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ABSTRACT

We present a parallel visualization algorithm for the illustrative ren-
dering of depth-dependent stylized dense tube data at interactive
frame rates. While this computation could be efficiently performed
on a GPU device, we target a parallel framework to enable it to be
efficiently running on an ordinary multi-core CPU platform which
is much more available than GPUs for common users. Our ap-
proach is to map the depth information in each tube onto each of
the visual dimensions of shape, color, texture, value, and size on
the basis of Bertin’s semiology theory. The purpose is to enable
more legible displays in the dense tube environments. A major
contribution of our work is an efficient and effective parallel depth-
ordering algorithm that makes use of the message passing inter-
face (MPI) with VTK. We evaluated our framework with visual-
izations of depth-stylized tubes derived from 3D diffusion tensor
MRI data by comparing its efficiency with several other alternative
parallelization platforms running the same computations. As our
results show, the parallelization framework we proposed can effi-
ciently render highly dense 3D data sets like the tube data and thus
is useful as a complement to parallel visualization environments
that rely on GPUs.

Keywords: Parallel visualization, stylized rendering, MPI, dense
data, MRI

Index Terms: Computer Graphics [I.3.1]: Parallel processing—
[Computer Graphics]: I.3.4—Graphics Utilities

1 INTRODUCTION

When visualizing large-scale geometrical data such as dense tubes,
one of the critical issues is the visual perception in the depth dimen-
sion due to inherent clutters or occlusions as the result of overlap-
ping graphical signs or structures. In order to improve the overall
visual legibility from the prospective of depth perception for three-
dimension data, mapping depth information to various visual vari-
ables of graphical representations can be effective means for en-
hancing depth perceptions in the dense data visualizations.

On the basis of Bertin’s semiology theory [10], the primary vi-
sual variables to be mapped could include size, color, value and
transparency, etc. For instance, a linear mapping from per-vertex
depth value to the tube radius (i.e. the size) in the visualization of
dense 3D tubes will give viewers a visual cue for discerning depth
positions when the radii are gradually decreasing along the viewing
direction. Similarly, a consistent mapping from depth to color pro-
vides a constant correspondence between distance of geometry and
color value thus helps viewers to orient along the depth dimension.
In either case, better depth perception is conducive to improvement
in overall legibility of the visualized data.

To make the depth-dependent visualizations interactive, real-
time computation involved in the depth mappings is required. There
are two essential compute-intensive steps to be executed every time
the depth reordering is needed, for example when the data view
is rotated. First, depth values are calculated according to the up-
dated viewing direction and then sorted along that direction. Sec-
ond, mappings are computed and then the data are rendered over

again to update the visualization. Concisely, depth sorting and re-
rendering should be performed once depth order is shuffled as typ-
ical result of data transformation that changes the order. In order
to obtain an interactive frame rate of such visualizations, therefore,
these computations are required to finish in real-time, which have
been proven difficult to achieve by our tests, however, with either
sequential method or by direct use of currently available facilities
such as VTK with its parallelism support.

With this performance challenge, it is reasonable to consider par-
allelization of the depth-dependent visualization described above
to make it interactive. While GPUs are being increasingly applied
in many modern parallel computations, and indeed, visualizations
of large-scale dense geometry data could be a perfect fit for GPU
computing platforms, we aim at a cheaper solution to the same chal-
lenges. In particular, we target a solution that can be a useful com-
plement to the GPU computing paradigm when the GPU devices
and related high-end hardware configurations are not readily avail-
able. In fact, this is mostly true since GPUs are generally much
more expensive than ordinary computer users would like to afford
for the tasks like the dense tube data visualizations we discuss in
this paper, which can indeed be completed with cheap PC hardware
using our parallelization framework.

This paper describes a parallel visualization method that sup-
ports real-time computations for interactive depth mappings by us-
ing the message passing interface (MPI) with VTK while extending
current VTK facilities for the purpose of performance optimization.
Through the optimized coordination between a parallel depth order-
ing algorithm and parallel rendering method plus customized data
structures for real-time depth mappings, our approach has been ver-
ified to be efficient in the visualization scenarios we described by
its application to 3D dense tube data.

We have applied the method proposed to depth-dependent 3D
dense tube visualizations with depth mappings to all the primary vi-
sual variables mentioned before and have obtained interactive ren-
dering speed with either single variable mapping applied or multi-
ple variable mappings freely combined. It is noticeable that even
with the combination of mappings from depth to size and those to
any other visual variables, in which two passes of depth sorting and
rendering plus tube generation from polylines are all required for
each frame, our approach has still been able to render the dense
data sets at interactive frame rates.

2 RELATED WORK

In this section, we describe previous work most relevant to our par-
allel visualization method. Related past work can be classified into
two categories: depth enhancement and parallel visualization.

2.1 Depth Enhancement

There have been many previous work dedicating to technical so-
lutions to the depth perception issues and visual occlusions in 3D
data visualizations. To name a few, a rich set of landmarks and con-
text cues [16] and shading and transparency [9] both contribute
in enhancing visual perception in the depth dimension while allevi-
ating occlusion problems within overlapping structures. Focusing
on strengthening depth perception, Bruckner et al. employ volu-
metric halos to improve the 3D legibility of visualized volume data
[3]. They introduce different halos according to different ways of

ar
X

iv
:1

31
0.

29
94

v2
  [

cs
.D

C
] 

 1
5 

O
ct

 2
01

3



halo-volume combination and use halos to construct inconsistent
lighting, which accentuates depth even further from another aspect.

Elmqvist et al. [7] give an ever complete discussion about oc-
clusion management in 3D visualization where they focused on re-
ducing 3D occlusions. Occlusion management for visualization is
a more general class of visibility problem in computer graphics,
which is concerned with improving human perception for special-
ized visual tasks such as occlusion, size and shape. This method ex-
tensively helped improve the legibility of 3D data visualizations. In
contrast, we investigate how to manipulate typical retinal variables
in graphics perception to help achieve a better depth legibility.

Even direct volume rendering techniques often suffer from poor
depth cues because the data sets commonly have a large number
of overlapping structures. With MIP (maximum intensity projec-
tion) rendering [11], however, only few effort is required to create
a good understanding of the structures represented by high signal
intensities. This algorithm adds two different visual cues, occlu-
sion revealing and depth based color. In the first one, they modify
the MIP color in the presence of occluding objects with the same
materials than the one at the point of maximum intensity while in
other the actual position of the shaded fragment is used to change
its color using a supporting spherical map. In this paper, we explore
depth enhancement in dense geometry visualizations by encoding
depth information with various visual variables.

Ritter et al. [22] employ hatching strokes to communicate shape
while using distance-encoded shadow to further enhance depth per-
ception in their vascular structure visualization. In addition, they
achieve a real-time performance using GPU-based hatching algo-
rithm, which is efficient for rendering complex tabular structures
with depth being emphasized. Similarly, we handle tabular shapes
in our visualization scenario but intend to improve depth percep-
tion in a much dense 3D tube geometries derived from human brain
MRI data. Also, we we are to provide a cheaper interactive render-
ing solution on common multi-core CPU than the GPU rendering
they have employed.

2.2 Parallel Visualization

Parallelization has been extensively harnessed in visualization sce-
narios where performance becomes a challenge. In [1], the au-
thors developed a scalable and portable parallel visualization sys-
tem based on augmenting VTK for efficiently visualizing large
scale time-varying data. The system they proposed provides par-
allelism on both task and pipeline level and primary addressed to
visualization programmers. Also at a system scale but even ear-
lier, SCIRun [12] had offered task and data parallelism as a data
flow based visualization system running on shared-memory ma-
chine with multiprocessors. This system was extended to support
task parallelism on distributed-memory architectures [17]. We
present a light-weighted parallelization method for large geometry
visualization by using existing facilities like MPI and VTK instead
of providing a fully featured system or extended programming li-
brary.

Compared to the system level solution, a lot more paralleliza-
tion efforts for visualization focus on parallel rendering, ranging
from photo-realistic rendering [21], volume rendering [25] to par-
allel iso-surfacing [19]. Among a large set of previous work spe-
cific to parallel polygon rendering, Crockett [5] harnessed message
passing architectures for polygon rendering parallelism that reduces
memory usage and network contention while overlapping compu-
tation and communication. He also gives an overview of parallel
rendering techniques from both hardware and software prospectives
later on [4].

Other researchers have probed different indirect aspects, such as
image composition schemes [14] and data decomposition strategy
[24], to improve polygon rendering performance. More recently,
various parallel rendering algorithms including sort-first, sort-last

and the hybrid of them, were evaluated when being used on shared-
memory computers while these algorithms are originally targeting
distributed-memory architectures [18]. In our work, we explore
polygon rendering parallelization and employ image compositing
as well but particularly serve depth enhancing thus provide a more
legible 3D geometry visualization by overlapping parallel depth
sorting and parallel polygonal data rendering.

Note that the parallel sorting problem [15, 6], which is at the core
of our parallelization framework here, would be easily solved in
highly efficient on GPU computing platforms with extensive exist-
ing algorithms available [20, 23]. In this paper instead, we target a
cheaper solution without relying on high-end computing resources
such as GPUs. Alternatively and complementarily, we use CPU-
based parallel sorting algorithms leveraging a single processor of
multiple cores, which has been almost a bottom-line configuration
for modern common computers.

3 OUR METHODS

3.1 Depth Dimension Management
According to Bertin’s theory, visual legibility of two-dimensional
(2D) graphical representations can be characterized by graphical
density, angular separation and retinal separation [10]. Further,
retinal separation is defined by six visual variables including size,
color, shape, value, orientation and texture. Illuminated by the
Bertin’s legibility rules described in terms of these dimensions, it
is promising to explore the visual legibility issues in 3D data visu-
alizations by examining 3D legibility dimensions. Although, our
exploration is still based on the legibility framework proposed by
Bertin, certain expansion is required to fully characterize legibility
in 3D graphics representations.

While Bertin’s legibility dimensions serve 2D graphical repre-
sentations, there is a lack of such dimensions for legible 3D data
visualizations. We expanded Bertin’s framework from 2D to 3D
by adding depth separation dimension that is characteristic of 3D
data and examine how typical retinal variables effect legibility of
3D visualizations by investigating visual encodings that map depth
information to each one of those variables examined respectively.
By such encodings, users are given visual cues to better discern
depth locations thus the overall legibility of visualization can be
enhanced. Among others, currently we study three variables, size,
color and value, which are inherited from Bertin’s framework di-
rectly and an extended variable, transparency, which is an important
factor influencing depth perception in 3D geometry. In our visual
encodings, depth information of geometries can be either encoded
by a single visual variable alone or by multiple variables combined.
By comparing different encodings, it would be revealed how those
visual variables effect the depth separation dimension hence the
overall 3D data legibility.

3.2 The Parallel Visualization Pipeline
Our parallel visualization pipeline is outlined in Figure 1. The par-
allelism is powered by MPI and visualization by VTK with paral-
lelization support. Among the four processes, the master process
P0 is responsible for data I/O, visualization interactions and coordi-
nations required for a parallel rendering with consistent depth map-
pings besides for rendering local data partitions as all other slave
processes. The collaborations between the master process and slave
processes involve all key steps in the pipeline from data decompo-
sition to parallel depth sorting and geometry rendering.

3.3 Data Decomposition
Data decomposition is ordinarily an essential part for a paralleliza-
tion mechanism. Although the concrete decomposition scheme can
be very much dependent of the interrelations between data compo-
nents and there are different levels of granularity of the data com-
ponents as they are defined, it makes sense to split the whole data



Figure 1 The overview of our parallel visualization pipeline.

set into independent partitions as such that data processing of each
partition can be performed in parallel. In the case of 3D tubes, for
instance, a single tube is regarded as the minimal component and
vertices on a tube will not be assigned to different partitions.

In addition, to maximally harness the computing resources avail-
able, we decompose the whole geometry model in simply an aver-
age manner and then evenly distribute the computational tasks for
sorting, mapping and rendering to all processes. This simple data
partitioning is efficient for our tube case because for one thing there
is no data or semantic dependency among all tubes, and for an-
other, task load for each process is closely equal to others even if
the master process will be assigned certain managing roles. How-
ever, general data decomposition itself is a separate topic and there
is no generally optimal solutions, which are out of the scope of this
paper.

When using MPI as the underlying parallel run-time support,
the above data are decomposed according to the local process id
(LocalProcId) and total number of processes specified (ProcNum).
Precisely, given all the data components C0,C1,C2, · · · ,Cn−1 in the
equally-partitioning scheme, local sub-range of data for process i
will be Csidx,Ceidx where sidx = n/ProcNum∗LocalProcId,eidx =
n/ProcNum ∗ (LocalProcId + 1). Specially, the last process may
take more or less data components than others if n is not exactly di-
vided by ProcNum when eidx = n. Figure 2 illustrates this data de-
composition scheme while showing the overall picture of the depth-
stylized visualization is rendered in parallel.

3.4 Parallel Depth Sorting
3.4.1 Per-vertex Depth Ordering
In application scenarios like our 3D stylized dense tube visualiza-
tion, mappings from depth information of each vertex (or other unit
of geometry like triangles or stripes) to visual attributes, such as
size, color and transparency that are referred as retinal variables in
Bertin’s semiology theory, should be consistent regardless of the
current user viewing directions in order to serve depth perception
hence visual legibility along the depth dimension of the visualiza-
tion. In other words, all the vertices (or other geometry units) need
to be ordered along the current viewing direction in order to be con-
sistently mapped to visual attribute values. That being said, once
the viewing direction changes, typically occurring when users ro-
tate the data view, those vertices need to be reordered before map-
pings take place over again to refresh the visualization.

In our dense tube environment, vertex-wise depth ordering is re-
quired for a depth-dependent tube size assignment with which a
better depth perception of even a single 3D tube can be obtained
when, for instance, a tube tapers or grows in its radius along the
depth direction.

3.4.2 Real Time Sorting
According to the necessity of depth ordering explained above, real-
time depth mapping relies on real-time depth sorting. For the per-
vertex depth sorting, this computation is essentially the sorting of
a sequence of floating-point numbers. For depth sorting of other
geometry units, the depth sorting is often eventually reduced to a
per-vertex depth sorting problem as well. For instance, if we only
want to discern the depth locations at the level of tube rather than
that of vertex (thus the visual variable value of vertices on a tube is
always the same), a vertex can be selected to represent the tube and
then the per-tube sorting is eventually reduced to the depth ordering
of the representative vertices.

Therefore, we generalize the depth sorting problem into the sort-
ing of a sequence of cells. Practically, the cell can either be a single
value such as floating-point number or a packed data such as a struct
including multiple fields. We use the cell array for depth mapping
in this paper.

While there are a rich set of parallel sorting algorithms freely
available [2], they generally serve the solitary purpose of sorting
and are usually implemented as stand-alone parallel applications.
Since our ultimate goal is to parallelize dense geometry visualiza-
tion in which depth mappings are integrated, we need a holistic
parallel framework in which the sorting algorithm works together
with other steps such as depth mapping and parallel rendering in
such a way that the overall visualization performance can be max-
imized. Our parallel sorting algorithm has been accommodated to
parallel rendering (see section 3.5) for which data partitioning is in-
volved, and optimized to mesh with efficient depth mappings (see
section 3.6.1).

We adopt mixed sorting algorithm for our parallel depth sort-
ing by the following key steps. Firstly, each process updates the
depth values (z-coordinates) of local vertices through a simple vec-
tor arithmetic with the current camera parameters (focal point and
position, etc). Then, every single process sorts vertex depth values
in the partition assigned using a typical quick sort algorithm and
sends the sorted depth information to master process once finished.



Finally, the master process gathers locally sorted partitions and per-
forms either a multi-way merge sort or multiple two-way merge
sort. We employed the latter merge sort scheme on the master pro-
cess since it is more efficient as an iterative two-way merging can be
performed once a sorted partition is received from a slave process
without waiting all processes to finish local sorting.

Algorithm 1 shows how this parallel sorting algorithm works
while illustrating the real-time depth mappings fit for the parallel
visualization framework as a whole.

3.5 Parallel Geometry Rendering
In the application scenarios like our stylized tube visualization, the
primary performance challenges come from two sources, namely
depth sorting and geometry rendering. For each updated frame, the
whole geometry model needs be rendered over again after depth
sorting to reflect the depth mapping updates. Although both are
critical for a real-time update, the depth sorting time (Ts), com-
pared to the rendering time (Tr), takes only a minor proportion of
the whole frame update time (T = Ts +Tr).

According to our sample test with a geometry of 140,000 ver-
tices, Ts/T is strictly less than 0.1 in the per-vertex depth-colored
visualization. This shows that the rendering part is a bottleneck for
the overall visualization performance. In other word, interactive
depth-stylized visualization depends on real-time rendering of the
depth-mapped geometries. Instead of involving GPU computation
that is dependent of graphics hardware architecture, We explore the
parallelism in the dense geometry rendering by harnessing multiple
computing hardware resource thus provide a cheap yet more readily
applicable parallel rendering solution.

Our approach to rendering in parallel is simply consisted of two
main steps. After data decomposition, we firstly deploy the local
partition to each of the n processes. Here a process is a general
computing unit that can either be a single processor on multiple-
processor platform, a single core on a multi-core processor or a
worker thread on a single core processor. For each rendering frame,
all separate renditions with each done by a single process are aggre-
gated into a single complete rendition that is only visible on the one
of the processes randomly elected as the master process. This ag-
gregation is practically conducted by means of pixel-wise image
compositing as the second step detailed as follows.

3.5.1 Pixel-wise Compositing

when each process finished the local rendering of the partition as-
signed (partial geometry), the rendition is essentially a set of pixels
in the frame buffer. As such, pixel-wise compositing is actually a
process of compositing frame buffers. In practice, to reduce compu-
tational costs, compositing only the color buffer and depth buffer is
sufficient for our visualization purpose. For simplicity, we describe
compositing with these two types of frame buffer only.

Procedurally, this compositing process is performed by the fol-
lowing three steps: (1) each process fetches pixels from the frame
buffers in its local process memory space, and (2) all slave (slave,
as opposed to the master) processes send all the buffers one after
another to the master process, which do not send its local buffers
however. Then, (3) the master process performs a pair-wise buffer
compositing every time it receives the buffer from a slave process
until all slave buffers are composited. Finally, the master process
writes the composited depth and color values back to correspond-
ing local frame buffers as a full image. Figure 2 illustrates this
pixel-wise compositing process, an example of which is shown in
Figure 3 using 4 processes to parallelize the rendering task.

In addition, when rendering geometries in parallel in the back-
ground, the parallelization should be transparent to users. So ex-
cept for special needs for showing slave renditions, no rendering
partitions should be visible and the composited visualization is dis-
played on the master process only. There are two points to make

for the compositing to be optimized.
First, off-screen rendering is applied to avoid slave renditions.

This is not only to meet the need of slave renderers for invisible
renditions but, more importantly, to improve the overall rendering
performance. Second, creation of rendering windows on all slave
processes is avoided. Depending on the graphics platform practi-
cally used, a less ideal solution is to hide the rendering windows if
the creation of them is required for correct rendering. Example case
is that a window must be created to establish a context for the draw-
ing to take place. Finally, synchronizing camera parameters across
all processes before any process starts to render can simplify the
later process of image compositing. As adopted in our approach, a
simple way of synchronization is to broadcast the key camera pa-
rameters (focal point and position) retrieved on the master process
to all slave processes.

3.6 Depth Mappings
Depth mappings are applied to stylize geometry unit according to
its depth information so that a better perception in the 3D environ-
ment can be obtained. Depending on how the depth value is mapped
to the value of different visual variables, a depth mapping is either
a linear or non-linear function f (v) =V (Rank(vd)) where Rank(x)
is the order of x in the sorted sequence and vd is the depth value of a
single geometry unit (vertex will be consistently exemplified in the
following text), and function V maps the ranking order sequence to
the range of designated visual variable, [Vmin,Vmax]. In the case of
linear mapping, for instance,

V (x) =
Vmax−Vmin

xmax− xmin
(x− xmin) (1)

As we consider size (s), color (c), value (i) and transparency (t)
as the variables mapped, V (x) is a scalar function. Further, V (x)
is unitary function for single mapping and multiple mappings are
simply an aggregation of multiple single mappings. For example,
when mapping depth to size, color and transparency at the same
time, V : x→ (s,c, t) is essentially V : x→ (S(x),C(x),T (x)) where
S,C,T are all unitary mappings.

3.6.1 Depth Mappings in Parallel Rendering
In the context of geometry rendering, depth mappings are eas-
ily performed according to the simple function evaluations as de-
scribed above. However, depth mappings need be parallelized as
well in order to collaborate with parallel rendering towards an op-
timized performance in the context of visualization parallelization.
In our parallel visualization, depth mappings are required to be co-
herent in the geometry model a whole. Therefore, simply mapping
local geometry on each process independently and then composit-
ing the locally depth-stylized renditions do not work.

For each process, the input of depth mapping is the ranking or-
der of depth values of local geometries and, as a result, each process
will only have the local rank for every vertex in local its geometry
partition. However, the global rank of a vertex in the range of the
whole geometry must be retrieved for a coherent global depth map-
ping. With global ranks of local vertices, every process can render
its local geometry independently yet correctly due to the correct
mappings from the local vertices to the partition of the range of
V (Rank(vd)) corresponding to those vertices.

The following figure shows the outline of the integrated parallel
sorting and depth mapping algorithm adopted in our parallel visu-
alization.

3.6.2 Hash Index
To figure out the global rank of depth value for each local vertex,
reducing all locally sorted partitions together on the master process
and then broadcast the resulting depth array that is globally sorted to
all other processes can be an easy solution. As such, the global rank



Figure 2 Illustration of data partitioning and pixel-wise compositing in our parallel visualizations

Figure 3 An example of the pixel-wise compositing in our parallel visualization scheme. The dense streamtube visualization with depth
mapped to size, color and transparency is parallelized using 4 processes. Process 0 (master) gathers all parallel renditions from slave processes
and composites them together with its own local rendition to produce the complete rendering.



Algorithm 1 integrated parallel depth sorting and mapping

1: numProcs← total of processes
2: myId← local process rank
3: numPts← total number of vertices in local partition
4: Gather all numPts values into array allNumPts
5: idoset← 0
6: for i = 0→ myId−1 do
7: idoset← idoset +allNumPts[i]
8: end for
9: for i = 0→ numPts−1 do

10: depth[i].vd← depth value of the ith vertex in local geome-
tries calculated from camera parameters

11: depth[i].id← i+ idoset
12: end for
13: sort depth according to the vd field using qsort
14: Sum up all numPts to totalPts
15: if myId == 0 then
16: oset← 0
17: tdepth[0..numPts−1]← depth[0..numPts−1]
18: for i = 1→ numProcs−1 do
19: Receive tdepth[numPts + oset.numPts + oset +

allNumPts[i]] from process i
20: inplace merge tdepth[0..numPts+ oset.numPts+ oset +

allNumPts[i]]
21: oset← oset +allNumPts[i]
22: end for
23: for i = 0→ totalPts−1 do
24: hashIndex[tdepth[i].id]← i
25: end for
26: Broadcast hashIndex
27: else
28: Send depth to master process 0
29: Receive hashIndex from master process 0
30: end if
31: for i = 0→ numPts−1 do
32: Rankglobal [i]← hashIndex[i+ idoset]
33: end for

will be retrieved from the depth array received for evaluating f (v)
for each vertex. However, the retrieval would be a O(N2) search
for all N local vertices, which is prohibitive enough to make an in-
teractive frame update impossible alone according to our tests. For
a real-time global rank retrieval, we create a global hash index for
the whole geometry immediately after the depth sort on the master
process is all finished.

In both the local and global depth arrays, an index is kept for
each depth value at each element and the depth array is actually a
sequence of vector (d, Id) where d is the depth value and Id is the
index, which is initialized with the original global rank of a vertex
in the unsorted holistic geometry. As such, wherever a depth array
element is moved after sorting, its original rank, taken as a vertex
identifier as well, can be always retrieved immediately. We use this
id to associate the unsorted and sorted depth array through the hash
index. Figure 4 illustrates the hashing process for depth mapping.

3.6.3 Mapping Update

During the interactive exploration of the depth stylized visualiza-
tion, mappings need be updated whenever the depth order of geom-
etry along the viewing direction changes, typical because of data
rotation. The mapping update is then reflected through refreshed
rendering, which is right the reason why we explore the rendering
parallelization as discussed before. It is reasonable, therefore, to
actively trigger the frame update once mapping update has taken
place. There are at least two different mechanisms for the frame

Figure 4 Hash index for real-time depth mapping in the context of
the presented parallel visualization.

update to be timely invoked by mapping updates. First of all, a
polygonal data filter, which is used for the purpose of depth sorting,
can be inserted into the demand-driven rendering pipeline so that
rendering update will be triggered when either the input or output
of the filter is modified (using VTK is in this case).

However, besides updating depth mappings, geometry copy be-
tween the data filters is required, which has been proven to heav-
ily drag the frame rate. It is noteworthy here that the geometry is
not really updated at all when the depth mappings change. Another
mechanism is to explicitly invoke frame update (redrawing) through
interaction handling. With this approach, only mappings are recom-
puted while no geometry copying is involved. We employ the latter
for a better performance.

In the interaction-driven mapping update mechanism, we only
directly handle user input, such as mouse interaction, that shuffles
the depth order of geometries on the master process. when respond-
ing to such user input, the master process invokes frame update after
finishing mapping calculations and then sends a remote method in-
vocation (RMI) message to all slave processes. In the RMI handler
on each process, mapping update is firstly triggered, followed by an
active call to frame update. Apparently, there is a message process-
ing loop on all processes to enable real-time RMI responding.

4 IMPLEMENTATIONS

Our parallel depth stylized visualization is implemented in C/C++
using VTK with parallelism support by MPI. In the parallel sorting
algorithm, qsort routine from the standard C library for local quick
sort on each process and generic in-place merge algorithm in C++
STL library for iterative two-way merge sort on the master process.
We have employed the image compositing functionalities provided
by VTK’s parallel modules but extended certain classes to tailor
their functions for our customized pipeline components in order to
implement the pixel-wise compositing. While off-screen render-
ing has been directly supported in VTK, we make use of wrapping
windows by Qt widgets to hide rendering windows of all slave pro-
cesses.

In addition, our depth sorting filter is extended from VTK’s
polygonal data depth sort filter and an interactor component ex-
tended from VTK’s track-ball camera interactor, which work to-
gether to meet our needs for the interaction-driven mapping up-
date. To explicitly trigger frame update, user-defined RMI mes-
sages for this purpose are added and the callbacks are registered to
VTK’s multiple process controller component before parallel ren-
dering starts. With these extended components, the interactor re-
sponds to data rotation by broadcasting mapping update RMI mes-
sage to all slave processes and then mapping calculations and frame
update are invoked in the callback of the RMI message. The visu-
alization program is simply running as a MPI application and thus
the number of processes can be indicated when launching the MPI
runtime. As we discuss in detail in section 5, an optimal number
of processes to be indicated depends on the actual hardware archi-



tecture.
Figure 5 shows the outlook of our test application of the pre-

sented parallel visualization method. The GUI framework is cre-
ated using Qt 4.0 by which all the interaction widgets are set up for
the depth stylizing customization. In order to achieve an optimized
performance, parallel processing is only applied to the rendering
widget and all other GUIs are created on the master process only.

As such, GUI interactions have to be explicitly relayed from the
master process where they are triggered to all slave processes so that
the slave rendering can reflect the changes in the stylizing config-
uration as the result of those interactions. We register another type
of RMI message and define a dedicated callback to realize the RMI
for updating slave renderings. RMI messages are easily transmitted
by MPI communications.

Figure 5 The outlook of the depth-stylized 3D tube visualization
parallelized using the proposed method.

5 RESULTS

We have applied the parallel visualization pipeline presented in this
paper to interactive depth-stylized visualization for the purpose of
investigating legibility issues in 3D data visualizations. As our cur-
rent application scenarios, we create streamtube visualizations of
diffusion tensor MRI (DTI) data with single and multiple depth
mappings applied in order to enhance users’ depth perception in
the 3D visualizations, as shown in Figure 6.

Also, on the basis of above implementations, we evaluate the
efficiency of our parallel visualization approach by firstly measur-
ing the overall rendering performance including depth sorting and
MPI communication costs and then comparing our method to other
alternative parallel rendering implementations. Our evaluation is
based on the results collected from many runs of our test applica-
tion shown before on a Intel(R) Core(TM)2 Quad 2.66GHz proces-
sor with 4GB DDR2 memory.

5.1 Performance Measurements
We measure the proposed parallel visualization method by first
comparing visualization performance of the parallel approach to the
sequential one with different scales of geometry. Precisely, for each
one of the test data sets, the time spent by rendering a single frame
in the parallel visualization in milliseconds is paired for compari-
son with that spent by the same task in sequential one. Here in our
application scenarios, we visualize 3D depth stylized streamtubes
generated from diffusion tensor MRI data with different depth map-
ping schemes applied for the tests.

As shown in Figure 7, parallelization enables an interactive ren-
dering performance for our depth-stylized geometry visualization,

which is hard to obtain with sequential approach. Each value of
the rendering time measurements is an average of the total render-
ing cost over 100 continuous frames. For the parallel rendering,
time measured has included costs of communications among the 4
processes used.

Figure 7 Rendering performance of depth-stylized tube visualiza-
tion using our parallelizing method compared with sequential vi-
sualization performance. Both single depth mapping and multiple
mappings are tested and compared between the parallel and sequen-
tial visualization.

We differentiate only two instances of depth mappings here,
depth to color alone and depth to both size and color, because
they are representative of two disparate amount of computations
for depth mappings in our tests. For the single mapping from depth
to color, there is only one round of depth sorting besides the ren-
dering task involved. For the multiple mappings from depth to size
and color, there are two rounds of depth sorting plus the tube mesh
generation besides rendering task. Among the two rounds of depth
sorting, one is for depth of line geometry to size mapping before
tubes of different radii are generated and the another for depth of
tube geometry to color mapping after tubes are produced from poly-
lines.

To examine how the number of processes used in the paralleliza-
tion effects the parallel visualization performance, different values
of the number has been tested. As the result in Table 1 presents, per-
formance increases monotonically along the increase in the number
of processes before the number reaches 4, after which the perfor-
mance decreases also monotonically when the number continues to
grow. That the maximal speedup is achieved at the number of pro-
cesses of 4 can be attributed to the fact that the number of hard CPU
cores is 4.

5.2 Comparisons

we further verify the efficiency of our parallelization approach for
depth-stylized geometry rendering by comparing the the overall vi-
sualization performance gained by our method with that by other
alternative approaches. We implemented the 3D tube visualization
with depth-stylizing using both a partially and a fully parallelized
rendering. For both comparisons, we gauge the total rendering time
with five different scales of 3D tube geometries stylized by depth-
dependent color and color, similar to the methodology for measur-
ing performance gain of parallel over sequential visualizations de-
scribed in section 5.1. Constantly, 4 processes are used in all the
following tests.



Figure 6 Our parallel visualization of DTI streamtubes with single mapping including depth to size (upper left), color (upper right), value
(middle left) and transparency (middle right) respectively, and multiple mappings including depth to size and color combined (bottom left)
and to value and transparency combined (bottom right). We use these different mappings with typical visual variables to communicate depth
information in the 3D visualizations.



Metrics
Number of Processes

2 3 4 5 8 12
Time (ms) 409 359 347 401 469 642
Speedup 1.72 1.95 2.02 1.75 1.5 1.09

Efficiency 0.86 0.65 0.51 0.35 0.19 0.09

Table 1 The effect of the number of processes employed on the
parallel performance gauged by time cost in milliseconds, parallel
speedup and efficiency, tested using our parallel approach with the
visualization with depth to color mapping of 9,635 tubes including
1,447,005 vertices.

By comparing to the partially parallel rendering, in which only
the depth sorting is parallelized while the overall rendering pipeline
is sequential, we intend to show the advantages of our approach
with respect to meshing the sorting parallelization with the render-
ing parallelization. We employed the Kernel for Adaptive, Asyn-
chronous Parallel and Interactive programming (KXAAPI) library
[8] to sort the depth information of the whole geometry on the se-
quential visualization pipeline of VTK. As the results, Figure 8
shows our approach appears much superior and outperforms by
more than two folds.

Figure 8 Rendering performance of depth-stylized tube visualiza-
tion using our fully parallelized pipeline compared with that of the
same visualization using KXAAPI for depth sorting in the partially
parallel visualization. Performance of sequential rendering is also
included for comparisons.

For an alternative fully parallelized visualization solution to
compare, we implemented our depth-stylized tube visualization us-
ing the IceT module in Paraview [13] with the same measuring
method as above. We have partially ported the IceT module from
Paraview source package into VTK for the purpose of our test. As
is shown in Figure 9, our parallel visualization solution definitely
outperforms the IceT based parallelization scheme.

6 DISCUSSION

In our application scenario, we visualize depth-stylized 3D tubes,
which is generated in the run-time by wrapping polylines that is
loaded into our parallel visualization pipeline. Alternatively, tube
meshes can be produced prior to its being loaded to the pipeline
then we the computational cost for tube generation will be elimi-

Figure 9 Rendering performance of depth-stylized tube visualiza-
tion using our parallel approach compared with that of the same
visualization using Paraview IceT, both being fully parallelized
pipeline, including sequential performance or comparisons.

nated. There are two reasons for not doing the off-line tube gener-
ation.

First, we need to change the radii of tubes to reflect the depth
changes for the depth to size mapping. Loading line geometries
and then generating tubes in the run-time is a more efficient way
for visualizing tubes with depth to tube size mapping than loading
tube meshes directly and then transforming each tube to implement
the mapping.

Second, as mentioned in section 5.1, by means of online tube
generation, we differentiate two types of mappings, single and mul-
tiple, in terms of computational costs in order to demonstrate that
a parallel visualization approach like ours will achieve a even su-
perior overall visualization performance if they are more computa-
tional steps, such as geometry processing like wrapping poly-lines
to produce tube meshes, involved within the whole geometry ren-
dering job.

As a matter of fact, it is obviously shown in the performance
measurement results that visualization accelerations are much
greater with multiple mappings from depth to size and color than
with single mapping from depth to color when the geometry scale
is increasing. This is due to that more computations are to be par-
allelized as well and thus the overall performance gain by paral-
lelization increases compared to sequential visualization. Accord-
ing to this analysis, it is reasonable to scale our parallel visualiza-
tion method to a more complex visualization context where more
compute-intensive steps associated with the rendering task must be
involved. Results from our tests before have initially show this type
of scalability of our proposed approach.

In addition, although we currently use only a single four-core
processor to test our parallelization scheme, it is reasonable to pre-
dict that the performance speedup shown in Table 1 will continue to
grow if the number of CPU cores further increases. Also, because
of the performance scalability of the underlying MPI facilities to
processor architecture, application of our method to a multiple pro-
cessor machine can gain even greater visualization accelerations.

7 CONCLUSIONS

We presented a parallel visualization method that enables real-time
floating-point computations involved in depth mappings for more
legible 3D data visualizations via enhanced depth perception, and
therefore helps achieve interactive frame rate in the depth-stylized



visualization of large 3D geometries. The method presented is
built upon the MPI paradigm within VTK with necessary extension
adopted for vertex depth reordering optimizations. Our approach
has been tested with 3D dense tubes containing millions of vertices
with multiple mappings of depth information applied and the inter-
active frame rate achieved has shown that our method is efficient for
addressing performance issues inherent in the visualization scenar-
ios exemplified in the depth-stylized visualizations. Nevertheless,
our method can be easily extended to parallelize visualizations of
other large-scale geometry data where intensive computations are
required in order to obtain interactive rendering speed.

We have demonstrated the superior efficiency of our approach
as a CPU-based parallel visualization framework by comparing the
real-time rendering performance of the method presented with that
of both sequential method and other parallelization approaches such
as XKAAPI and Paraview Icet. As the results show, the proposed
framework can provide an efficient alternative to parallel visualiza-
tion solutions relying on high-end hardware such as GPUs for in-
teractively visualizing large-scale 3D geometry models like stylized
dense tubes when the high-end hardware is not readily available.
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