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An image-based model reconstruction system is described in this paper where real im-
ages of a rigid object acquired under a simple but controlled environment are used to
recover its three dimensional geometry and its surface texture. Based on a multi-image
calibration method, an algorithm to extract the rotation axis of a turn-table has been
developed. Furthermore, this algorithm can be extended to estimate robustly the initial
bounding volume of the object to be modeled. The coarse volume obtained is then carved
using a stereo correction method which removes the disadvantages of silhouette-based
reconstruction by photoconsistency. The concept of surface particles is adapted in order
to extract a texture map for the model. Some existing metrics are used to measure the
quality of the reconstructed models.

Keywords: Camera calibration; shape from silhouettes; shape from photoconsistency;
surface texture extraction.

1. Introduction

Realistic looking three dimensional (3D) models are important components of
virtual reality environments. They are used in many multimedia applications
such as 3D virtual simulators, 3D educational software, 3D object databases and
encyclopedias, 3D shopping over the Internet and 3D teleconferencing. The vir-
tual environments has enabled the user to interact with the models. The user can
therefore

• rotate, scale, or even deform the models;
• observe the model under different lighting conditions;
• change the appearance (color, material, etc.) of the model;
• observe the interaction of the model with the other models in the environment,
etc.
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The most common way of creating 3D models for virtual reality environments
is manual design. This approach is very suitable for the creation of models of non-
existing objects. However, it is cost expensive and time consuming. Furthermore,
the accuracy of the designed model for a real object may not be satisfying. In
fact, the number of vertices of a simple model varies between 10000 and 100000,
which is relatively high for a manual design. In a second approach, the geometry of
real objects can be acquired using a system that captures 3D data directly. Such
systems are constructed using expensive equipments such as laser range scanners,
structured light, touch-based 3D scanners, or 3D digitizers. In most of these active
scanning systems, the texture of the model is not captured while the geometry of the
object is acquired precisely as a set of points in the 3D space. This set can then be
converted to polygonal model representations for rendering.1 In a third approach,
the model of a real object can be reconstructed from its two dimensional (2D)
images. This technique is known as image-based modeling. Using an off-the-shelf
camera, considerably realistic looking models with both geometry and texture can
be reconstructed.2–9 However, the reconstruction of a complex rigid object from
its 2D images is still a challenging computer vision problem under general imaging
conditions. Without a priori information about the imaging environment (camera
geometry, lighting conditions, object and background surface properties, etc.), it be-
comes very difficult to deduce the 3D structure of the captured object. For practical
purposes, the problem can be simplified by using controlled imaging environments.
In such an environment, the camera makes a controlled motion around the object,
and the background surface and lighting are selected to reduce the specularities on
the acquired images.3,4,9–17

The aim of this paper is to investigate the reconstruction of 3D graphical models
of real objects in a controlled imaging environment as well as to present the work
done in our group for such a reconstruction. Our study towards creating 3D object
models fit in the category of image-based modeling. Our image-based modeling
system consists of four major steps: image acquisition, camera calibration, geometry
reconstruction and texture reconstruction. The overall system diagram is shown in
Fig. 1. The acquisition is not performed in a very well controlled environment where
the object is placed on a turn-table which rotates approximately 10 degrees at each
turn, and the images are captured under daylight. As a result, the reconstructed
geometry of the model is not precise and it directly affects the quality of the texture.
Our acquisition setup is made up of a rotary table with a fixed camera as shown
in Fig. 2.

The rotary table used in our system is custom made and is designed to offer a
cheap solution. The rotary table rotates approximately 10 degrees each turn step
which has a precision of 1 degree. Our CCD camera is the UNIQ1000 model having
a resolution of 1294× 1030 pixels. Although our camera is not a cheap one, all off-
the-shelf cameras can be plugged into our system easily to produce an inexpensive
3D scanner.

With a fixed camera and a turn-table setup, a basic view plan where the camera
turns around the object with respect to the turn-table steps can be handled. The
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Fig. 1. System diagram.

Fig. 2. System setup.

results obtained by using our setup show that acceptable quality on 3D geometry
and texture is attainable by using such a setup up to 20 degrees turn-table rota-
tions. On the other hand the quality of the reconstruction results can be increased
by increasing the number of camera viewing positions. More sophisticated camera
motion can be obtained by rotating the c-arm around the object where the camera
is plugged on and then moving it up and down. This type of setup is a solution for
bigger objects and once calibrated it eliminates camera calibration pattern place-
ment at the same scene with the object. Still such equipment can be easily plugged
in our system with an increasing hardware cost.

In order to compute the parameters of the camera, we use a multi-image cali-
bration approach.8 The rotation axis and the distance from the camera center to
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this rotation axis remain the same during the turns of the table. Based on this idea,
we have developed a vision-based geometrical calibration algorithm for the rotary
table.11 Furthermore, we can easily compute the distance between the rotation axis
of the table with respect to the camera center which in fact facilitates the calcula-
tion of the bounding box.7 Once the bounding volume is obtained, a coarse model of
the object is computed by carving it out based on its silhouettes. However there are
also disadvantages of the silhouette-based reconstruction algorithm. Pertaining to
this, we have implemented a multi-image shape from photoconsistency refinement
algorithm which removes these disadvantages.8 The texture for this 3D model is also
recovered from the acquired images. The model is considered as a surface composed
of particles. The color of each particle is recovered from the images with an algo-
rithm that computes the photoconsistent color for a given particle. Furthermore,
if the color cannot be recovered from the images, it will be interpolated. The re-
presentation of the model is simple; exporting the model to well known graphical
formats such as VRML (Virtual Reality Meta/Modeling Language) is easy. This
enables web publishing of the results.

Although many parts of the described system are well-known in various litera-
ture and in practice, there are other contributions of this study which can be stated
as follows:

(i) developing a vision-based calibration algorithm and its comparison,
(ii) extraction of the rotary axis,
(iii) estimation of the initial bounding box of the acquired object,
(iv) removing the disadvantages of the reconstruction approach based on silhou-

ettes and volume intersection using photoconsistency,
(v) use of particles for a smooth texture recovery.

The rest of the paper follow the logical bottom-up strategy for a 3D recon-
struction and it is divided into four main sections. Camera calibration is presented
in the next section. Geometry reconstruction is described in Sec. 3. Section 4 gives
the detailed description of our texture recovery algorithms. Results obtained in the
framework of our study are given in Sec. 5. The paper concludes with Sec. 6 in
which we summarize this study and state eventual improvements.

2. Camera Calibration

The purpose of camera calibration is to obtain an estimate of the parameters which
determine the transformation of a point in 3D world to a point in a 2D image by a
camera. This is necessary in order to be able to associate a 3D world point with a
2D image point. Camera calibration is now a mature field and there exists several
methods in this field.18

In a setup consisting of a rotary table with a fixed camera, the camera para-
meters corresponding to the captured images are calculated in three different ways.
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In the first approach, the camera calibration pattern is fixed throughout on the
table and under the object.3 In the second approach, the camera calibration pat-
tern is initially mounted on the rotary table. Images for the views to be used in
reconstruction are taken, followed by the images of the object. All images are taken
from the same positions without the calibration pattern.4 The third and the last
approaches use only but at least three images of the calibraton pattern to deter-
mine the rotation axis position with respect to the fixed camera geometry.11,19 In
the first approach, the size of the calibration pattern depends on the size of the
object while in the second approach two sets of images are taken for each view and
each set of images has to be taken at exactly the same turn angle of the rotary
table. These disadvantages have led us to adopt the third approach in which the
extracted rotation axis definition with respect to the fixed camera can be used in
order to simplify the bounding box estimation. In this calibration approach, it is
possible to calculate external camera parameters with respect to the initial position
and orientation for any rotation around the rotation axis. In order to realize this
third approach, Lavest et al.’s multi-image camera calibration method,20 and the
vision-based geometrical calibration method have been adopted.11,19

2.1. Multi-image camera calibration

One major source of calibration error is the inaccuracy in the 3D to 2D mappings
of the n known points. These can be caused either by the 3D part (inaccuracy in
the fabrication of the geometrical calibration target) or by the 2D part (inaccuracy
in the detection of the projected pattern). Lavest et al. proposed a multi-image
camera calibration approach to simultaneously estimate the precise 3D coordinates
of the geometrical calibration target as well as the intrinsic and extrinsic camera
parameters represented by an unknown vector V.20 The corresponding unknown
vector is expressed in Eq. (1) as:

V =




u0, v0, dx, dy, distx, disty, f ,

X1, Y 1, Z1, . . . , Xn, Y n, Zn ,

T 1
x , T

1
y , T

1
z , α

1, β1, γ1, . . . , Tm
x , Tm

y , Tm
z , αm, βm, γm


 . (1)

In Eq. (1), u0 and v0 represent the pixel coordinates of the principal point of the
image plane, dx and dy are the scale factors of the pixel system in x and y directions,
respectively, distx and disty are the lens distortion components, f indicates the
focal length, n represents the total number of target points, m is the total number
of images taken with different poses of the target, (X i, Y i, Zi) represents the 3D
positions of the target points in the calibration pattern, (T i

x, T
i
y, T

i
z) and (αi, βi, γi)

represent the translation and rotation from the ith world coordinate frame to the
fixed camera coordinate frame. Further details of the method can be found in
Ref. 20.
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Fig. 3. Relations obtained between the camera coordinate frame and the calibration pattern
coordinate frames as a result of the applied camera calibration.

Multi-image calibration process is performed in two phases. In the first phase,
only internal parameters are computed. In the second phase, an image sequence
is acquired where the geometrical target is fixed on the turn-table whose different
poses correspond to different rotation angles of the turn-table. Calibration provides
a set of rotation matrices Ri and translation vectors Ti. For the ith position, the
rigid transformation Qi = [Ri Ti] relates the geometrical calibration target coordi-
nate frame i to the fixed camera coordinate frame. Figure 3 illustrates the situa-
tion with three different calibration target coordinate frame i, j, k corresponding to
different rotation angles of the turn-table.

2.2. Extraction of turn-table rotation axis

Rotation axis of the turn-table with respect to the fixed camera coordinate frame
can be defined by a unit vector u in the direction of the rotation axis and by
the translation vector T ′ perpendicular to u corresponding to the projection of the
optical center of the camera onto the rotation axis as illustrated in Fig. 4.

When the rigid transformations Qi that relates each calibration pattern coor-
dinate frame i to the camera coordinate frame is known, we can then define the
transformation Qij which relates the rigid transformation from target frame i to
target frame j with respect to the fixed camera coordinate frame as follows:

Qij = [Rij Tij ]

= [Rj Tj][Ri Ti]−1

= [RjR
t
i −RjR

t
iTi + Tj] . (2)
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Fig. 4. Rotation axis with respect to the camera geometry.

The corresponding rotation around the axis of the turn-table can be represented
by the quaternion qij :

qij = (cos (θij/2), sin(θij/2)u) , (3)

where θij is the angle of the rotation. The unit vector u remains theoretically the
same for every Rij . Since the quaternion qij can be directly calculated from the
rotation matrix Rij , the unit vector u can also be easily determined. In order to
finalize the determination of the rotation axis of the turn-table the translation vector
T ′ has now to be calculated. For the sake of simplicity and compactness, we consider
with the camera coordinate frame (x, y, z) another orthonormal coordinate frame
(u, v, w) as shown in Fig. 4, where u is the unit vector associated with the rotation
axis and v and w are any two other selected vectors satisfying the orthonormality
property of the new coordinate frame with u. T ′ is the vector pointing to the
rotation axis such that T ′ is perpendicular to u.

As illustrated in Fig. 4, the vectors Tij , T ′, v, and w are all on the same plane
having u as the normal vector. In theory Tij · u = 0. However, before proceeding
further, the application of a numerical correction on Tij can be useful, since in
practice the calculated Tij from Qij may not be perfectly perpendicular to u:

Tij ← Tij − (Tij .u)u . (4)

In the newly defined coordinate frame (u, v, w), T ′ and Tij can be represented
as:

Tij = V




0

v

w


 , T ′ = V




0

v′

w′


 , (5)

where v, w, v′ and w′ are the corresponding coordinate values to be computed on
the plane defined by v and w and V is the rotation matrix defining the rotation
from the (u, v, w) frame to the (x, y, z) frame.
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For any point P = (x, y, z) which is defined in the camera coordinate frame and
situated on the rotation axis we can write:

RijP + Tij = P . (6)

Since P is invariant in any transformation Qij . Equation (6) can also be
expressed by:

(I −Rij)P = Tij . (7)

Using Eqs. (5) and (7) for P = T ′, we can write:

(I − V tRijV )




0

v′

w′


 =




0

v

w


 , (8)

where

V tRijV =



1 0 0

0 cos θij − sin θij

0 sin θij cos θij


 . (9)

Since it corresponds to the rotation around the axis u by θij degree as expressed
in the (u, v, w) frame, from Eqs. (8) and (9) the relation between (v, w) and (v′, w′)
can be defined as: (

v′

w′

)
= H

(
v

w

)
, (10)

where,

H =




1/2
1 + cos θij

2 sin θij

−1 + cos θij

2 sin θij
1/2


 . (11)

Since v = Tij · v and w = Tij · w, using Eqs. (5) and (10) we obtain finally:

T ′ = (vw)H

(
Tij · v
Tij · w

)
(12)

The simultaneous application of the multi-image calibration and the rotation
axis extraction provides very accurate parameter values. During the experiments,
the obtained precision is about 0.2% for the focal length, the rotation angle θij ,
and the direction u of the rotation axis.11,19
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Fig. 5. When each vertex on the bounding rectangle is back projected into the space on a ray
passing from the camera optic center and the vertex itself a set of 3D planes is obtained.

3. Geometry Reconstruction

3.1. Initial bounding box estimation

Every point of the 3D space occupied by the object volume has projections on the
silhouettes of the images. This principle can be used to calculate the coarse object
volume which is in fact a convex hull of the object, only if the camera parameters
and the object silhouettes on the images are known. The first step is to estimate
a bounding box of the object in the space. A bounding box of an object is defined
to be the box having the minimum volume and at the same time including the
object. This initial volume can be calculated easily if the rotation axis of the rotary
table is defined with respect to the camera geometry by the calibration process as
described in Sec. 2.7

A closed bounding volume can be obtained if the silhouette bounding rectangles
from all of the imaging views around an object are backprojected, and then the re-
sultant open volumes are intersected. Assume that the controlled acquisition case
with a rotary table and a fixed camera is considered. Then, the position and direc-
tion of the table’s rotation axis with respect to the fixed camera can be calculated
via camera calibration. By using the rotation axis definition and the related camera
geometry a 3D counterpart for each silhouette bounding rectangle, which is a plane,
can be formed. Each vertex on the bounding rectangle is back projected into the
space on a ray passing from the camera optic center and the vertex itself as seen in
Fig. 5. 3D counterpart Vij = (X,Y, Z) of vertex j, and vij = (x, y) of the bounding
rectangle on image i, can be calculated by using the parametric equation of the
line representing the ray. In this calculation, taking the Z value as the distance
between the camera origin and the rotation axis will result in the corresponding
X and Y values. If this process is repeated for all of the bounding rectangles, we
will obtain a set of 3D planes which are representatives of the 2D rectangles on
the images. Like 2D silhouette bounding rectangles which constrain the object in
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(a) (b)

Fig. 6. Bounding box for (a) a toy (b) a cup.

2D space, these planes constrain the object in space relative to the viewing camera
position from which they are formed. Having these planes in hand, bounding box
estimation becomes finding the minimum box container for all of these planes. An
example for this configuration is shown in Fig. 6.

The initial bounding box found by the method described here is a minimal
one. Although it seems intuitively that the size of the initial bounding box is not
important, it does affect the final resolution of the object. Therefore, we achieve
a higher model resolution. For the same object, with a greater initial bounding
volume, in order to obtain the same detail level on the constructed model, a higher
space subdivision parameter should be used as compared to a smaller bounding
box.

3.2. Voxelization and surface triangulation

Once the bounding box of the object to be modeled is obtained, the next step is to
discretize by dividing it into small cubes or voxels. If each side of the cube is divided
into n voxels, we will get a voxel space V containing n3 voxels. The reconstruction
algorithm then projects each cube in the voxel space V onto the images by using
the related camera parameters. If the projected cube region on any selected image
is totally not contained by the silhouette region, it will be removed from the voxel
space; otherwise, it is kept in the object voxel space. Algorithm 1 basically gives
the idea.10

For the sake of simplicity in texture mapping and visualization of the recon-
structed object in 3D, the volumetric voxel representation can be transformed to
a representation by triangular patches. A simple and practical technique, called
the Marching Cubes Algorithm is generally used to perform such a conversion.21,22

Marching cubes algorithm uses the isolevel information of the vertices of the voxel in
order to interpolate an isosurface passing through the voxel. The source of isolevel
information in the silhouette-based approach is the sequence of silhouette regions
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Algorithm 1 Algoritm to compute the voxels of the voxel space which are not out
of the object.
reset Vobject to voxel space
ForAll voxels in Vobject

ForAll images in the sequence
project voxel on the image
If voxel is out of object silhouette

remove voxel from Vobject

EndIf
EndFor

EndFor

contained in the image sequence. Isolevel values for the vertices of a voxel can be
calculated as 0 or 1 when the projection of the vertex on the images is out of
the silhouette region or in the silhouette region, respectively. However, this type of
approach yields a jagged structured surface. A finer surface can be obtained if the
isolevel value of the vertices represents the distance between the projected point
position and the silhouette region boundary on the images.9 Vertices inside the ob-
ject volume produce negative while the outer ones produce positive isolevel values.
In between two vertices having isolevel values with different signs binary search can
be applied in order to find the intersection of the surface and the voxel edge where
the isolevel value is exactly equal to zero.

3.3. 3D model fine tuning by shape from photoconsistency

Silhouette-based 3D reconstruction from an image sequence constructs the approx-
imated visual hull of the object, though volume intersection by using images of an
object has some important features like:

(i) Approximated (inferred) visual hull of an object is the maximal shape that
gives the same silhouette as the actual object for all used camera views in the
volume intersection process.23 Therefore it is guaranteed to enclose the object;

(ii) As the number of images used in volume intersection is increased, better
approximation of a visual hull is obtained. That is if the volume of the inferred
visual hull decreases monotically as the finite set of used images increases. If
an infinite number of different camera viewpoints is used, the exact visual hull
of the object can be obtained by volume intersection.

Some excess volume is produced in the resultant visual hull because of the
concavities existing on the 3D object and the insufficient camera viewing variety.

In order to improve the 3D reconstruction results of the silhouette-based
approach, additional photometric information existing in the acquired image
sequence can be used. In the practical turn-table and a fixed camera acquisi-
tion environment, if the turn angle between each acquisition step is smaller than
180 degrees, the consecutive images from the sequence would contain the same
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object regions as what the object topology permits. The area of these common
observation regions for the consecutive camera positions increases as the turn step
angle decreases. In the approximated visual hull of the object obtained from a finite
set of object images, each surface voxel has a set of images from which the voxel
can be seen. If it is assumed that surface voxels of the approximated visual hull
represents real object surface, and they are placed at the correct depth positions,
stereo theory says that their projections on the images from which they can be
seen must be corresponding regions. In other words voxels in the approximated
visual hull, having correct depth placement, have photoconsistent projections on
the images from which voxels are seen without occlusion.

Using color consistency in volumetric voxel spaces is first introduced by Seitz and
Dyer,24 and the idea, theory and algorithm of using photoconsistency and carving
have recently been improved by several researchers.10,24–27 The algorithm using
photoconsistency is generally known as “Voxel coloring”. Starting from an initial
set of opaque voxels, the voxel coloring algorithm carves or makes transparent
the voxels that are not photoconsistent as it iterates on the opaque voxels. The
algorithm stops when all the opaque voxels are color consistent.

In order to test the photoconsistency of an individual voxel, the image set from
which the voxel is visible must be determined correctly and efficiently. Visibility
checking is the elusive part of the algorithms based on photoconsistency since
opaque voxels occlude each other in a complex and constantly changing pattern
as carving progresses. To simplify visibility checks Seitz and Dyer used the ordinal
visibility constraint on the camera locations bringing single pass visibility test for all
opaque voxels.24 However the ordinal visibility constraint is a significant limitation
since it requires all camera locations to be placed at one side of the scene. Solutions
for arbitrary camera placement have been proposed by using multiple plane sweeps
along the positive and negative directions of each coordinate axes,26 and by using
special data structures named as item buffers and layered depth images.25

Instead of using item buffers or layered depth images which require additional
space and complex updates as carving progresses, or using multi sweeps along
the coordinate axes, this study proposes traversing a ray from the camera cen-
ter through a surface voxel is proposed to check the visibility. In fact, a voxel v

is invisible from a view i if there exists other opaque voxels in between v and the
camera center i, otherwise voxel v is visible. Since it is possible to find the maximum
photoconsistent voxels on the ray, it also helps to eliminate threshold checks while
carving the voxel from the initial opaque voxel set. Algorithm 2 which is mostly
inspired from Matsumoto et al. outlines our approach.10

In the algorithm, each voxel in the object voxel space Vobject, starts with a
high photoconsistency vote value; that is each voxel on the model generated by
the silhouette-based reconstruction is assumed to be on the real object surface.
Each view i is then processed in the following manner. For each view i, rays from
the camera center ci through the voxels seen from that view i are traversed voxel
by voxel. Each voxel on the ray is projected onto the images i − 1, i, i + 1 and
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Algorithm 2 Algoritm to compute the photoconsistent voxels.
reset all photoconsistency values of the voxels in Vobject to max photoconsistency
value
ForAll image i in the image sequence
ForAll visible voxels in image i
produce a ray from camera optic center
find max photoconsistent voxel on the ray
ForAll voxels between the max photoconsistent voxel and camera optic center
reduce voxel photoconsistency votes

EndFor
EndFor

EndFor
ForAll voxel v in voxel space Vobject

If the photoconsisency value of v is less than a predetermined threshold
remove v from Vobject

EndIf
EndFor

c1

c2

c3

Fig. 7. Darkest colored voxels get the highest voting and the color of voxel shows its vote.

the voxel’s photoconsistency value is calculated using texture similarity measures
among the projection regions on the images i − 1, i, i + 1. Then the voxel with
maximum photoconsistency value is found and all the voxels existing between this
voxel and the camera center ci will loose votes in an increasing order as they become
closer to ci. This process is repeated for all the rays which can be generated from
the view i. When the process is performed for all the views, excess voxels caused
by the silhouette-based reconstruction lose most of their initial photoconsistency
votes. Then by thresholding, this excess volume is carved. Figure 7 explains the idea
better. In this figure, the darkest colored voxels get the highest voting; i.e. they have
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the maximum texture similarity according to the algorithm. The color of the voxel
shows its vote.

Silhouette-based 3D reconstruction for the synthetic sphere image sequence
shown in Fig. 8(a) generates the object voxel space given in Fig. 8(b). In order
to carve these extra voxels, Algorithm 2 is applied. Figure 8(c) illustrates the new
object voxel space after the elimination of extra voxels. The carving result becomes
clearer after the marching cubes algorithm is applied to the object voxel space.
Figure 8(d) gives the triangulated models for the carved object.

(a)

(b)

(c)

(d)

Fig. 8. (a) Synthetic image sequence, (b) object voxel space before carving, (c) object voxel space
after carving, (d) triangulated models of the carved object.
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4. Texture Reconstruction

There exist several studies for the texture reconstruction of 3D models from real
images.9,28–33 In most of these studies, the model is represented as a triangular wire-
frame, and each triangle is associated with one of the images for texture extraction.
However, this approach causes discontinuities on the triangle boundaries as shown
in Fig. 9, since adjacent triangles can be associated with different source images.
Furthermore, applying a low pass filter on the boundaries cannot come up with a
global solution.

Niem et al. constructed the geometry of the object as a wireframe of polygons,
and a texture pattern is extracted for each triangle of the model.3,29 Texture assign-
ment is then reorganized for better and more continuous texture, and a low pass
filter is applied on the boundaries. However, this results in blurring the triangle
boundaries of the model. Furthermore, if a texture pattern cannot be extracted for
a triangle from the image sequence, textures from the adjacent triangles are used.
This may cause unexpected results if the texture of the object is not just a repetition
of a texture pattern on the surface. Genç and Atalay performed the texture recon-
struction at the time of rendering in their dynamic texture mapping approach.30

In their method, the camera properties, lighting conditions, the geometry of the
model and surface properties are assumed to be known. The model is represented
as a wireframe of triangles. During rendering, the texture of each triangle is ex-
tracted dynamically from the image sequence. The best image is selected as the
source of the texture. The selection criterion is defined as a function of the projec-
tion area of the triangle on the images and the difference of the image capture angle

Fig. 9. Discontinuities on the triangle boundaries when the texture patches of adjacent triangles
are extracted different source images.
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and the view angle. Lensch et al. represented their model as a triangular wireframe,
and each triangle is associated with an image for texture extraction.31 Similar tex-
ture discontinuity problems are also observed in this method. To come up with a
solution, Lensch et al. blend the textures of triangles which are found to be on the
boundaries. However, since blending removes spatially higher frequencies, blurring
occurs on the boundary. Furthermore, the discontinuity on the boundary may not
necessarily be one triangle wide. Neugebauer and Klein described a texture syn-
thesis method to combine a set of photographic views to a set of textures. In their
approach, the color entities of the texture patterns are collected from the images
in a weighted manner.33 The first weight corresponds to a metric for the sampling
density of the texture pattern on the image. The second weight is a measure of the
visibility and smooth transition, and its definition is based on the 2D distance to
the nearest point on the surface that is undefined in the image. The third weight
measures how close the color distribution is to the expected distribution which is a
uniform distribution with single mode. However, in the case of specular reflection,
the distribution has more than one local maximum, which makes the third weight
unstable. Finally, the average of all color candidates is taken using these weights.
One drawback of this approach is that all color candidates are used in the color
recovery: although they are merged in a weighted manner, distortion may occur
due to averaging.

Texture mapping is the most popular technique that is used to increase realism
in real time virtual reality applications. Although 3D texturing34 — a very close
topic to particles, is also in use, the term texture mapping refers to the conventional
2D texturing.35 In this paper, 2D texture mapping is used but in order to reduce the
drawbacks due to the lack of third dimension information, the concept of surface
particles is adapted.9,36–38 An abstraction is done on the actual representation of
the model: the model is considered to be a surface composed of particles with three
attributes:

(1) position, −→P (x, y, z),
(2) normal, −→N (x, y, z),
(3) color, −→C (h, s, v).

While reconstructing the texture of the model, instead of associating the tri-
angles to the images, particles are associated with images for texture extraction.
This is what makes the proposed method superior to the others: since a triangle
is not necessarily textured from a single image, there are no discontinuities on the
triangle boundaries due to the fact that they are textured from different images.
Each particle on the surface is associated with a pixel on the texture map as shown
in Fig. 10. Every particle is assigned a position and a normal vector using a bilinear
mapping from the texture space to the model space is given in Eqs. (13) and (14)
where s and t are the coordinates of the texture element, −→v0 , −→v1 , −→v2 are the vertices
of the triangle associated with that texture patch, and −→n0, −→n1, −→n2 are the normal
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Fig. 10. Association between the texture map and a surface particle.

vectors of the vertices of the triangle.
−→
P (x, y, z) = (1 − s− t)−→v0 + (s)−→v1 + (t)−→v2 , (13)
−→
N (x, y, z) = (1 − s− t)−→n0 + (s)−→n1 + (t)−→n2 . (14)

A particle is not necessarily visible in all of the images in the sequence, it can
be occluded or there may be a back face in some of them. Therefore, the extraction
takes place in two steps: visibility check and color retrieval. Visibility check is
performed using the particle normal and the particle position by simple hidden
surface removal and occlusion detection algorithms. If the particle is visible then it
is projected on the source image. Generally, this projection is at subpixel level. The
neighboring pixels on the image projection points are used in a weighted manner
to retrieve the candidate color from the source image, which decreases the possible
aliasing effects. The overall color extraction process is illustrated in Fig. 11 where a
particle is projected onto the images S = {I0, . . . , IN−1} in which it is visible, and
a set of candidate color values, C = {c0, . . . , cM−1} are collected.

For each particle, there is a set of source images to extract the color. When the
particle is projected onto the images; a set of candidate colors is collected. There
are two ways to fuse the color values: merging and selection. Merging is to be used
for all of the values in the set. Averaging is an example of this case. However,
this method ends up with a distortion in the surface texture as shown in Fig. 12.
Selection, on the other hand, is to choose one of the candidate colors. The selection
should be done in such a way that the selected color is the closest to the actual
view-independent color. One of the alternatives is to select the image whose normal
vector produces the minimum angle with the particle normal vector. One drawback
of this method is its weakness in removing illumination artifacts. Furthermore, if
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Fig. 11. Color extraction of a particle from the images.

Fig. 12. Example of reconstruction by averaging the candidate color values.

the object has highlights in many of the images, the resultant texture may inherit
all of them as shown in Fig. 13.

In a second approach, the candidates are fused in order to produce the most
photoconsistent texture. Thus, before assigning a color value to a particle, it should
be decided whether the information extracted from the source images is photocon-
sistent or not. The photoconsistency is defined in Definition 1. The value of Θ is
empirical and is set to 60. It is expected that the values of a photoconsistent set
concentrates around the view-independent color of the particle.

Definition 1. Let the extracted color, values for a given particle be C =
{c0, c1, . . . , cM−1} for an image sequence S = {I0, I1, . . . , IN−1}. The color of the
particle for this sequence is photoconsistent if
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(1) There exists at least two images in S in which the particle is not occluded.
(2) The particle is not on the background in any of the images in S.
(3) Cσ < Θ where Cσ is the standard deviation of intensity values of the colors

in C.

This method is very suitable for removing illumination artifacts as shown in
Fig. 14. However if the geometry of the object is not constructed precisely, the pho-
toconsistency criteria will fail for most of the particles, which will cause irregularities
on the surface texture.

The above methods can be combined as explained in Algorithm 3: using the
first approach, the color of each particle is computed. To eliminate the highlights,
particles with highly saturated colors are re-evaluated using the second approach.

Fig. 13. Example of reconstruction by view-dependent selection.

Fig. 14. Example of reconstruction by selecting the median of the color values in a photoconsis-
tent set.
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Algorithm 3 Recovering the color of a particle from the images.
ForAll images in the sequence

calculate the angle between the normal vectors of the particle and the image
EndFor
extract the color from the image that produces the minimum angle
set the color of the particle to the extracted color
IF the extracted color is highly saturated
reset color set C of particle to empty set
ForAll images in the sequence
If particle is visible in the image

project particle on the image
insert the extracted color in C

EndIf
EndFor
If C is photoconsistent

set the color of the particle to the median of C
Else

set the color of the particle to cinconsistent

EndIf
EndIf

Fig. 15. Regions whose color cannot be recovered from the images.

Algorithm 4 Interpolating the color of a particle.
ForAll particle P whose color is inconsistent

get the nearest particle Q whose color is consistent
set color of particle P to the color of particle Q

EndFor
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If a particle is occluded in all of the images or a photoconsistent color cannot be
extracted from the sequence, there occurs regions whose texture cannot be recovered
on the model as shown in Fig. 15. The colors of the particles in these regions are
interpolated using the colors of the adjacent particles as explained in Algorithm 4.

5. Experimental Results and Quality Measurement

In this section, we present the first sample reconstructions and then measure their
qualities. The texture of the “box” object is reconstructed with three selection
methods: view-dependent selection, photoconsistency check and hybrid suing a
sequence of 12 images. All the methods are successful in producing a continuous
surface texture. However in the view-dependent selection, highlights on the images
are inherited by the model as shown in Fig. 16. Photoconsistency check is quite
successful in removing the highlights but produces some irregularities on the model
surface as shown in Fig. 17. Results obtained when these two methods are com-
bined are shown in Fig. 18 where highlights are removed and the irregularities are
reduced. The corresponding sequence of the original images are given in Fig. 19.

In another experiment, images of three objects, “cup”, “toy” and “star” are
acquired under daylight with 20 degrees of turn angles between the consecutive

60◦ 90◦ 120◦

Fig. 16. Sample reconstructions with view-dependency approach.

60◦ 90◦ 120◦

Fig. 17. Sample reconstructions with photoconsistency approach.
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60◦ 90◦ 120◦

Fig. 18. Sample reconstructions with a hybrid approach.

60◦ 90◦ 120◦

Fig. 19. Sample images of the “box” object.

Fig. 20. Reconstruction results for a “cup” object, a “toy” object and a “star” object.
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images. The texture is again reconstructed with three selection methods. All of
the methods are successful in producing a continuous surface texture as shown in
Fig. 20. However in this experiment, not all of the acquired images are used in
reconstruction. Instead, 12 of the 18 images are used for reconstruction and the
remaining 6 are used for quality measurement.

The quality of the reconstructed object model mainly depends on the following
parameters: quality of the image acquisition/processing (image resolution, illumi-
nation effects, segmentation of the silhouettes, etc.), quality of the calibration, and
quality of the reconstructed geometry. In this section, in addition to the visual com-
parison, the quality of the reconstructed models is measured with a set of methods.
These methods are based on the comparison of original images of the object which
rendered corresponding images using the reconstructed model. The images that
are used for reconstruction (training images) should not be used for quality mea-
surement (test images). If the training images are also used as the test images,
the measurements will be biased. Instead, some of the acquired images are not
used in reconstruction but are kept as test images to obtain more reliable quanti-
tative analysis. Generally, visual similarity cannot be described by computational
similarity. Although there is no universal and accepted method to tell how similar
two images are, there still exist in literature the following methods: Hausdorff dis-
tance (HD), root-mean-square error (RMSE), direct difference error (DDE), and
normalized cross correlation ratio (CO).39,40

Hausdorff distance between two images is computed as the maximum distance of
the first image to the nearest point in the second image.39 More formally, directed
Hausdorff distance of an image A to another image B can be computed as in
Eq. (15), where d is a metric that is defined to calculate the distance from a pixel
Aij to the image B. Chess board and city block metrics can be represented as d.
Chess board and city block metrics are given in Eqs. (16) and (17), respectively,
where M is the image width, N is the image height, and G is the maximum possible
intensity value.

h(A,B) = maxi,j{minl,m{d(Aij , Blm)}} , (15)

dchess board = |i− l|/N + |j −m|/M + |Aij −Blm|/G , (16)

dcity block = max{|i− l|/N, |j −m|/M, |Aij −Blm|/G} . (17)

Directed Hausdorff distance is not symmetric i.e. h(A,B) 
= h(B,A). In Eq. (18),
normalized Hausdorff distance between two images is given as:

HD(A,B) = max{h(A,B), h(B,A)} . (18)

Normalized cross correlation ratio (NCCR), root mean square error (RMSE) and
direct difference error (DDE) are widely used measures in image comparison. Cross
correlation is a standard method of estimating the degree to which two images are
correlated; root mean square is the mean of the sum of the squares of the difference
between the values of pixels in two images; and the direct difference error is an
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approximation of the RMSE in which the absolute value of differences is used to
approximate the sum of squares. The definitions of each are given in Eqs. (19), (20)
and (21), respectively.

NCCR(A,B) = 1−
∑M,N

i,j=0 AijBij√
(
∑M,N

i,j A2
ij)(
∑M,N

i,j B2
ij)

, (19)

RMSE(A,B) =
1

G
√
MN

√√√√M,N∑
i,j=0

(Aij −Bij)2 , (20)

DDE(A,B) =
1

G
√
MN

M,N∑
i,j=0

|Aij −Bij | . (21)

The algorithms explained in this paper are implemented by C program-
ming language. Additional libraries are also used for camera calibration, user
interface design, graphics rendering and image file operations. While rendering
the final model, texture mapping is performed using the routines provided by
OpenGL.41 The images are captured with a 2/3” Color Progressive scan CCD
camera (UNIQ1000) at a resolution of 1294×1030. The experiments are performed
on a personal computer with 512 MB of RAM, Intel PIII 800Hz CPU and 32 MB
frame buffer.

Error analysis is based on the comparison of original images of the object with
rendered corresponding images of the reconstructed model. To give an overall idea,
the mean and the variance of the differences in terms of five image comparison
distances are given in Table 1 for three selection methods for the reconstruction of

Table 1. Results of the error analysis for the “box” object.

View-dependent Photoconsistent Hybrid
(µ, σ2) (µ, σ2) (µ, σ2)

HDchess (87.19, 4.19) (85.50, 7.05) (86.21, 5.14)
HDcity (77.66, 6.70) (75.54, 11.23) (77.25, 6.88)
NCCR (98.73, 0.14) (98.83, 0.15) (98.80, 0.14)
RMSE (87.08, 3.44) (87.74, 3.87) (87.51, 3.63)
DDE (92.06, 2.88) (92.62, 3.20) (92.37, 2.98)

Table 2. Results of the error analysis for the “cup” object.

View-dependent Photoconsistent Hybrid
(µ, σ2) (µ, σ2) (µ, σ2)

HDchess (78.19, 11.09) (78.26, 11.09) (82.47, 29.40)
HDcity (87.35, 0.62) (87.46, 0.63) (90.18, 8.64)
NCCR (98.38, 0.15) (98.38, 0.15) (98.11, 0.22)
RMSE (91.10, 0.53) (91.10, 0.53) (90.72, 0.67)
DDE (94.48, 0.29) (94.48, 0.29) (94.18, 0.38)
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the “box”. In this particular “box” experiment, the training and test images are the
same since the number of images is small. However in order to make a non-biased
measurement we have used some of the acquired images in the “cup” experiment as
mentioned above. The results of the error analysis of this experiment are given in
Table 2. Hausdorff distance, normalized cross correlation ratio, root mean square
error and direct difference error are all well-known image comparison techniques in
literature. However the results pointed out two facts: quality measures are very high
and for a particular object the quality measures with different selection criterion
are very close to each other.

6. Conclusions and Future Work

In this paper, we describe an image-based model reconstruction system using real
images of rigid and static objects. In fact, it is an end-to-end system for recon-
structing 3D object models using a camera and calibrated turn-table. The described
system can be used as an inexpensive scanner. The acquisition in this work is not
performed in a very well controlled environment: camera makes a controlled motion
around the object and the images are acquired in daylight. The improvement con-
tributions described in this study can be stated as follows. A vision-based camera
calibration algorithm is developed and it is used in the extraction of the rotation
axis. The bounding box of the object is estimated using the extracted rotation axis.
To eliminate the drawbacks of the silhouette-based reconstruction, a shape from the
photoconsistency algorithm is implemented to correct the disadvantages of the pre-
vious steps. The concept of surface particles is adapted in order to extract a texture
map for the model. The assessment of the constructed models is performed visually
and also by using some metrics to measure the quality of the reconstructed models.
Although parts of the system have been described in previous literature, we believe
that it is important to put together a complete system. Furthermore, the choice of
the method and the way it is implemented is described in detail and could be of
interest to the other researchers.

The geometry of the model is represented as a wireframe of triangles. In addi-
tion to this actual representation, the model is considered as a surface composed of
3D particles. This abstraction is used to reconstruct a 2D texture map in which the
appearance information is embedded. Each particle is associated with an image, and
the color of the particle is extracted from that image. This method is very suitable
for removing highlights and aliasing effects. Also, in most of the previous studies,
there are sharp discontinuities on the surface texture. The discontinuities appear on
the boundaries of polygons that form the model. However, in this approach the sur-
face texture is constructed in such a way that the addressed boundary discontinuity
problem is out of concern.

In order to measure the quality of the 3D reconstruction results, special 3D
test objects could be used. Such objects are designed in computer aided design
software and are realized at special cutting machines. They are also painted with
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special colors and patterns. The resultant 3D geometry of the object could be
compared with its original design using its quantized voxel representation. The
special patterns on the object also help in using image comparisons by checking
reconstructed pattern features. Using 3D geometry comparisons is a better way as
compared to using image comparisons since multiple reconstruction solutions may
give acceptable results in image comparison. However to our knowledge, there is
no study in the 3D image-based reconstruction literature that uses such a quality
measurement. We will also leave this as future work since it is difficult for us to
produce such type of objects at the moment.

The final model is stored as a wire-frame composed of triangles, and the
appearance is embedded in a 2D texture map. This is one of the most common
3D model representation techniques in computer graphics. The resultant models
are converted into VRML (Virtual Reality Meta/Modeling Language) format for
Internet publishing.
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