
the first iteration, the two images were quite different and the difference image had
many dark pixels. After 25 iterations, the estimation had converged and the sub-
traction image had few dark pixels, which means that the synthetic image and I2

became quite similar to each other and the estimation result was good.

4.2. Distortion parameters while changing zoom

The advantage of the proposed method is convenience for the human operator.
The requirements are just a printed pattern and one captured image of it; a batch
process is then called without any manual operations. This simplicity enables us
to see the distortion parameter change that arises due to changing the zoom of the
camera, while point correspondence-based conventional methods require an enor-
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I2 synthesized image = I1

at 0 iteration
0 iteration

1 iteration 3 iteration 6 iteration

11 iteration 17 iteration 18 iteration

25 iteration

I2 synthesized
image at 25
iterations

Figure 7: Visualizations of the convergence of the estimation. Each image shows the
subtraction image between the observed image I2 and the synthesized image with
the current estimates. The more the subtraction is white, the better the parameters
are estimated.
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(a) zoom=0 (b) zoom=455

Figure 8: Captured images with different zoom parameters.

mous number of selection of points input by a mouse. The camera that we used in
the experiment above has a zoom lens whose zooming can be controlled by receiving
a command32 through a serial communication port, so that we can accurately plot
the distortion parameters against zooming.

In general, an image captured by a zoom lens with wide view angle has barrel
distortion (κ>0). At the tele side of the zoom the distortion is pin cushion (κ<0),
and there is a range of zoom with no (or very small) distortion between them.
As shown in Fig.8(a) and (b), this zoom lens has large barrel distortion at the
widest view angle (zoom=0), and very small distortion at the middle view angle
(zoom=455). The estimated parameters reflect this observation.

Figures 9(a)∼(e) show the estimated parameters of 44 zoom settings. The hor-
izontal axis represents the zooming between 0 and 455; 0 is the widest view angle
(48.8 degrees), and the maximum zoom of this lens is 1023 (4.4 degrees).

In Fig.9(a), we can see that the distortion parameter κ1 monotonically decreases
as the camera zooms in, while in Fig.9(b) κ2 increases and changes its sign from
negative to positive. cx, cy and sx are shown in Figs.9(c)(d) and (e). Apparently,
cx and sx change and cy stays, however, these three parameters become less precise
when κ1 (and κ2) is small because, if there is no distortion (κ1 = κ2 = 0), the
image center and the scale factor are indefinite. Furthermore, the estimation of sx

becomes inaccurate as the distortion becomes small. The reason is the combined
use of the view change and the distortion transformations; the view change stretches
the image horizontally while the distortion makes the stretched image shrink with
sx < 1. Therefore, the calibration of the scale factor is difficult for small distortion.

To confirm that the estimated parameters are consistent with what we see in
Fig.8, we computed the displacement of the corner (640,480) due to the distortion
using the estimated parameters†(see Fig.10(a)). The displacement is defined as the

†we forced sx = 1 because of the reason described above.
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distance between pd and pu using Eq.(3) and Eq.(4), and the negative value means
the pin-cushion effect that the point is moved toward to the image center. We
can see the contribution of κ1 to the distortion by letting κ2 = 0, and vice versa.
Actually, κ1 is dominant when the zooming is wide, but the effect of κ2 becomes
larger than that of κ1 when the zooming goes to the tele side. Although the effect
of κ2 is the pin cushion distortion at wide view angle, totally the radial distortion
is the barrel distortion for all zooming as shown in Fig.10(b).

Note that the horizontal axis in Fig.9 and Fig.10(a) is not identical to the focal
length of the camera but is just a parameter to control zooming of the lens. The
zooming parameter is related to the focal length, but it doesn’t mean that the
parameter is linearly proportional to the focal length.

4.3. Severe distortion and convergence

Another result of correcting a distorted image is shown in Fig.11. Figure 11(a)
is a grid pattern captured by another camera (Sony DXC-200A) with a wide angle
lens (Sony VCL-4V10XEA). Figure 11(b) is the image corrected using the proposed
method. For such severe distortion, the proposed method requires an appropriate
initial state for the parameters to avoid falling into local minima. Instead of using
the values in section 3.2, in this case, we decided the initial state as follows. We
chose the coordinates of four corners of the pattern in the captured image and solved
Eq.(1) as a system of equations with eight unknowns, then used the solution as the
initial state of θu. We also set κ0

1 to 1e-6; this larger positive value represents severe
barrel distortion. Partial optimization is also slightly changed. We first fixed θd

and θh, then fixed θh, and finally estimated all parameters.
These devices seem to be ad hoc. Therefore, much more sophisticated global

optimization techniques should be used for large distortion. Even for small distor-
tion, the optimization may fall into local minima because there are 19 unknowns.
Nevertheless, the proposed method described in section 3 was executed 44 times to
plot Fig.9 without any change or any interaction, and worked well throughout the
experiment. The reason is that the distortion is relatively small (κ1 is less than
4e-7) and the pattern occupied a large area in the captured image.

4.4. Mosaicing using corrected images

One of the applications of this method is improving the mosaicing of images.
Using two distorted images (Fig.12(a) and (b)), mosaicing is imperfect as seen
in Fig.13(a) (at the corner of the original image in Fig14(a) and (b) where the
displacement of distortion is severe). In contrast, the mosaic shown in Fig.13(b)
composed of two images (Fig.12(c) and (d)) corrected by the proposed method is
correctly generated. The images were taken by a digital camera (Olympus CAMEDIA

C-960ZOOM).

5. Conclusions
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Figure 9: Change of the intrinsic parameters. (a) Distortion parameters κ1 and
(b) κ2. (c) Image center cx and (d) cy. (e) Scale factor sx. The horizontal axis
represents the zooming of the camera; left edge of the graph is the wide side and
right is the tele side of zoom.
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Figure 10: Contribution to the distortion by the distortion parameters. (a) Changes
of the distortion contributed by κ1, κ2 and both κ1 and κ2 at the corner (640,480).
(b) Magnitude of the distortion with two zoom parameters, and the horizontal axis
is the distance from the image center. The distance from the center to the corner
(640,480) is 400.
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(a) (b)

Figure 11: (a) Severely distorted image (about 85 degrees horizontal and 62
degrees vertical view angles). (b) Corrected image. Estimated parameters :
θd = (1.72e-6, 1.09e-11, 305, 227, 1.026)

We have proposed a new method for correcting image distortion due to camera
lenses by calibrating intrinsic camera parameters without any manual operations.
The proposed method is based on image registration and consists of a nonlinear op-
timization to estimate parameters including view change, distortion, and illumina-
tion variations. Experimental results using real images demonstrated the efficiency
of the proposed method. The nonlinear optimization takes some time but is fast
enough to run as a batch process. We have shown two applications of the pro-
posed method: measuring distortion parameters with changes in camera zooming
and image mosaicing using corrected images.

So far the results of the correction have been evaluated qualitatively because the
actual intrinsic camera parameters are unknown. A quantitative evaluation of the
estimates is planned for the future.
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Appendix A

The iterative procedure21 to compute pd from pu for given parameters θd is
shown below. Unlike the formulation in section 2.2, coordinate system of the points
is represented with respect to the image center (not to the top-left corner). Starting
with (xv0, yv0) = (xu, yu), the following equations are used to update (xvi, yvi).

xvi =
xu

1 + κ1r2
i−1 + κ2r4

i−1

(1)

yvi =
yu

1 + κ1r2
i−1 + κ2r4

i−1

(2)



T.Tamaki, T. Yamamura and N. Ohnishi

(a) (b)

(c) (d)

Figure 12: (a) Left side and (b) right side of the original images of a bookshelf.
(c) Left side and (d) right side of the corrected images. Estimated parameters :
θd = (5.15e-7,−5.06e-13, 298, 242, 0.975)

where ri =
√

x2
vi + y2

vi. After k iterations the update converges (at most eight times
iterations is enough21 to achieve a good approximation), then we take (xd, yd) =
(sxxvk, yvk).
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