
UNIVERSIDADE FEDERAL DE JUIZ DE FORA

INSTITUTO DE CIÊNCIAS EXATAS
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RESUMO

No problema de registro ŕıgido por pares é preciso encontrar uma transformação ŕıgida

que alinha duas nuvens de pontos. A sulução clássica e mais comum é o algoritmo Iterative

Closest Point (ICP). No entanto, o ICP e muitas de suas variantes requerem que as nu-

vens de pontos já estejam grosseiramente alinhadas. Este trabalho apresenta um método

denominado Shape-based Weighting Covariance Iterative Closest Point (SWC-ICP), uma

melhoria do ICP clássico. A abordagem proposta aumenta a possibilidade de alinhar

corretamente duas nuvens de pontos, independente da pose inicial, mesmo quando existe

apenas sobreposição parcial entre elas, ou na presença de rúıdo e outliers. Ela se beneficia

da geometria local dos pontos, codificada em tensores de orientação de segunda ordem,

para prover um segundo conjunto de correspondências para o ICP. A matriz de covariân-

cia cruzada computada a partir deste conjunto é combinada com a matriz de covariância

cruzada usual, seguindo uma estratégia heuŕıstica. Para comparar o método proposto com

algumas abordagens recentes, um protocolo de avaliação detalhado para registro ŕıgido

é apresentado. Os resultados mostram que o SWC-ICP está entre os melhores métodos

comparados, com performance superior em situações de grande deslocamento angular,

mesmo na presença de rúıdo e outliers.

Palavras-chave: Registro ŕıgido. Iterative Closest Point. Tensor de orientação.

Dissimilaridade de forma. Geometria computacional.



ABSTRACT

In the pairwise rigid registration problem we need to find a rigid transformation that

aligns two point clouds. The classical and most common solution is the Iterative Closest

Point (ICP) algorithm. However, the ICP and many of its variants require that the

point clouds are already coarsely aligned. We present in this work a method named

Shape-based Weighting Covariance Iterative Closest Point (SWC-ICP), an improvement

over the classical ICP. Our approach improves the possibility to correctly align two point

clouds, regardless of the initial pose, even when there is only a partial overlapping between

them, or in the presence of noise and outliers. It benefits from the local geometry of the

points, encoded in second-order orientation tensors, to provide a second correspondences

set to the ICP. The cross-covariance matrix computed from this set is combined with

the usual cross-covariance matrix following a heuristic strategy. In order to compare our

method with some recent approaches, we present a detailed evaluation protocol to rigid

registration. Results show that the SWC-ICP is among the best methods compared, with

superior performance in situations of wide angular displacement, even in situations of

noise and outliers.

Keywords: Rigid registration. Iterative Closest Point. Orientation Tensor.

Shape Dissimilarity. Computational Geometry.
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1 INTRODUCTION

Surface registration is a problem found in many areas, such as shape acquisition, medical

images support, simultaneous localization and mapping (SLAM), quality inspection, and

others. All these problems use point clouds as data structures to store the spatial data. A

point cloud is a set of points in the same coordinate system, in this case we are interested

in points in R3. In the surface registration problem the goal is to align, or to register, two

or more point clouds into a common reference system. In this work we focus on pairwise

rigid registration, a sub-problem where a rigid transformation is sought to align two point

clouds.

Usual problems include point clouds of the same scene only partially overlapped, point

clouds corrupted by noise and outliers resulting from the sensor device, and incomplete

models due to self-occlusion or scan range limitation. Since there is not a definitive solu-

tion to rigid registration in these scenarios and this is a primary step for other applications,

algorithms that achieve smaller residual errors in a broader range of situations are needed.

We propose a method called Shape-based Weighting Covariance ICP (SWC-ICP), an

improvement over the original Iterative Closest Point (ICP). Our method uses the local

geometric information of the points, coded in second-order orientation tensors, to improve

the ICP transformation estimation step. The proposed approach increases the possibility

to converge correctly for most cases, even when corrupted by additive noise and heavy

amounts of outliers.

Several tests are performed following a proposed quantitative evaluation protocol, in

order to give some statistical relevance to our results, when compared to some recent ap-

proaches. This protocol includes the description of the generation process of the simulated

outliers, noise and partial overlapping point clouds. It also presents a scoring system to

compare the results of each algorithm, in a more reliable manner than some protocols

used in the rigid registration literature. We use a dataset composed by four point clouds

of different topologies and geometries, with high and low curvature points, holes and some

degree of symmetry.

Our results show that the SWC-ICP is among the best methods evaluated in all point

clouds tested, even in situations of noise and outliers. The main feature of our method is
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the consistency of the results, regardless of the initial angular displacement of the point

clouds.

1.1 PROBLEM DEFINITION

Given two distinct point clouds named the Model set M = {mi | mi = (mix,miy,miz)},

with |M | points, and Data set D = {dj | dj = (djx, djy, djz)}, with |D| points, without any

information about their relative position, the rigid registration problem is to find the rigid

transformation T (R,~t), T : R3 → R3, where R is a rotation matrix and ~t is a translation

vector, that applied to D best aligns both clouds, that is, a transformation that minimizes

a distance metric, usually the Euclidean distance, between the homologous points in M

and D.

The clouds M and D represent the same rigid object, or static scene, and both are

supposed to have points sampled from at least one common surface of the object, i.e. a

subset of them represents homologous regions in respect to the object. The clouds might

have outliers and their points may be displaced by additive noise.

1.2 OBJECTIVES

The main objective is to improve the Iterative Closest Point (ICP) method, using the local

geometric information of the points neighborhood to estimate a better transformation.

Our goal is to increase the possibility to converge to the correct local optimum for an

extended range of initial angles, in the presence of noise, outliers and different overlapping

levels. Secondary objectives include:

� A quantitative evaluation protocol to rigid registration, able to compare different

methods in a database composed by noise, outliers and partial overlapping point

clouds, usual problems listed in the literature.

� The evaluation of the behavior of the SWC-ICP under different parameters using

the proposed protocol and compare with other recent methods.

� The evaluation of how the different stages of the tensor estimation algorithm impact

on the registration problem.
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1.3 RELATED WORKS

The classical and most cited algorithm in the rigid registration literature is Besl and

McKay’s Iterative Closest Point (ICP) (BESL; MCKAY, 1992). This algorithm takes two

point clouds, named Model and Data, and consists of the iteration of two major steps:

matching and transformation estimation. In the matching step, the algorithm searches for

every point in the Data set the closest point in the Model set. This set of correspondences

is used to estimate a rigid transformation. These two steps are iterated until a termination

criterion is satisfied. Almost at the same time, Yang and Medioni (1992) also developed a

similar technique, taking advantage of the normal vectors at each point in order to build

a more suitable corresponding set. This matching was named point-to-plane and has the

advantage to converge with fewer iterations than the original.

Both approaches, although breakthrough at their time, presented several possible op-

timizations. They assume there is a correct correspondence for each point and the point

clouds are already coarsely aligned. This assumption easily fails on real applications.

Rusinkiewicz and Levoy (2001) proposed in their survey a classification of six possible

stages of the algorithm that could be optimized, and most works improving the ICP can

still be fit in their classification. Another survey, written by Salvi et al. (2007), covers

the rigid registration area splitting the methods in coarse and fine registration, giving the

strengths and weaknesses of each.

Coarse registration includes methods that aim to give a good initial guess of the

rigid transformation between two sets. These methods usually try to be more robust

to noise, outliers and large initial displacement, at the cost of a precise result. Some of

these methods can also be applied to real time applications due to low computational

cost. Dı́ez et al. (2015) further classify coarse methods according to a proposed pipeline,

composed by three stages of optimizations: keypoints detection, description and search

strategy. Methods improving the first stage (DONOSER; BISCHOF, 2006; SUN et al.,

2009; ZAHARESCU et al., 2009; ZHONG, 2009; MIAN et al., 2010) aim to select a

subset of points in one or both point clouds, in order to speed up the registration process

or provide significant points to next steps. Description methods (JOHNSON; HEBERT,

1999; POTTMANN et al., 2009; TOMBARI et al., 2010; OVSJANIKOV et al., 2010) try

to assign local descriptors to the points or build a histogram, according to some feature

estimated. Finally, methods of the third stage (CHEN et al., 1999; GELFAND et al.,
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2005; AIGER et al., 2008; MELLADO et al., 2014; ALBARELLI et al., 2015) employ a

refined strategy attempting to reduce the search space.

Fine methods on the other hand, assume the point clouds are already pre-aligned and

aim to find the most accurate result as possible. Most of fine methods are based on

modifications of the ICP algorithm. Godin et al. (1994) use the intensity information,

provided by some range scanners, to improve the number of correct matches, naming their

method Iterative Closest Compatible Point. Sharp et al. (1999, 2002) propose the use of

invariant features like second order moment, curvature or spherical harmonics to define a

hybrid distance measure between points, weighted by a factor α, fixed or updated with

the MSE on each iteration. Some authors attach local covariance matrices to the points,

in a way that the local structure is considered. The Generalized-ICP (SEGAL et al., 2009)

and Multi-Channel Generalized-ICP (SERVOS; WASLANDER, 2014) are some examples,

with the latter using additional channels other than its position to improve the matching

step and the covariance estimation. The A-ICP (MAIER-HEIN et al., 2012) accounts

the anisotropic localization error into a covariance matrix, representing a local zero-mean

Gaussian distribution, that is used in both the matching step and transformation estima-

tion. The method also allows the use of different covariance matrices, according to the

specifics of the problem.

Another line of improvements adopts the use of non-linear optimization strategies to

find the optimal transformation. Fitzgibbon (2003) used the Levenberg-Marquardt in his

LM-ICP, a well-known general purpose non-linear optimization method, combined with

the Distance Transform data structure, which provide fast access to the nearest neighbors

search and eases the calculation of derivatives needed for the Levenberg-Marquardt. As

noted by the author, these non-linear strategies may demand more computational time

than specialized algorithms, such as the ICP, but with the speedups used, the LM-ICP was

still comparable to other methods. Bouaziz et al. (2013) use sparsity-inducing lp-norms

with an Alternating Direction Method of Multipliers (ADMM) optimizer. The norm

parameter p controls the robustness to outliers, but has a computational time trade-off.

As p gets closer to 0 the method becomes more resilient to noise and outliers, however

the time required is unfeasible. Mavridis et al. (2015) relieves this problem adapting a

Simulated Annealing process before the ADMM optimization, which gives a good initial

guess to the ADMM. Yang et al. (2013) propose the Globally Optimal ICP, the first
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method to achieve the global optimum under the norm l2, according to the authors. The

method uses a Branch-and-Bound scheme to search the 3D motion space SE3 for the best

transformation.

Reyes et al. (2007) presented a different approach, not based on the ICP, to solve rigid

registration using geometric algebra. Their method uses a tensor voting framework to

find a plane representing the affine motion in the geometric algebra space. Tensor voting

is a strong tool to find coplanar structures, thus allowing the authors to find these planes.

Also, thanks to tensor voting, their method can cope with high amounts of outliers. A

novel approach for surface registration, other than ICP-based, is the game-theoretical

framework proposed by Albarelli et al. (2015). In this work, a set consisted of candidate

matches are selected and compete to each other until the game reaches an equilibrium.

The remaining points are then used to estimate the transformation.

Even though the fine registration literature lists papers over twenty years old, the

comparison protocol has not matured enough. There are many authors that do not fully

present the behavior of their methods under different situations, and the absence of bench-

marks or standard datasets also difficult the comparison between methods. Noise, outliers,

occlusion and partial overlapped meshes are usual problems addressed. While these are

valid scenarios to show their potential improvements, these papers lack some statistical

analysis. Time, residual error and number of iterations are the common metrics, but their

relevance cannot be guaranteed with just few examples that might be biased by the initial

applied transformation. We understand that quantitative analyses are computationally

expensive for rigid registration, especially with huge point clouds. Too much computa-

tional time is required to run several trials, with different parameters and compare with

other algorithms, even with the current parallelism technologies.

Although this kind of analysis is rare, we highlight some examples found in the lit-

erature. Sharp et al. (1999) ran 100 random transformations and presented a table with

the convergence rate to a location near the ground truth defined. Reyes et al. (2007)

did a similar experiment, but only with 20 trials, measuring the success rate. In their

work an experiment is deemed a success when at least 50% of the correspondences were

correctly identified. Jian and Vemuri (2011) measured the convergence range angles for

2D rigid registrations, and also success rates for 3D partial range images, with 30 differ-

ent transformations. The random nature of the transformations used reflects better the
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performance of the method in real scenarios.

Most of this work was developed together with Cejnog’s dissertation (CEJNOG, 2015),

and we share many ideas, like the Comparative Tensor Shape Factor (CTSF). In Cejnog’s

work, the CTSF is used in the ICP matching step, with a linear combination very similar

to what was used in Sharp et al. (2002), but the weight α is updated only when a local

minimum is reached, instead of every iteration. Here we use the same base strategy, but

our proposal is to modify the transformation estimation instead, so that it also considers

the local geometry of the points. The tensors we use are estimated using a framework

similar to Tensor Voting (MEDIONI et al., 2000), based in the work of Vieira et al. (2004),

that uses two different voting fields. The first is based only on the Euclidean distance of

the points, and the second uses a coplanarity constraint to reinforce planar structures.

However, unlike Cejnog and Vieira, we use only the first voting field. As results show,

this step alone produces better results on the matching step of the ICP. The second-order

tensors used consist of a covariance matrix associated with a locality in R3, and encodes

the local geometry. The SWC-ICP, like Cejnog’s ICP-CTSF, is a coarse-to-fine method,

able to roughly align two point clouds with wide angular displacement, and its behavior

smoothly changes into a fine method, hence, able to reach fine levels of registration. The

presented experiments include noise, outliers and partial overlapping cases, showing that

the SWC-ICP have a broader range of convergence than the ICP-CTSF and other recent

approaches.



21

2 FUNDAMENTALS

2.1 ORIENTATION TENSOR FOR GEOMETRY ESTIMATION

Tensors are a generalization of the concept of scalar and vector. They have been applied

in many areas such as engineering, physics and computer vision. We use the orientation

tensor, a second-order tensor, represented as a n × n covariance matrix, associated with

a locality in Rn. In our context we use n = 3, since we are dealing with 3D points.

Because the orientation tensor is a covariance matrix, it is symmetric, positive semidef-

inite and its eigenvalues (λ1, λ2, λ3) are greater or equal to zero. The orientation tensor

can be decomposed in three parts, regarding its linear, planar and spherical components

contribution:

T = (λ1 − λ2)T1 + (λ2 − λ3)T2 + (λ3)T3.

The tensor T1 corresponds to the linear component, and its main direction coincides

with the direction of the eigenvector −→e1 associated to the main eigenvalue λ1 of T. T2

corresponds to the planar component, formed by the two main directions −→e1 and −→e2 .

Finally, T3 is the spherical component, formed by all three main directions.

The anisotropy coefficients of the orientation tensor cl, cp and cs (WESTIN et al.,

1997) are calculated using the eigenvalues of the covariance matrix. Since the eigenvalues

λ1, λ2 and λ3 of the matrix are sorted and normalized, i.e.,
√
λ21 + λ22 + λ23 = 1, three

cases are possible: one eigenvalue is much higher than the other two, one eigenvalue is

much smaller than the other two, and the three eigenvalues are equal, each case yielding

a high value of cl, cp and cs, respectively. Their equations are:

cl =
λ1 − λ2

λ1 + λ2 + λ3
, cp =

2(λ2 − λ3)
λ1 + λ2 + λ3

, cs =
3λ3

λ1 + λ2 + λ3
.

Figure 2.1 shows superquadric glyphs (KINDLMANN, 2004) varying the proportion

between its eigenvalues, reflecting in different shapes and anisotropy coefficients. The

figures on the rest of this work that represent graphically second-order tensors follow that

glyph representation.

Vectors can be converted to orientation tensors following the product Tv = ~v · ~vT ,
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Figure 2.1: Ellipsoid tensors with different predominant anisotropy coefficients. A tensor
with high cl is called a stick tensor, high cp indicates a plate tensor, and high cs a ball
tensor. Image from Kindlmann (2004).

considering ~v a column vector. The tensors built in this way have two zero eigenvalues,

and the main eigenvector has the same direction of ~v. It has a large linear coefficient cl,

thus yielding a stick shape.

Opposing vectors when summed cancel themselves, but the sum of the tensors of these

vectors do not. Thus, tensors are more suitable than vectors to accumulate geometric

information. Regarding the directions, consider, for example, two orthogonal vectors ~a

and ~b. The sum of their tensors Ta and Tb produces a tensor with large planar coefficient

cp, and the two main eigenvectors λ1 and λ2 have the directions of ~a and ~b. Conversely,

if ~a and ~b are collinear, the resulting tensor of their sum has the shape of a stick, and the

same direction of ~a and ~b. Figure 2.2 exemplifies this sum.

The method to estimate the local geometry, also presented by Cejnog (CEJNOG,

2015), is based on the method proposed by Vieira et al. (2004) and is very similar to

the Tensor Voting framework (MEDIONI et al., 2000; MORDOHAI; MEDIONI, 2006).

It encodes in tensors the geometric disposition of the neighborhood of each point. Each

point casts its influence on the neighborhood through a vector voting field. Each vote is

converted to a tensor and accumulated on the neighbors. The resulting tensors represent

the local geometry, and once estimated, it does not change under rigid transformations,

making it an invariant feature suitable for rigid registration.

Since the method only deals with the position of the points, higher order elements like

orientation and curvature sign are not identified. Tensors at the peak of concavities and
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Figure 2.2: Two vectors ~a and ~b, with its respective tensors Ta and Tb, and the tensor
resulting from the sum.

convexities might be equal if estimated using few neighbors. But with a sufficiently large

number of neighbors, the estimation tends to be global, and except for a high degree of

symmetry, these tensors will be different. However, in the context of the rigid registration

problem, these cases are uncommon in real scenarios.

Cejnog (2015) uses in his method two different voting fields: one isotropic followed by

one anisotropic. The first gives an initial approximation of the geometry, based solely on

the relative position between the points. The second field requires a previous estimation

and then must be applied after the first. It enhances the approximation of the geometry

enforcing coplanar structures. A different distance metric is used in the second, based

on the distance over an elliptical trajectory. As a consequence of the second field, the

shape of the tensors tends to be more planar, raising the mean cp of the point cloud. But

differently from Cejnog, we use only the first voting field to give an approximation of the

geometry. For rigid registration, the application of the first voting field by itself produces

better results.

Since we are dealing with point clouds and do not have any information about triangles,

the neighborhood of a point p is represented by a list Lk(p) of its k nearest-neighbors

sorted by their Euclidean distances. We denote L−1k (p) as the set of points containing p

in their list. The list size k is the main parameter of this preprocessing stage. For the

following text, k is used as a percentage of total points in the point cloud.
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2.1.1 ISOTROPIC VOTING FIELD

The isotropic voting field (CEJNOG, 2015) builds for each point p a second-order tensor

Tp, which accumulates the weighted sum of tensors built from the vote vectors −→qp, ∀q ∈

Lk(p).

The stick tensors Tqp formed by the product of the normalized q̂p · q̂pT , are accumu-

lated. A Gaussian decay is used, proportional to the Euclidean distance between p and

q with standard deviation σp. This deviation is such that the farthest neighbor qf has

influence 0.01.

σp =

√
||−→pqf ||2
ln 0.01

.

The output is the tensor Tp:

Tp =
∑

q∈Lk(p)

e

−||−→pq||2

σ2
p · p̂q · p̂qT . (2.1)

Equation 2.1 is analogous to the application of a 3D isotropic radial structuring element

to the point cloud.

The eigenvector −→e3 , associated to the third main eigenvalue λ3 of Tp, is an approxi-

mation of the normal at p, being more accurate in points with planar neighborhood.

Figure 2.3 and 2.4 show the tensors estimated with different values of k. As the

number of neighbors increase, the main direction of the tensors, especially at the top and

the bottom, are pointed to the center of the point cloud. The presence of noise affects

directly the tensors, especially with low values of k. As we can see in Figure 2.4 (c),

the tensors obtained with k = 1% are very different of the ones obtained with the clean

point cloud of Figure 2.3 (a). The extra anisotropic voting field used by Cejnog (2015) is

presented in the Appendix A.
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(a) k=1%. (b) k=5%. (c) k=10%. (d) k=50%. (e) k=75%. (f) k=100%.

Figure 2.3: Variation of the nearest neighbors list size using the first voting field. (a): 1%
of the total points. (28 neighbors) (b): 5% of the total points. (136 neighbors). (c): 10%
of the total points. (272 neighbors). (d): 50% of the total points. (1356 neighbors). (e):
75% of the total points. (2034 neighbors). (f): 100% of the total points. (2711 neighbors).
The colors represent the cp of the points: blue tensors have stick or ball shapes while red
tensors have plate shapes.

(a) k=1%. (b) k=100%. (c) k=1%. (d) k=100%.

Figure 2.4: Variation of the nearest neighbors list size using the first voting field, with
outliers and noise. (a): 1% of the total points, with 50% of outliers. (b): 100% of the
total points, with 50% of outliers. (c): 1% of the total points, with 5% of noise. (d):
100% of the total points, with 5% of noise. The colors represent the cp of the points: blue
tensors have stick or ball shapes while red tensors have plate shapes.

2.2 COMPARATIVE TENSOR SHAPE FACTOR

The Comparative Tensor Shape Factor (shortened CTSF)(CEJNOG, 2015) is used when-

ever the shape of two tensors must be compared. Considering the representation of a

tensor by a hyper-ellipsoid, its axes are proportional to the eigenvalues of its matrix, with
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the larger eigenvalue associated to the largest axis, the second eigenvalue to the second

larger axis, and so on. In this way, to compare the eigenvalues between two tensors is

equivalent to compare the shapes of the respective tensors. Since what matters is the

shape of the hyper-ellipsoid, the tensors used are normalized, i.e.,
√∑N

i=1 λ
2
i = 1. The

CTSF between two tensors S1 and S2 is:

CTSF (S1,S2) =
N∑
i=1

(
λŜ1
i − λ

Ŝ2
i

)2
,

where λŜ1
i and λŜ2

i are the ith eigenvalues of the normalized tensors Ŝ1 and Ŝ2, in a space

with dimension N .

High CTSF

Low CTSF

Figure 2.5: Examples of the CTSF Between Two Tensors. Figure from Cejnog (2015).

The CTSF is a factor of dissimilarity, with smaller values indicating more similar

tensors. Since the shape of a hyper-ellipsoid is invariant to rigid transformations, the

CTSF can be used in a coarse matching scheme. Figure 2.5 shows some examples of low

and high CTSF between two tensors. Note that the scale and main directions of tensors

do not affect the CTSF when their shapes are similar.

2.3 ITERATIVE CLOSEST POINT

Besl and McKay’s ICP (BESL; MCKAY, 1992) requires only two point clouds, named

the Model set M = {mi | mi = (mix,miy,miz)} and the Data set D = {dj | dj =
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(djx, djy, djz)}. Two major steps compose the ICP, and are iterated until a stopping

criterion is satisfied. The first step is the matching, which builds a correspondences set

E = {ej | ej = NE(dj,M)}, where NE(dj,M) is defined as the closest point operator,

with respect to the Euclidean distance, that returns for each point dj, the point mi which

minimizes ||dj −mi||l2 . The correspondences set and the Data set are passed to the next

step.

In the second step, which is called the transformation estimation, the method tries to

find the rotation R and the translation ~t that best align the two sets received. The usual

objective function is:

min
R,~t

( |D|∑
i=1

||ei −R · di −~t||2
)
. (2.2)

The original ICP estimates transformations in R3 using the method of Unit Quater-

nions, a closed-form solution developed by Horn (1987). Quaternions are a convenient

mathematical tool to express rotations in 3D and are represented by a 4D vector
◦
qR =

[q0, q1, q2, q3]
T . For a unit quaternion it follows that q0 > 0 and q20 + q21 + q22 + q23 = 1.

q0 is said the scalar part, and q1, q2, q3 are the imaginary vector part. The scalar part is

associated with the magnitude of the rotation, while the vector part is the rotation axis.

So in order to find the rotation that minimizes Equation 2.2, the method needs to find

a quaternion instead. First, the centroids of each set are calculated:

µD =
1

|D|

|D|∑
i=1

di, µE =
1

|E|

|E|∑
i=1

ei. (2.3)

The cross-covariance ΣDE between the Data set and the correspondences set is used to

build the matrix L, that encodes the relationship between both sets. The cross-covariance

is given by:

ΣDE =
1

|D|

|D|∑
i=1

[die
T
i ]− µDµTE, (2.4)

and the matrix L is defined as:

L =


Σ11 + Σ22 + Σ33 Σ32 − Σ23 Σ13 − Σ31 Σ21 − Σ12

Σ32 − Σ23 Σ11 − Σ22 − Σ33 Σ12 + Σ21 Σ31 + Σ13

Σ13 − Σ31 Σ12 + Σ21 −Σ11 + Σ22 − Σ33 Σ23 + Σ32

Σ21 − Σ12 Σ31 + Σ13 Σ23 + Σ32 −Σ11 − Σ22 + Σ33

 . (2.5)
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The eigenvector associated with the greatest eigenvalue of L represents the direction

of maximum correlation. This eigenvector is chosen as the optimal quaternion, whose

associated rotation R minimizes Equation 2.2. The proofs and expanded equations of this

method can be found in Horn’s paper (HORN, 1987). Comparisons and other details are

presented by Eggert et al. (1997). The optimal translation ~t is obtained as the difference

vector between the centroid of the correspondences set and the centroid of the rotated

Data set:

~t = µE −R · µD.

With R and ~t computed, the transformation is applied to all points of the Data

set. These two major steps are iterated until a stopping criterion is satisfied. An error

threshold or number of iterations are the usual choices.

(a) Initial pose. (b) After 2 iterations. (c) After 4 iterations.

(d) After 6 iterations. (e) After 9 iterations. (f) Final alignment after 11 it-
erations.

Figure 2.6: A correct convergence sequence of the ICP for an initial pose rotated 15◦. Red
points represent the Data and Black represent the Model. Green points indicate a point
in Data matched correctly.

Besl and McKay assume that initially both Model and Data point clouds are coarsely

aligned, i.e., the angular displacement between them is already low, whether by the result

of an algorithm or manually positioning them. Figure 2.6 shows a convergence sequence

of this case. When coarsely aligned many correspondences should already be correct,

as observed in the tentacle of the octopus in Figure 2.6 (b), and at the first iterations
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(a) Initial pose. (b) After 4 iterations. (c) After 8 iterations.

(d) After 13 iterations. (e) After 18 iterations. (f) Final alignment after 21
iterations.

Figure 2.7: A failled convergence sequence of the ICP for an initial pose rotated 180◦.
Note that across the iterations one point in the Model set still has many correspondences
on the Data set. Red points represent the Data and Black represent the Model.

the method will approximate these correspondences to the Data set. As the matching

and transformation estimation steps are iterated, the number of correct correspondences

increases, leading to a correct alignment. However, this assumption is too strong for most

cases, especially in the real world scenarios. Once the matching assigns too many false

correspondences, see Figure 2.7, the estimation will lead to a relative pose even worse

than the previous. This vicious cycle ends when a local optimum is reached, but too far

from the global one.

It is clear now that better matchings or strategies that guide the transformation to-

wards a better solution improve the chances to converge to the desired optimum. Indeed,

most existent approaches attack these two problems. Coarse registration methods, for ex-

ample, focus on providing a better initial pose to the ICP. Our approach besides providing

a better initial pose, is also able to finely register the point clouds without the need of an

additional algorithm.
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2.4 SHAPE-BASED MATCHING

Following the premise that a better matching leads to a better transformation, the ICP-

CTSF (CEJNOG, 2015) implements a matching strategy using an invariant feature to

improve the number of correct correspondences. The feature chosen is the shape of the

tensor at each point.

The CTSF was presented in Section 2.2 as a comparison factor between two tensors

and is used side by side with the Euclidean distance to produce the correspondences

set. The ICP-CTSF assumes that the point corresponding to the same region in two

different point clouds will have very similar tensors after the preprocessing stage, since its

surrounding geometry is the same. In this way, the CTSF between them should be very

low. So no matter how apart a point cloud is from the other, the shape-based matching

will be able to produce a good correspondences set, since only the shapes of the tensors are

considered. On the other hand, if the point clouds are far from each other, the Euclidean

match would result in a bad correspondences set, with a few points being matched to

many. This behavior is observed very often in the first iteration of the classical ICP. Even

though this is not a problem in some cases, it still has a great chance to converge to a

local optimum far from the best depending on the initial relative pose.

However, since the shape of the tensors does not change during rigid registration, the

shape-based correspondences are always the same, and using only them in the ICP would

make it converge to a local optimum very fast, often just coarsely aligned. Naturally the

Euclidean matching is not static, improving its quality as long as the point clouds are

getting aligned. As already known by the literature, if the point clouds are very close to

each other the ICP is able to finely register them.

Two distinct patterns are observed in these two strategies. The shape-based matching

provides a good coarse alignment no matter the initial relative pose, and the Euclidean

match is better when point clouds are close. So the ICP-CTSF combine them taking the

best of each one. Since the goal is to be able to align point clouds with large angular

displacement, the shape-based matching should have more relevance in the first iterations.

This is the coarse phase of the method. Once it reaches a local optimum hopefully better

than the initial pose, it should now have a better Euclidean matching, making it deserve

a greater influence. Throughout the iterations the influence of the Euclidean distance

increases, becoming more similar to a fine method. The formulation of the matching used
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in the ICP-CTSF is:

dCTSF (di,mj) = ||di −mj||2 + wn · CTSF
(
Sdi ,Smj

)
,

wn = w0b
n, b < 1 and 0 ≤ wn < w0,

where n is the number of local optima reached. The parameter w0 is the initial weight

given to the CTSF and a high value is the usual choice. b controls the update size of

the weighting factor and impacts directly in the results of the ICP-CTSF. It is, however,

a trade-off between robustness and time. A value too small will give more importance

to Euclidean distance too fast and the fine stage of the method might not have a good

relative pose to start. A value too high will guarantee that the point clouds are coarsely

aligned, but implies in a large amount of iterations, since the update rate of the weight is

too small. To avoid numerical instabilities we set wn = 0, when wn ≈ 0.
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3 PROPOSED METHOD

The proposed method also follows the same coarse-to-fine idea of the ICP-CTSF. Points

with similar shapes should have more importance in the beginning of the registration, and

the Euclidean distance should have more importance in the end. The difference from the

previous method (CEJNOG, 2015) is the location of the selected correspondent points.

Our method starts approximating the point clouds reducing the distance of points

whose tensor shape are similar, according to the CTSF, giving little relevance to the

Euclidean distance between them. Again, what matters in the beginning is the coarse

alignment. Then, following the same strategy of the shape-based matching, when a local

optimum is reached, the weighting factor is recalculated and the CTSF gets less influence.

After a sufficiently large number of local optima, the behavior is the same as a fine method,

since the influence of the CTSF becomes insignificant.

We apply this strategy directly over the covariance matrix between the Data set and

the correspondences set, using two covariance matrices, one established by the Euclidean

distance of the closest points and one by the distance of points with low CTSF.

The cross-covariance of the points obtained with the Euclidean distance is computed

exactly in the same way of the original ICP. The only difference of the second cross-

covariance is the correspondences set used, defined as S = {si | si = NCTSF (di,M)},

with NCTSF (di,M) as the operator that returns the point in M whose shape is the most

similar to di, according to the CTSF of both. Like in Equation 2.3, the centroid of this

shape-based correspondences set is:

µS =
1

|S|

|S|∑
i=1

si.

If we minimize only the distance between points whose shapes are equals, the cross-

covariance matrix would be expressed by:

ΣDS =
1

|D|

|D|∑
i=1

[dis
T
i ]− µDµTS . (3.1)

Although this registration alone would not be correct according to the problem state-

ment, it does contribute to reach a better alignment when combined to the original one.
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Therefore, our contribution is a sum of both Equations 2.4 and 3.1, weighted by a factor

wn:

ΣDES = 1
|D|

|D|∑
i=1

[die
T
i + wndis

T
i ]− [µDµ

T
E + wnµDµ

T
S ]

= 1
|D|

|D|∑
i=1

[di(e
T
i + wns

T
i )]− [µD(µTE + wnµ

T
S )],

wn = w0b
n, b < 1 and 0 ≤ wn < w0.

Similar to the heuristic presented in Section 2.4, n is incremented when a local optimum

is reached. The parameter w0 is the initial weight given to the shape-based correspon-

dences, and b controls the update size of the weighting factor.

The matrix L of Equation 2.5 is computed as usual, with ΣDES instead of ΣDE, from

Equation 2.4. The rotation and the translation are also computed exactly in the same

way of the original ICP. The pseudocode of the SWC-ICP is in the Algorithm 1, of the

Appendix B.

Analyzing the proposed formulation, we note that instead of using the closest point

or the point whose shape of the tensor is the most similar, we use a combination of both.

This means that the point considered in the correspondences set starts in a fictitious

location and ends being the closest point. Results show that this approach has a higher

rate of convergence to the correct optimum than some recent methods. Figure 3.1 shows

the convergence sequence of the SWC-ICP for the same initial pose of Figure 2.7.

Unlike the method proposed in Cejnog (2015), in this work we do not use the anisotropic

voting field to estimate the tensors. We conducted experiments of how each voting field

impacts the registration in the final stages of this work, in collaboration with Luciano

Cejnog. We observed that the results improved up to 30% using only the isotropic field.

Therefore, we chose not to include the second voting field into our method.

Although the second voting field gives a better estimation of local planar structures,

we are interested in the distinctiveness of each tensor during the matching step of the

ICP. Figure 3.2 shows a histogram of the value obtained by the CTSF between all points

of the Data point cloud and all other Model points during the matching step, considering

a case with total overlapping and corrupted with noise and outliers.

We see values of CTSF more distributed when only the first voting field is used. Also,

less points have lower values of CTSF, reducing the possibility of wrong correspondences.
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(a) Initial pose. (b) After 1 iteration. (c) After 6 iterations.

(d) After 9 iterations. (e) After 13 iterations. (f) Final alignment after 17 it-
erations.

Figure 3.1: A convergence sequence of the SWC-ICP for an initial pose rotated 180◦.
The first iteration of the SWC-ICP moves away the centroid of the Data point cloud, but
already corrects its orientation. Red points represent the Data and Black represent the
Model. Green points indicate a point in Data matched correctly.

CTSF distribution using both voting elds

CTSF distribution using only the rst voting eld
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Figure 3.2: The histograms of CTSF between two point clouds corrupted with noise and
outliers, with different sizes of k-neighborhood. Note that as the size increases, the number
of values on the first bin is smaller when just the first voting field is used. Therefore, the
likelihood of wrong correspondences in the matching step of the ICP is reduced.

Since the second field constrains some neighbors to cast its vote, and it reinforces the

planarity of the tensor, the variety of shapes decrease. This is particularly seen in points

over smooth surfaces. While the first step alone might not be enough to approximate the

local curvatures of the point cloud, it allows a greater diversity of shapes.
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4 EXPERIMENTAL RESULTS

4.1 3D MODEL DATASET SETUP

(a) Bunny. (b) Happy
Buddha.

(c) Octopus. (d) Genus-
2.

Figure 4.1: The point clouds used on the experiment: (a): Bunny (containing 1889
points). (b): Happy Buddha (3118 points). (c): Octopus (3822 points). (d): Genus-2
(2711 points).

In order to create an experimental setup able to perform a fair comparison of methods,

we define a trial as an execution of rigid registration under a certain amount of noise,

outliers and overlapping, with an angular displacement. These are common issues found

in the literature. Our test suite ensures that the same trial is performed by the different

compared algorithms.

For practical applications the point clouds are assumed to be two distinct representa-

tions from the same object or complementary views from a scene. However, for perfor-

mance analysis and comparisons with other methods synthetic point clouds are often used,

allowing varying degrees of overlapping, noise and outliers. In these controlled cases, the

overlapped regions are identical, and all points within it, have an exact correspondence.

We use four point clouds: Bunny1, Happy Buddha1, Octopus2 and Genus-23, with

different features, such as holes, some degree of symmetry, and points with high and low

curvatures. We sampled the point clouds to make possible the execution of multiple trials

in a feasible time. The Bunny model used is the smallest zippered version available. The

1Provided by Stanford University Computer Graphics Laboratory on http://graphics.stanford.

edu/data/3Dscanrep/ .
2Provided courtesy of INRIA by the AIM@SHAPE-VISIONAIR Shape Repository.
3Provided by École Polytechnique Fédérale de Lausanne Computer Graphics and Geometry Labora-

tory on http://lgg.epfl.ch/statues_dataset.php

http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
http://lgg.epfl.ch/statues_dataset.php
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other point clouds were sampled using a Poisson-disk sampling algorithm (CORSINI et

al., 2012) available on MeshLab4. All point clouds used are normalized with the largest

edge of the bounding box scaled to have size 1. Figure 4.1 shows the point clouds used.

We divide our tests in two groups, total overlapping and partial overlapping, running

30 trials for each configuration case. In the first group, we experiment with different

amounts of noise, outliers and both at the same time. In the second group we evaluate

how the size of the overlapping and individual regions affects the quality of registration.

A rigid transformation is applied in the Data set to simulate the initial state of the

point clouds. The rotation axis is set as a random normalized isotropic vector. The range

of angles used is from 15◦ to 180◦, sampled each 15◦. Therefore, twelve angles are used.

Outliers are generated using a uniform distribution over a sphere with radius twice the

size of the greatest edge of the bounding box. Noise is simulated adding to each point pi

a random normalized isotropic vector ~r. The magnitude of this vector is obtained using

a Gaussian random variable weighted by a scale δ that controls the intensity of the noise.

We use an isotropic displacement vector because it is more challenging than noise in the

direction of the normal:

pi = pi + δ ·N(0, 1) · ~r.

Partially overlapped point clouds are generated using a region growing algorithm,

using the list of closest neighbors Lk(p). First, the common region is determined from a

random point as initial seed. This region grows until it has a number of points β. The α

remaining points of the unique region of each point cloud are obtained in the same way,

using as initial seed a random point next to the border of the overlapped region.

The values for noise used are: δ = {0.01, 0.05}. Since the point clouds are normalized,

the noise is correspondent to 1% and 5% of the edge of a unit box. Higher amounts

of noise are not considered because the point cloud loses its features and such level of

degradation is an unrealistic case. Outliers are tested with 5%, 20%, 50% of the number

of points, a case with a small amount, moderated amount and a very corrupted point

cloud, respectively. The trials with noise and outliers together use all the combinations

of these values. Figure 4.2 shows some examples of point clouds corrupted with outliers,

noise and both at the same time. Note that although 1% of noise does not alter much of

the geometry, with 5% the point cloud already loses most of its details.

4http://meshlab.sourceforge.net

http://meshlab.sourceforge.net
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Each trial use different seeds to avoid biased generation of noise, outliers and over-

lapping regions. These seeds are generated by a Mersenne Twister (MATSUMOTO;

NISHIMURA, 1998) pseudo-random number generator.

(a) 10% of outliers. (b) 20% of outliers. (c) 50% of outliers.

(d) 1% of noise. (e) 5% of noise. (f) 50% of outliers
and 5% of noise.

Figure 4.2: Examples of cases with outliers, noise, and the hardest case combining the
greatest amounts of outliers and noise.

In the second group of experiments we evaluate different combinations of overlapping

(β) and individual region (α) amounts. The proposed values for β show different levels

of overlapping, varying from a large to a small common region. Table 4.1 shows the

combinations used. The first case with α = 12.5% and β = 75% means: “Each point cloud

has 12.5% unique original points and they mutually share 75% as common overlapped

points.” Note that the amount of non-overlapping points α is always the same for both

point clouds. In this way, with α = 25% the range of overlapping is shortened, since it

is not possible to have more than 50% of overlapping with each point cloud having 25%

as remaining points. Figure 4.3 shows two examples of partial overlapping, one with high

and one with low overlapping amount β.
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(a) α = 12.5% and
β = 75%.

(b) α = 12.5% and
β = 25%.

Figure 4.3: Two examples of partial overlapping. Red indicate points belonging only to
the Model set, green are points belonging to the overlapped region, and black are points
belonging only to the Data set.

α 12.5% 25%

β 75% 50% 25% 12.5% 50% 37.5% 25% 12.5%

Table 4.1: Percentage of Points of the Individual Region (α) and of the Overlapping
Region (β) for the Second Group of Trials.

4.2 ERROR MEASUREMENT PROTOCOL

In the rigid registration literature we find many different measurements used to expose

and compare the proposed algorithms. The most common are RMS (Root Mean Squared)

error and computational time.

In this work we use the GTRMS error (Ground Truth Root Mean Squared error)

(AIGER et al., 2008)Cejnog, the root mean squared distance between all points of the

Data set and their ground truth correspondences in the Model set. This is only possible

because we are using synthetic pairs of point clouds, and we know in advance the correct

correspondences. This error is measured only for inliers and points in the overlapped

region, because only these points have a correct correspondence. We use this variation of

error because we are interested in measuring how close to the correct registration we are,

instead of how close one point cloud is to the other. Note that this error is used only for

evaluation purposes, and the error used inside the SWC-ICP is the usual RMS.

Another measurement we adopted is the Labeled Error (CEJNOG, 2015), the number
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of correct correspondences found by the matching function of the ICP. This measure is

also only possible using synthetic pairs of point clouds. It is an indicative of how close

the regions of interest are.

Our previous work (?) used a threshold on the GTRMS and Labeled Error to define

a success case. However, trials frequently have intermediate values, for registrations that

have success on the coarse stage, but failed in the fine stage. Taking just the mean error

with such trials might not express the correct performance of the method, and induce

a wrong analysis. The same happens to the Labeled Error. To overcome this issue, we

propose a scoring system combining these two measurements to compare the performance

of the methods.

First a 2D Histogram H is computed using the GTRMS and Labeled Error from all

trials of a given parameter combination. We build this histogram with 40× 40 bins. The

error ranges used are [0.0, 0.5] for the GTRMS, and [0, ND] for the Labeled Error, where

ND is the number of points in the overlapped region of the point clouds tested. The

GTRMS range values comes from empirical observations. If an GTRMS error is higher

than 0.5, it is set as 0.5. The score is a weighted mean of the histogram. The weighting

matrix W has the same dimension of the histogram and is obtained assigning larger values

for the cells with small GTRMS and high Labeled Error, and conversely smaller values for

cells with high GTRMS and small Labeled Error. The remaining cells are filled following a

bilinear interpolation. Figure 4.4 is an example of score for a trial, showing the histogram

matrix with 4× 4 bins and its weighting matrix.

0 ND

0

0.5

Labeled Error

G
T
R

M
S

H W

Figure 4.4: Example of a 4 × 4 bins histogram matrix H and a 4 × 4 weighting matrix
W. In this example the Score is: 1

284
((5× 0.50) + (1× 0.67) + (· · · )) = 0.9698.

Score =

Nbins∑
i=1

Nbins∑
j=1

Hij ×Wij

Nbins∑
i=1

Nbins∑
j=1

Hij

.
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The score is normalized in the interval [0, 1]. However, the score is not a success rate.

The labeled error is expected to decrease when noise is applied to the point cloud, since it

is based on the matching function. Therefore, the score tends to be smaller in noise cases,

but it does not mean the performance of the method is worse. The score is meant to be

used to compare two methods in the same configuration of noise, outliers and overlapping

amount. The diagram of Figure 4.5 summarizes the execution of our protocol.

Base Point Cloud

Normalize

Generate Duplicates

Data SetModel Set

Add Noise
Add Outliers

Trial Model 
Set

Event 
TypeTotal Overlapping

Generate Partially 
Overlapped Point 

Clouds

Data SetModel Set

Apply Rigid 
Transformation

Partial Overlapping

For each 
method

SWC-ICP
GMM
S4PCS + GMM
ICP
ICP-CTSF
Sparse ICP
Sparse ICP CTSF

Trial Data 
Set

Add Noise
Add Outliers

 
 

 

Execute

Measure 
errors

Compute 
Score

Figure 4.5: Flow chart of our evaluation protocol.
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4.3 RESULTS

We compare the SWC-ICP with the original ICP and some recent algorithms to rigid

registration:

� The GMM framework (JIAN; VEMURI, 2011), that represents the point clouds

as Gaussian Mixture Models and reduce the rigid registration to the problem of

minimize the statistical discrepancy between two mixtures.

� The Super 4PCS (S4PCS)(MELLADO et al., 2014), an improvement of the 4PCS,

a coarse alignment method with good results, comparable to some fine methods. It

is based on the RANSAC, but uses an improved search strategy to find congruent

4-point bases between the point clouds. To make comparisons with our method fair,

we run two versions of the S4PCS, one followed by the original ICP and the other

followed by the GMM, to exemplify the behavior of a coarse method followed by a

fine method.

� The ICP-CTSF (CEJNOG, 2015), that uses the CTSF to estimate the best corre-

sponding neighbors in the matching step of the ICP.

� The Sparse ICP (BOUAZIZ et al., 2013), that uses lp-norms with an Alternating

Direction Method of Multipliers optimizer. The parameter p controls the robustness

to noise and outliers, and is a trade-off between accuracy and computational time.

� We also compare with a variation of the Sparse ICP using the CTSF, like presented

by Cejnog (2015), that uses the CTSF matching to estimate the corresponding set

and minimizes using the ADMM, like the original Sparse ICP.

We implemented the original ICP, the ICP-CTSF and the modification of the Sparse

ICP to adequate the CTSF matching, while keeping the core method the same as the

provided Sparse ICP. All other methods used codes made available by the authors. All

codes are written in C/C++.

4.3.1 RESULTS WITH NOISE AND OUTLIERS

We evaluate six different sizes of the neighbors list of the SWC-ICP: 100%, 75%, 50%, 15%,

5%, 1%. The update size of the weighting factor used was b = 0.1. It is an intermediate
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value that does not take too many updates, and neither finishes the update too soon,

without proper exploration of the search space. The S4PCS was set with: δ = 0.005, no

filtering by angle, normals, distance or color, and no further sampling of the point cloud.

The Sparse ICP and Sparse ICP with CTSF were set with parameters: p = 0.4, µ = 10.0,

α = 1.2, maxµ = 105, maxicp = 100, maxouter = 100, maxinner = 1, stop = 10−4.

The Sparse ICP with CTSF use k = 100%. Since the ICP-CTSF and the Sparse ICP

with CTSF use tensors to match points like our method, using only the first voting field

have an effect on their results. Therefore, we present results for both methods, with and

without the second voting field. The Sparse ICP with CTSF and the ICP-CTSF with the

anisotropic voting field use k = 100%, the best size according to Cejnog (2015). When

only the isotropic voting field is used the best list size of the ICP-CTSF changes. We

present the best value found in each point cloud. Results with tensors estimated using

the two voting fields are identified with ”S.”, while ”F.” represent tensors estimated using

only the first voting field. All the other methods use the best configuration presented by

the authors and the default when not specified.

Method Name Clean Outliers Noise Noise + outliers Overall

SWC-ICP S. k = 100% 1.0000 0.9004 0.7299 0.6264 0.7433

SWC-ICP S. k = 75% 1.0000 0.9449 0.7260 0.6635 0.7723

SWC-ICP S. k = 50% 1.0000 0.9353 0.7168 0.6248 0.7490

SWC-ICP S. k = 15% 1.0000 0.8063 0.6871 0.4282 0.6135

SWC-ICP S. k = 5% 1.0000 0.7311 0.4692 0.2168 0.4527

SWC-ICP S. k = 1% 1.0000 0.6265 0.1147 0.0496 0.2839

SWC-ICP F. k = 100% 1.0000 0.9340 0.7311 0.6547 0.7660

SWC-ICP F. k = 75% 1.0000 0.9472 0.7308 0.6709 0.7774

SWC-ICP F. k = 50% 1.0000 0.9389 0.7293 0.6614 0.7703

SWC-ICP F. k = 15% 1.0000 0.9165 0.7226 0.6122 0.7390

SWC-ICP F. k = 5% 1.0000 0.8861 0.6978 0.5173 0.6798

SWC-ICP F. k = 1% 1.0000 0.9358 0.3295 0.1148 0.4297

GMM 0.5370 0.5261 0.3985 0.3859 0.4356

S4PCS 0.9991 0.2125 0.6648 0.1244 0.3094

S4PCS + GMM 1.0000 0.4120 0.6972 0.2832 0.4441

ICP 0.3446 0.2365 0.2346 0.1747 0.2143

ICP-CTSF S. k = 100% 1.0000 0.9351 0.7342 0.6561 0.7675

ICP-CTSF F. k = 75% 1.0000 0.9824 0.7340 0.7048 0.8037

Sparse ICP 0.4610 0.3479 0.3260 0.2554 0.3074

Sparse ICP CTSF S. 1.0000 0.7370 0.6936 0.5202 0.6433

Sparse ICP CTSF F. 1.0000 0.6954 0.6329 0.4783 0.6018

Table 4.2: Combined score per case on the Bunny.

The Tables 4.2, 4.3, 4.4 and 4.5 present the score obtained by each method combining

all twelve angles with the clean point cloud, with all situations with only outliers, all

situations with only noise, all situations with noise and outliers together, and the average

score. This overall value is our final score for the methods compared in the total overlap-
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Method Name Clean Outliers Noise Noise + outliers Overall

SWC-ICP S. k = 100% 1.0000 0.8362 0.5735 0.5054 0.6407

SWC-ICP S. k = 75% 1.0000 0.7908 0.5601 0.4221 0.5854

SWC-ICP S. k = 50% 1.0000 0.7283 0.4932 0.3079 0.5016

SWC-ICP S. k = 15% 1.0000 0.6526 0.4086 0.2347 0.4320

SWC-ICP S. k = 5% 1.0000 0.7308 0.3233 0.1941 0.4170

SWC-ICP S. k = 1% 1.0000 0.6953 0.1622 0.1057 0.3370

SWC-ICP F. k = 100% 1.0000 0.7470 0.5767 0.4676 0.6000

SWC-ICP F. k = 75% 1.0000 0.8476 0.5762 0.5135 0.6480

SWC-ICP F. k = 50% 1.0000 0.8539 0.5757 0.5152 0.6503

SWC-ICP F. k = 15% 1.0000 0.8257 0.5731 0.4532 0.6119

SWC-ICP F. k = 5% 1.0000 0.7538 0.5626 0.3806 0.5559

SWC-ICP F. k = 1% 1.0000 0.8602 0.3023 0.1731 0.4353

GMM 0.3793 0.3756 0.2519 0.2432 0.2891

S4PCS 0.9351 0.4066 0.5452 0.2693 0.4051

S4PCS + GMM 0.9415 0.4903 0.5624 0.3070 0.4483

ICP 0.2817 0.2491 0.1967 0.1881 0.2126

ICP-CTSF S. k = 100% 1.0000 0.8824 0.5755 0.4803 0.6400

ICP-CTSF F. k = 50% 1.0000 0.9047 0.5779 0.4949 0.6533

Sparse ICP 0.3564 0.3232 0.2308 0.2210 0.2595

Sparse ICP CTSF S. 1.0000 0.9551 0.5711 0.5292 0.6819

Sparse ICP CTSF F. 1.0000 0.7626 0.5532 0.4187 0.5773

Table 4.3: Combined score per case on the Octopus.

Method Name Clean Outliers Noise Noise + outliers Overall

SWC-ICP S. k = 100% 1.0000 0.9208 0.6196 0.5353 0.6845

SWC-ICP S. k = 75% 1.0000 0.7610 0.6205 0.4615 0.6077

SWC-ICP S. k = 50% 1.0000 0.8367 0.6166 0.4895 0.6400

SWC-ICP S. k = 15% 1.0000 0.7548 0.4888 0.3242 0.5156

SWC-ICP S. k = 5% 1.0000 0.7032 0.3252 0.2145 0.4206

SWC-ICP S. k = 1% 1.0000 0.8217 0.1961 0.1542 0.3986

SWC-ICP F. k = 100% 1.0000 0.8100 0.6253 0.4698 0.6249

SWC-ICP F. k = 75% 1.0000 0.9342 0.6353 0.5305 0.6880

SWC-ICP F. k = 50% 1.0000 0.9533 0.6367 0.5631 0.7094

SWC-ICP F. k = 15% 1.0000 0.9028 0.6097 0.4652 0.6433

SWC-ICP F. k = 5% 1.0000 0.8797 0.5658 0.3930 0.5940

SWC-ICP F. k = 1% 1.0000 0.9699 0.3053 0.1896 0.4715

GMM 0.5251 0.5195 0.3454 0.3510 0.4067

S4PCS 0.9928 0.5075 0.6100 0.3651 0.4938

S4PCS + GMM 0.9977 0.6128 0.6239 0.3888 0.5353

ICP 0.4752 0.4155 0.3067 0.2953 0.3423

ICP-CTSF S. k = 100% 1.0000 0.9060 0.6333 0.5490 0.6899

ICP-CTSF F. k = 50% 1.0000 0.9512 0.6417 0.5792 0.7177

Sparse ICP 0.5385 0.4726 0.3548 0.3321 0.3882

Sparse ICP CTSF S. 1.0000 0.7074 0.4900 0.4365 0.5601

Sparse ICP CTSF F. 1.0000 0.8464 0.5557 0.5137 0.6444

Table 4.4: Combined score per case on the Happy Buddha.

ping test. The expanded tables with the results detailed by level of noise and outliers are

presented in Tables C.1, C.2, C.3 and C.4, of the Appendix C.

Figures 4.6, 4.7, 4.8 and 4.9 show the score combining the clean point cloud, outliers,

noise and outliers together with noise, detailed by angle. The Figures show the best

SWC-ICP, the GMM, the Super 4PCS with GMM, the original ICP, the best ICP-CTSF,
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Method Name Clean Outliers Noise Noise + outliers Overall

SWC-ICP S. k = 100% 1.0000 0.6544 0.6132 0.3928 0.5455

SWC-ICP S. k = 75% 1.0000 0.7465 0.5652 0.4051 0.5667

SWC-ICP S. k = 50% 1.0000 0.6126 0.5622 0.3394 0.4999

SWC-ICP S. k = 15% 1.0000 0.7582 0.3862 0.2378 0.4561

SWC-ICP S. k = 5% 1.0000 0.7282 0.2330 0.1464 0.3774

SWC-ICP S. k = 1% 1.0000 0.7590 0.1594 0.1186 0.3589

SWC-ICP F. k = 100% 1.0000 0.6281 0.5960 0.3654 0.5227

SWC-ICP F. k = 75% 1.0000 0.8368 0.6292 0.4425 0.6189

SWC-ICP F. k = 50% 1.0000 0.8845 0.6472 0.4864 0.6557

SWC-ICP F. k = 15% 1.0000 0.8396 0.5891 0.3986 0.5909

SWC-ICP F. k = 5% 1.0000 0.8473 0.4897 0.3383 0.5460

SWC-ICP F. k = 1% 1.0000 0.9747 0.2441 0.1411 0.4387

GMM 0.5283 0.5383 0.3643 0.3594 0.4190

S4PCS 0.9835 0.4314 0.5351 0.2815 0.4198

S4PCS + GMM 0.9790 0.4651 0.5335 0.2934 0.4335

ICP 0.4124 0.3842 0.2956 0.2677 0.3136

ICP-CTSF S. k = 100% 1.0000 0.7192 0.5597 0.4272 0.5701

ICP-CTSF F. k = 50% 1.0000 0.8686 0.6495 0.5075 0.6626

Sparse ICP 0.5359 0.4389 0.3659 0.3074 0.3691

Sparse ICP CTSF S. 0.9889 0.6286 0.4244 0.3950 0.5078

Sparse ICP CTSF F. 0.8904 0.5886 0.4161 0.3892 0.4853

Table 4.5: Combined score per case on the Genus-2.

the original Sparse ICP and the Sparse ICP with CTSF. The Super 4PCS with ICP and

other values of k for the SWC-ICP and the ICP-CTSF are not presented because of their

lower performance, improving the readability of the graphics.
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Figure 4.6: Overall score per angle on the Bunny.
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Figure 4.7: Overall score per angle on the Octopus.
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Figure 4.8: Overall score per angle on the Happy Buddha.
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Figure 4.9: Overall score per angle on the Genus-2.

The results show that the Bunny was the easiest point cloud tested, with the overall

scores higher than in other point clouds, for almost every method. That is justified

because most of the surface of its body is smooth, the exceptions are the ears and the end

of the paws. The other point clouds on the other way, presented harder scenarios. The

difficulty on the Octopus comes from the high curvature of its tentacles. The geometry

of the Genus-2 is mostly planar, but it has two symmetry axes which frequently lead the

registration to false local optima. The Happy Buddha also have some degree of symmetry

along its vertical axis, and differently from the Genus-2, it is more detailed and have just

a few planar surfaces.

Results with clean point cloud show that methods using the CTSF and the Super 4PCS

were able to correctly register the point cloud in almost every case. With only outliers

the methods using CTSF were better than the others, and using the first voting field by

itself produced better results, especially on small neighbors list sizes k. The tensor voting

process, used to estimate the tensors, is known for its robustness to outliers, confirmed

with these results. Even with high amount of outliers, the structuring element was able

to find the structure of the inliers, producing similar tensors for the same point on both
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model and data point clouds.

The scores of the case with only noise are lower than those with only outliers, for

almost every method. This behavior is expected, since noise affects directly the matching

function, used to count the labeled error. Therefore, this lower score does not mean

that the methods failed more often than in cases with just outliers. Differently from the

previous case, the SWC-ICP with small k had poor results, with k = 1% being the worst

result. A neighborhood with size 1% in the Bunny, for example, have 19 points, which

is too small to estimate a structure when corrupted by noise. In this way, the tensors

obtained for a point tend to be too different between the model and the data point clouds,

leading to bad matches. When noise and outliers are combined the comparisons between

methods are similar to the case with just noise. The SWC-ICP with k = 1% is also the

worst method. The reason is also the same, aggravated by the outliers. Again, using only

the first voting field produced better results, and although small neighbors list sizes k still

have lower performance, they doubled their score.

Figures 4.6, 4.7, 4.8 and 4.9 show that although the SWC-ICP has a slightly smaller

score than the ICP-CTSF, in the Octopus and in the Genus-2 it was the best method

in wide angles scenarios, with a very competitive score in the Bunny. The SWC-ICP

basically is not affected by angle variations, as we can see almost a straight line in the

graphics, for all the four point clouds. A similar behavior is observed in the Super 4PCS,

that was designed as a coarse method, and thus should also not be affected by wide angles.

The scores of the ICP-CTSF and the Sparse ICP with CTSF decay at some point. What

balances their result with the SWC-ICP is that before the decay, they have a slightly

better average score. The GMM framework, the Sparse ICP and the original ICP are

not coarse methods, therefore the range of its good performance is limited by the angle.

We can see in the Figures that these three methods have even competitive results with

low angles, where they were supposed to perform better. In the Bunny, the Happy and

the Genus-2, the GMM framework was the best fine-only method we experienced, with

consistent results until 75◦.

These results show that the SWC-ICP and the ICP-CTSF have different strengths and

weaknesses, each better than the other at some point. The SWC-ICP is a better method

for wider angle situations. The addition of the CTSF to the Sparse ICP also proved to

have very good results, comparable to both the SWC-ICP and the ICP-CTSF. It is clear



48

to see the improvement made by using only the first voting field, both on the SWC-ICP

and on the ICP-CTSF. The performance gain on the ICP-CTSF was even greater than

our presented method, and we recommend using it for all methods that benefits from the

CTSF matching.

4.3.2 RESULTS WITH PARTIAL OVERLAPPING

In partial overlapping tests the Sparse ICP using the CTSF and the ICP-CTSF were run

with k = 1%, since it was the best k-neighborhood reported by Cejnog (2015). Four

different neighbors list sizes were evaluated in the SWC-ICP, the two greatest and the

two smallest sizes of the previous test. All other methods use the same parameters as

the previous test. The SWC-ICP, the original ICP, the ICP-CTSF and both S4PCS use

a trimmed approach, discarding the 10% worse correspondences. We do not discard the

amount α of the individual region size because in a real situations this value is unknown.

The Tables 4.6, 4.7, 4.8 and 4.9 show the scores detailed for all combinations of over-

lapping and individual regions presented on Table 4.1, combining the scores of all twelve

rotation angles. The amount of overlap β and the amount of individual region α impact

directly on the performance of all methods. The greater the overlapping and the smaller

the individual region size, the better are the scores. This behavior is expected, since the

number of points with correct correspondences is larger.

Bunny

α 12.5% 25.0%
Overall

β 12.5% 25.0% 50.0% 75.0% 12.5% 25.0% 37.5% 50.0%

SWC-ICP S. k = 100% 0.1689 0.2446 0.4671 0.5237 0.1251 0.1421 0.2270 0.2579 0.2695

SWC-ICP S. k = 75% 0.1762 0.2574 0.5562 0.8291 0.1547 0.1454 0.2523 0.3433 0.3394

SWC-ICP S. k = 5% 0.2595 0.4177 0.7170 0.8802 0.1850 0.2418 0.3570 0.4855 0.4430

SWC-ICP S. k = 1% 0.2709 0.4186 0.7178 0.8840 0.2177 0.2910 0.4218 0.5870 0.4761

SWC-ICP F. k = 100% 0.1774 0.1719 0.2858 0.6557 0.1110 0.0679 0.0784 0.1797 0.2160

SWC-ICP F. k = 75% 0.1832 0.2353 0.3612 0.7436 0.1074 0.0938 0.1365 0.1964 0.2572

SWC-ICP F. k = 5% 0.3418 0.4043 0.5115 0.8158 0.2555 0.3356 0.4153 0.4928 0.4466

SWC-ICP F. k = 1% 0.3432 0.4067 0.5160 0.8162 0.3070 0.3506 0.4217 0.4906 0.4565

GMM 0.1930 0.2203 0.3349 0.4566 0.1417 0.1297 0.1803 0.2611 0.2397

S4PCS 0.2324 0.3994 0.6918 0.8661 0.1308 0.2205 0.4355 0.6354 0.4515

S4PCS + GMM 0.2024 0.3420 0.6420 0.8689 0.1333 0.1446 0.3191 0.5278 0.3975

ICP 0.2140 0.1906 0.2223 0.2509 0.1655 0.1512 0.1578 0.1778 0.1912

ICP-CTSF S. 0.2350 0.3672 0.5587 0.6686 0.1918 0.2293 0.3177 0.4340 0.3753

ICP-CTSF F. 0.3459 0.4149 0.5340 0.8486 0.2891 0.3459 0.4197 0.5004 0.4623

Sparse ICP 0.2292 0.2550 0.3032 0.3692 0.1722 0.2031 0.2490 0.2912 0.2590

Sparse ICP CTSF S. 0.3184 0.5476 0.6997 0.8207 0.2421 0.4408 0.5744 0.6699 0.5392

Sparse ICP CTSF F. 0.4341 0.5780 0.7564 0.8846 0.3800 0.5498 0.6775 0.7493 0.6262

Table 4.6: Partial Overlapping Results - Bunny
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Octopus

α 12.5% 25.0%
Overall

β 12.5% 25.0% 50.0% 75.0% 12.5% 25.0% 37.5% 50.0%

SWC-ICP S. k = 100% 0.1610 0.1811 0.1897 0.3049 0.1442 0.1476 0.1618 0.1682 0.1823

SWC-ICP S. k = 75% 0.1997 0.2172 0.2359 0.3630 0.1716 0.1604 0.1540 0.1506 0.2065

SWC-ICP S. k = 5% 0.2810 0.3287 0.4444 0.7364 0.2363 0.2471 0.2536 0.3177 0.3557

SWC-ICP S. k = 1% 0.2734 0.3549 0.5993 0.8763 0.2399 0.3208 0.3551 0.4257 0.4307

SWC-ICP F. k = 100% 0.2844 0.2992 0.2603 0.3086 0.2364 0.2240 0.2231 0.2056 0.2552

SWC-ICP F. k = 75% 0.3006 0.3188 0.3653 0.4457 0.2396 0.2434 0.2241 0.2166 0.2943

SWC-ICP F. k = 5% 0.3987 0.4230 0.4548 0.5026 0.3043 0.3389 0.3434 0.3874 0.3941

SWC-ICP F. k = 1% 0.4083 0.4320 0.4669 0.5006 0.3310 0.3556 0.3637 0.4213 0.4099

GMM 0.3156 0.3164 0.3397 0.3471 0.2622 0.2721 0.2885 0.2719 0.3017

S4PCS 0.4026 0.4390 0.3908 0.4493 0.2530 0.2681 0.2506 0.3026 0.3445

S4PCS + GMM 0.3649 0.3993 0.4146 0.5831 0.2554 0.2701 0.2637 0.2943 0.3557

ICP 0.2881 0.2870 0.2934 0.2864 0.2414 0.2504 0.2540 0.2438 0.2681

ICP-CTSF S. 0.3410 0.3934 0.6597 0.8522 0.2900 0.3470 0.3763 0.4209 0.4600

ICP-CTSF F. 0.4110 0.4279 0.4632 0.5009 0.3306 0.3487 0.3649 0.4204 0.4085

Sparse ICP 0.1326 0.2658 0.3504 0.3393 0.2285 0.2892 0.3370 0.3087 0.2814

Sparse ICP CTSF S. 0.1578 0.3816 0.6658 0.8743 0.2934 0.4819 0.6322 0.6763 0.5204

Sparse ICP CTSF F. 0.1644 0.4023 0.6796 0.8791 0.3220 0.5001 0.6334 0.7052 0.5347

Table 4.7: Partial Overlapping results - Octopus

The parameter k of the SWC-ICP have the opposite overall performance of the cases

with noise and outliers. In this test the small values have better scores on all point clouds.

With larger values of k, the tensors close to the edge of the overlapping region of the model

point cloud get too different from the same tensors on the data point cloud, because the

neighborhood in these cases may include points outside the overlapping region, exclusive

to only one of the point clouds. Figure 4.10 shows an example of how the neighborhood

gets different in points close to the edge of the overlapping region, as the number of

Happy Buddha

α 12.5% 25.0%
Overall

β 12.5% 25.0% 50.0% 75.0% 12.5% 25.0% 37.5% 50.0%

SWC-ICP S. k = 100% 0.2620 0.2725 0.3594 0.7996 0.1861 0.2059 0.2390 0.3075 0.3290

SWC-ICP S. k = 75% 0.2772 0.2887 0.3936 0.6329 0.2309 0.2077 0.2470 0.3033 0.3227

SWC-ICP S. k = 5% 0.3061 0.4132 0.7087 0.8821 0.2314 0.2945 0.3925 0.5258 0.4693

SWC-ICP S. k = 1% 0.3077 0.4159 0.7191 0.8821 0.2521 0.3166 0.4142 0.5342 0.4803

SWC-ICP F. k = 100% 0.2703 0.2959 0.3179 0.6900 0.2124 0.2161 0.2598 0.3281 0.3238

SWC-ICP F. k = 75% 0.2692 0.2917 0.3731 0.7071 0.2048 0.2309 0.2021 0.2742 0.3191

SWC-ICP F. k = 5% 0.3546 0.4104 0.4745 0.7121 0.2955 0.3177 0.3855 0.4724 0.4278

SWC-ICP F. k = 1% 0.3683 0.4142 0.4793 0.7155 0.3134 0.3359 0.3880 0.4722 0.4359

GMM 0.2919 0.3122 0.2977 0.3489 0.2168 0.2604 0.2848 0.2906 0.2879

S4PCS 0.3033 0.4091 0.4582 0.5590 0.2317 0.3051 0.3277 0.4161 0.3763

S4PCS + GMM 0.2925 0.3677 0.3968 0.5612 0.2255 0.2789 0.2829 0.3568 0.3453

ICP 0.3035 0.3003 0.3206 0.3489 0.2344 0.2206 0.2393 0.2649 0.2791

ICP-CTSF S. 0.3277 0.4398 0.6762 0.8723 0.2627 0.3233 0.3853 0.5022 0.4737

ICP-CTSF F. 0.3625 0.4189 0.4786 0.7498 0.3050 0.3352 0.3882 0.4746 0.4391

Sparse ICP 0.2406 0.3198 0.3955 0.4719 0.2321 0.2567 0.3174 0.3725 0.3258

Sparse ICP CTSF S. 0.2383 0.4898 0.7066 0.8355 0.2715 0.4489 0.6088 0.7129 0.5390

Sparse ICP CTSF F. 0.3097 0.5014 0.7466 0.8748 0.3308 0.5148 0.6488 0.7384 0.5831

Table 4.8: Partial Overlapping results - Happy Buddha
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Genus-2

α 12.5% 25.0%
Overall

β 12.5% 25.0% 50.0% 75.0% 12.5% 25.0% 37.5% 50.0%

SWC-ICP S. k = 100% 0.2336 0.2267 0.2519 0.3741 0.1642 0.1348 0.1292 0.0885 0.2004

SWC-ICP S. k = 75% 0.2488 0.2348 0.3120 0.4738 0.1741 0.1882 0.2090 0.2156 0.2570

SWC-ICP S. k = 5% 0.3060 0.4418 0.7077 0.8798 0.2119 0.3463 0.4083 0.4973 0.4749

SWC-ICP S. k = 1% 0.3238 0.4651 0.7162 0.8762 0.2906 0.3863 0.4093 0.5143 0.4978

SWC-ICP F. k = 100% 0.2561 0.2449 0.3353 0.3374 0.1577 0.2020 0.2395 0.1372 0.2386

SWC-ICP F. k = 75% 0.2537 0.2458 0.4096 0.4822 0.1663 0.1798 0.2044 0.1361 0.2593

SWC-ICP F. k = 5% 0.3634 0.4333 0.5202 0.5672 0.3232 0.3873 0.3880 0.4374 0.4273

SWC-ICP F. k = 1% 0.3743 0.4423 0.5223 0.5808 0.3589 0.3903 0.3903 0.4381 0.4369

GMM 0.2823 0.2985 0.3458 0.4238 0.2081 0.2527 0.2787 0.2951 0.2981

S4PCS 0.3233 0.4505 0.4894 0.5134 0.1956 0.2746 0.3084 0.3586 0.3642

S4PCS + GMM 0.2848 0.3433 0.4313 0.5581 0.1939 0.2506 0.2708 0.3336 0.3333

ICP 0.2987 0.2937 0.3262 0.3472 0.2410 0.2409 0.2320 0.2496 0.2787

ICP-CTSF S. 0.3381 0.4422 0.6573 0.7460 0.2807 0.3393 0.3464 0.4179 0.4460

ICP-CTSF F. 0.3717 0.4426 0.5322 0.6729 0.3352 0.3832 0.3706 0.4194 0.4408

Sparse ICP 0.2371 0.3247 0.3999 0.4694 0.2455 0.2933 0.3400 0.3975 0.3384

Sparse ICP CTSF S. 0.2654 0.4940 0.7105 0.8210 0.3198 0.5038 0.6000 0.6730 0.5485

Sparse ICP CTSF F. 0.3208 0.5177 0.7419 0.8318 0.3549 0.5431 0.6667 0.7144 0.5856

Table 4.9: Partial Overlapping results - Genus-2

(a) 5 neighbors. (b) 10 neighbors. (c) 15 neighbors.

Figure 4.10: Examples of nearest neighbors for a given point in a case of partial overlap-
ping. Blue points are inside the overlapping region, while red and green are in the unique
region of each point cloud. Note that as the number of neighbors increase, the neigh-
borhood considers points outside the overlapping region, which yields different tensors.
Image from Cejnog (2015).

neighbors increase.

In this way, k = 1% is the best neighborhood size for the SWC-ICP with partial

overlapping point clouds. Other overlapping combinations showed to be hard for all the

methods tested, as the scores were mostly below 0.7. With smaller overlapping like 12.5%

and 25%, the scores were even lower. This is because the methods failed in most cases to
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correctly align the point clouds, and in cases of failure the score is expected to be low.

The use of the CTSF on the Sparse ICP is very good for partial overlapping, achieving

the best overall scores in all point clouds. The formulation of the Sparse ICP allows

the method to succeed in partial overlapping scenarios, boosted by the better matching

scheme using the CTSF.

The use of only the first voting field on partial overlapping point clouds does not have

the same boost of performance. Although it improves the Sparse ICP with CTSF, it

degrades the scores of the SWC-ICP and the ICP-CTSF. We believe that in the presence

of noise and outliers the isotropic field should also be the best choice, like in the previous

test. This result however, does not change our opinion that the anisotropic voting field

should remain out of our method. The performance with this field is still lower than the

Sparse ICP with CTSF.

In general, the SWC-ICP proved to be competitive in most cases, extending the range

of convergence and achieving results as good as the best methods evaluated, with a supe-

rior performance in cases of large angular displacement.
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5 CONCLUSION

We presented the SWC-ICP, an improvement of the Iterative Closest Point algorithm

that benefits from the local geometry surrounding the points, encoded in second-order

tensors. The method boosts the chance to converge to the correct local optimum, even in

the presence of noise, outliers and partial overlapping, regardless of the initial pose. The

main parameter of the method is the size of the list of neighbors k. Our experiments show

that with partially overlapping point clouds a small list yields better results, while a list

containing about 50% of total points is the choice when both point clouds are the same.

In the proposed scoring system our method was within the best methods in all four

point cloud tested, being competitive with the ICP-CTSF and the Sparse ICP with CTSF,

both also using the dissimilarity factor between tensors to improve the matching. Our

coarse-to-fine approach was better in all cases than the Super 4PCS followed by an exe-

cution of the GMM framework. This setup simulates a process where a coarse method is

applied first to give a better initial pose to a fine method.

As the initial angular displacements between both point clouds get wider, most of

the methods compared have their performance degraded. That does not happen with

the SWC-ICP, as our method is invariant to the initial angular displacement. Noise

and outliers does not alter this behavior, although they degrade the accuracy of the

registration.

We evaluated the impact of using only the isotropic voting field in the rigid registration

problem, instead of using the two fields of the previous approach. In the presence of noise

and outliers the first voting field yields more distinguishable tensors, which improves

the quality of the CTSF matching, reducing the likeliness of wrong matches. As results

indicate, for partial overlapping point clouds, without noise and outliers, the two voting

fields are still a better approach. However, we point out that for real applications the

point clouds usually contain some noise and outliers, situations where the first voting

field is better. Furthermore, the performance gain of the anisotropic voting field in partial

overlapping cases is still not enough to outperform the Sparse ICP with CTSF, the best

method at the moment in this case.

A drawback of our method is the need of a preprocessing stage to compute the tensors,
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that might be computationally expensive if the point cloud is too large, although paral-

lelism exploitation in this step is possible. The second drawback is the performance with

low overlapping regions of point clouds. The method requires over 50% of overlapping

and less than 25% as individual region to show a reasonable result.

5.1 FUTURE WORKS

We believe that better techniques to estimate the tensors may improve even more the

scores of the SWC-ICP. The current CTSF matching is based only on the shape of the

tensors, and their relative orientation is not used. Additional voting fields can be applied

instead, or after, the anisotropic voting field not used in our method. These fields could

be designed to estimate other geometric features to improve even more the matching step

of the SWC-ICP, yielding better results.

The presented evaluation protocol can still be extended. More models with different

geometric features, and other measurements, like time or rotational error, can be included

to strengthen the comparisons.
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OVSJANIKOV, M.; MÉRIGOT, Q.; MÉMOLI, F.; GUIBAS, L. One point isometric

matching with the heat kernel. In: WILEY ONLINE LIBRARY. Computer Graphics

Forum, 2010. v. 29, n. 5, p. 1555–1564.

POTTMANN, H.; WALLNER, J.; HUANG, Q.-X.; YANG, Y.-L. Integral invariants for

robust geometry processing. Computer Aided Geometric Design, Elsevier, v. 26,

n. 1, p. 37–60, 2009.

REYES, L.; MEDIONI, G.; BAYRO, E. Registration of 3d points using geometric algebra

and tensor voting. International Journal of Computer Vision, Springer, v. 75, n. 3,

p. 351–369, 2007.

RUSINKIEWICZ, S.; LEVOY, M. Efficient variants of the icp algorithm. In: IEEE.

3-D Digital Imaging and Modeling, 2001. Proceedings. Third International

Conference on, 2001. p. 145–152.



SALVI, J.; MATABOSCH, C.; FOFI, D.; FOREST, J. A review of recent range image reg-

istration methods with accuracy evaluation. Image and Vision Computing, Elsevier,

v. 25, n. 5, p. 578–596, 2007.

SEGAL, A.; HAEHNEL, D.; THRUN, S. Generalized-icp. In: Robotics: Science and

Systems, 2009. v. 2, n. 4.

SERVOS, J.; WASLANDER, S. L. Multi channel generalized-icp. In: IEEE. Robotics

and Automation (ICRA), 2014 IEEE International Conference on, 2014. p.

3644–3649.

SHARP, G. C.; LEE, S. W.; WEHE, D. E. Invariant features and the registration of rigid

bodies. In: IEEE. Robotics and Automation, 1999. Proceedings. 1999 IEEE

International Conference on, 1999. v. 2, p. 932–937.

SHARP, G. C.; LEE, S. W.; WEHE, D. K. Icp registration using invariant features.

Pattern Analysis and Machine Intelligence, IEEE Transactions on, IEEE, v. 24,

n. 1, p. 90–102, 2002.

SUN, J.; OVSJANIKOV, M.; GUIBAS, L. A concise and provably informative multi-

scale signature based on heat diffusion. In: WILEY ONLINE LIBRARY. Computer

Graphics Forum, 2009. v. 28, n. 5, p. 1383–1392.

TOMBARI, F.; SALTI, S.; STEFANO, L. D. Unique signatures of histograms for local

surface description. In: Computer Vision–ECCV 2010, 2010. p. 356–369.

VIEIRA, M. B.; MARTINS, P.; ARAUJO, A.; CORD, M.; PHILIPP-FOLIGUET, S.

Smooth surface reconstruction using tensor fields as structuring elements. In: WILEY

ONLINE LIBRARY. Computer Graphics Forum, 2004. v. 23, n. 4, p. 813–823.

WESTIN, C.-F.; PELED, S.; GUDBJARTSSON, H.; KIKINIS, R.; JOLESZ, F. A. Geo-

metrical diffusion measures for mri from tensor basis analysis. ISMRMÂŠ97, p. 1742,
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Appendix A - ANISOTROPIC VOTING FIELD

The tensors Tp obtained in the first voting field are refined in the second voting field. A

different structuring element that enhances coplanar structures is applied. This is done

modifying the vote vector and the weighting function, ensuring that points aligned to

the tangent plane have more influence. A metric based on the distance over an ellipsoid

tangent to the points is used as attenuation factor, measuring the coplanarity of points

and assuring that both the Euclidean distance and the low curvature of elliptical segments

are favored. Unlike the first voting field, here each point p casts the vote on the neighbors

q. These votes are also stick tensors formed by the product p̂q · p̂qT .

First, for all neighbors q ∈ L(p) we align the canonical axes x̂, ŷ, ẑ to the eigenvectors

(ê1p, ê2p, ê3p) of Tp. The transformation of q to this system is done applying the rotation

matrix Rp = [ê1p, ê2p, ê3p]
T on the vector −→pq. We denote p′ the origin and q′ the point q

in this system.

q′ = Rp · (−→pq) .

In spherical coordinates, the angle between −→pq and the plane defined by −→e3 p is trivial

to find. Then, q′ in spherical coordinates is:

ρq′ =
√
q′2x + q′2y + q′2z,

θq′ = tan−1
q′y
q′x
,

φq′ = tan−1
q′z√

q′2x + q′2y

.

For each neighbor q′ there is an ellipsoid E centered over the ẑ′− axis and tangent to

p′ and q′. The coplanarity between p and a neighbor q is proportional to the distance de

between p′ and q′ over this ellipsoid, which is given by:

de(p, q) = ρq′ cosφq′

(
1 +

(
2− 1

tanαellip2

)
tan2 φq′

) tanαellip
2

·2 tanαellip2 − 1
. (A.1)

The parameter αellip is proportional to the eccentricity of E, and controls the influence
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of the coplanarity over the Euclidean distance.

From the spherical distance defined in Equation A.1 and the standard deviation σp

from Equation 2.1.1, we define the influence fpq, exerted from p on each neighbor q ∈

Lk(p). Like in previous step, the farthest point in Lk(p), using Euclidean distance, has

influence 0.01.

The influence of points misaligned to the tangent plane defined by the normal of p′,

i.e. −→e3 p, is constrained by considering points with tanφq′ ≤ tanφmax. Wider angles

φmax produce smoother results, while narrower angles allow more details at the cost of

robustness to outliers.

fpq =


e

−de(p, q)
σ2
p , tanφq′ ≤ tanφmax

0.0 , tanφq′ > tanφmax

The vote vector v̂pq requires the computation of the angle βq′ , which is the angle formed

by the x′-axis and the line tangent to the ellipsoid E at the point q′. In function of g and

φq′ , βq′ is:

βq′ = tan−1
2g2 tanφq′

g2 − tan2 φq′

By the replacement of the angle φq′ for βq′ and the conversion of q ′ back to Euclidean

coordinates, we obtain a vector v̂′pq.

v̂′pq = (cos θq′ cos βq′ )̂i+ (sin θq′ cos βq′)ĵ + (sin βq′)k̂. (A.2)

The vote vector v̂pq is obtained applying the inverse rotation matrix R−p 1:

vpq = R−1p · v′pq

Figure A.1 shows a cut of the plan y′ = 0 depicting the vector v̂pq and the angles φq′

and βq′ for an arbitrary point, in a case where αellip = 30◦.

Finally, the resulting tensor Sp for a point p is composed by the weighted sum of the

tensors built from the votes received on the point, cast by all the points that have p as a

neighbor:

Sp =
∑

q∈L−1
k (p)

fqp · vqp · vTqp (A.3)
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Figure A.1: 2D geometric representation of the angles φ, β and vector vpq of an arbitrary
point q′. Note that vpq is normalized.

The second voting field can be applied multiple times, in order to enforce even more

the planar shapes of the tensors. In Cejnog (2015) it is applied until the mean cp stops

increasing or 100 reapplications are made.

(a) k=1%. (b) k=5%. (c) k=10%. (d) k=50%. (e) k=75%. (f) k=100%.

Figure A.2: Variation of the nearest neighbors list size using the second voting field.
Reddish colors represent tensors with high cp, bluish colors in contrast, represent tensors
with low cp.

Figure A.2 shows the final tensor estimation varying the neighbors list size k after the

iterative application of the second voting field process, on the Genus-2. We note a more

reddish point cloud using k = 1%, k = 5% and k = 10%. In these cases, since the Genus-2

has many planar regions there is a higher chance that the neighbors are coplanar with the

point, resulting in a planar tensor. Conversely, with a larger list, neighbors far from the
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tangent plane of the point will influence the tensor, resulting in a less planar shape, like

Figures A.2 (d), (e) and (f) show. Due the limit angle φmax, even with k = 100%, not all

neighbors contribute to the estimation. Although the tensors on the top and bottom of

Figure A.2 (f) are still pointed to the center, their shape is less of a stick then those on

the top and bottom of Figure 2.3 (f).



63

Appendix B - PSEUDOCODES

The Algorithm 1 shows the main algorithm of the SWC-ICP. The differences of the origi-

nal method are the estimation of the tensors for both point clouds, needed to estimate the

correspondences based on the CTSF, and weighting strategy updated only when a local

optima is reached.

Algorithm 1: SWC-ICP

Data: M,D, k, b;

begin

computeNeighborsList(M,k);

computeNeighborsList(D, k);

tensorEstimation(M);

tensorEstimation(D);

S ← NCTSF (M,D);

previousError ← INF ;

error ← INF ;

w ← 105;

while w > 10−6 do

E ← NE(M,D);

T ← transformationEstimation(D,E, S, w);

previousError ← error;

error ← RMS(T ·D,M);

if error < previousError then

applyTransformation(D,T );

else

error ← previousError;

w ← w ∗ b;

end if

end while

end
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The core of the SWC-ICP includes the correspondences set S, based on the CTSF.

Additionally, the centroid −→µS, the cross-covariance matrix ΣDS and the final covariance

ΣDES are different from the original ICP.

Algorithm 2: Transformation Estimation

Data: D,E, S, w;

begin

−→µD ← getCentroid(D);

−→µE ← getCentroid(E);

−→µS ← getCentroid(S);

ΣDE ← computeCovariance(D,E,−→µD,−→µE);

ΣDS ← computeCovariance(D,S,−→µD,−→µS);

ΣDES ← ΣDE + w ∗ ΣDS;

N ← getQuaternionMatrix(ΣDES);

R← getGreatestEigenV ector(N);
−→
t ← −→µE −R ∗ −→µD
return T (R,

−→
t );

end
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The Algorithm 3 shows the tensor estimation process, with a straightforward imple-

mentation, given the formulation of the Equations 2.1.1 and 2.1.

Algorithm 3: Tensor Estimation - First Voting Field

Data: P ;

begin

for p ∈ P do

Tp ← zeroMatrix(3, 3);

qf ← getFarthestPoint(P, p);

σp ←
√
||−→pqf ||2
ln 0.01

;

for q ∈ Lk(p) do

g ← e
−||−→pq||2

σ2p ;

Tp ← Tp + g · p̂q · p̂qT ;

end for

end for

end

The Algorithm 4 shows the second voting field used in the original ICP-CTSF. The

parameters are the point cloud P , the angle αellip that controls the eccentricity of the

ellipsoid, and the limit angle φmax. For a detailed discussion of how these two angles

impact the ICP see Cejnog’s dissertation Cejnog (2015).
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Algorithm 4: Tensor Estimation - Second Voting Field

Data: P , αellip ← π
4

, φmax ← π
4
;

begin

for p ∈ P do

Sp ← zeroMatrix(3, 3);

qf ← getFarthestPoint(P, p);

σp ←
√
||−→pqf ||2
ln 0.01

;

ê1, ê2, ê3 ← eigenDecomposition(Tp);

Rp ← [ê1x, ê1y, ê1z, ê2x, ê2y, ê2z, ê3x, ê3y, ê3z];

for q ∈ Lk(p) do

/* Align to the eigensystem of p */

q′ ← Rp · −→pq;

/* Spherical Coordinates */

ρq′ ←
√
q′x

2 + q′y
2 + q′z

2;

φq′ ← tan−1 q′z√
q′x

2+q′y
2
;

θq′ ← tan−1
q′y
q′x

;

/* Compute vote vector */

g ← tanαellip;

βq′ ← tan−1
2g2 tanφq′

g2−tan2 φq′
;

v̂′x ← cos θq′ cos βq′ ;

v̂′y ← sin θq′ cos βq′ ;

v̂′z ← sin βq′ ;

/* Distance over ellipsoid */

de(p, q)← ρq′ cosφq′(1.0 + (2.0− (1.0
g2

)) tan2 φq′)
g2

2g2−1 ;

fpq ← e
−de(p,q)2

σp ;

/* Rotate back */

v̂pq ← R−1p · v̂′pq;

if (| tanφq′| ≤ | tanφmax|) then /* Checks the limit angle */

Sp ← Sp + fpq · v̂pq · v̂Tpq;

end if

end for

end for

end
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Appendix C - DETAILED RESULTS

The Tables C.1, C.2, C.3 and C.4 show results combining all twelve angles, detailing each

combination of noise and outlier amount.
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SWC-ICP k = 100% 0.00 10.00 20.00 50.00 Overall

σ = 0.00 1.0000 0.9668 0.9578 0.8774 0.9505

σ = 0.01 0.9445 0.9030 0.8806 0.8080 0.8840

σ = 0.05 0.5178 0.4782 0.4623 0.3963 0.4636

Overall 0.8208 0.7827 0.7669 0.6939 0.7660

SWC-ICP k = 75% 0.00 10.00 20.00 50.00 Overall

σ = 0.00 1.0000 0.9684 0.9546 0.9187 0.9604

σ = 0.01 0.9450 0.8954 0.8898 0.8260 0.8890

σ = 0.05 0.5166 0.4816 0.4752 0.4580 0.4828

Overall 0.8205 0.7818 0.7731 0.7342 0.7774

SWC-ICP k = 50% 0.00 10.00 20.00 50.00 Overall

σ = 0.00 1.0000 0.9639 0.9588 0.8941 0.9542

σ = 0.01 0.9445 0.9033 0.8784 0.8017 0.8820

σ = 0.05 0.5142 0.4795 0.4691 0.4362 0.4747

Overall 0.8196 0.7823 0.7687 0.7107 0.7703

SWC-ICP k = 15% 0.00 10.00 20.00 50.00 Overall

σ = 0.00 1.0000 0.9613 0.9460 0.8422 0.9374

σ = 0.01 0.9445 0.8749 0.8444 0.7328 0.8492

σ = 0.05 0.5008 0.4428 0.4188 0.3596 0.4305

Overall 0.8151 0.7597 0.7364 0.6449 0.7390

SWC-ICP k = 5% 0.00 10.00 20.00 50.00 Overall

σ = 0.00 1.0000 0.9647 0.9100 0.7835 0.9146

σ = 0.01 0.9445 0.8563 0.7744 0.6282 0.8008

σ = 0.05 0.4512 0.3214 0.2851 0.2387 0.3241

Overall 0.7986 0.7141 0.6565 0.5502 0.6798

SWC-ICP k = 1% 0.00 10.00 20.00 50.00 Overall

σ = 0.00 1.0000 0.9867 0.9833 0.8373 0.9518

σ = 0.01 0.5729 0.2736 0.1806 0.1091 0.2840

σ = 0.05 0.0860 0.0417 0.0414 0.0425 0.0529

Overall 0.5530 0.4340 0.4018 0.3299 0.4297

GMM 0.00 10.00 20.00 50.00 Overall

σ = 0.00 0.5370 0.5385 0.5210 0.5187 0.5288

σ = 0.01 0.5166 0.4971 0.4918 0.4999 0.5013

σ = 0.05 0.2803 0.2725 0.2799 0.2744 0.2768

Overall 0.4446 0.4360 0.4309 0.4310 0.4356

S4PCS + GMM 0.00 10.00 20.00 50.00 Overall

σ = 0.00 1.0000 0.4139 0.3953 0.4268 0.5590

σ = 0.01 0.9450 0.3890 0.3657 0.3802 0.5200

σ = 0.05 0.4493 0.2009 0.1799 0.1835 0.2534

Overall 0.7981 0.3346 0.3136 0.3301 0.4441

BESL 0.00 10.00 20.00 50.00 Overall

σ = 0.00 0.3446 0.2673 0.2302 0.2119 0.2635

σ = 0.01 0.3049 0.2145 0.2303 0.2091 0.2397

σ = 0.05 0.1642 0.1400 0.1355 0.1188 0.1396

Overall 0.2712 0.2073 0.1987 0.1799 0.2143

ICP-CTSF F. k = 75% 0.00 10.00 20.00 50.00 Overall

σ = 0.00 1.0000 1.0000 1.0000 0.9473 0.9868

σ = 0.01 0.9451 0.9372 0.9348 0.8822 0.9248

σ = 0.05 0.5229 0.5044 0.5024 0.4678 0.4994

Overall 0.8227 0.8139 0.8124 0.7658 0.8037

Sparse ICP 0.00 10.00 20.00 50.00 Overall

σ = 0.00 0.4610 0.3899 0.3508 0.3030 0.3762

σ = 0.01 0.4368 0.3558 0.3551 0.3002 0.3620

σ = 0.05 0.2151 0.1933 0.1800 0.1481 0.1841

Overall 0.3710 0.3130 0.2953 0.2504 0.3074

Sparse ICP CTSF 0.00 10.00 20.00 50.00 Overall

σ = 0.00 1.0000 0.7222 0.7083 0.6556 0.7715

σ = 0.01 0.8817 0.6536 0.6475 0.5973 0.6950

σ = 0.05 0.3840 0.3387 0.3264 0.3064 0.3388

Overall 0.7552 0.5715 0.5607 0.5198 0.6018

Table C.1: Score by noise and outlier level from different methods on the Bunny. The
Overall row is the average for a fixed amount of outliers, while the Overall column is the
average for a fixed noise value.
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SWC-ICP k = 100% 0.00 10.00 20.00 50.00 Overall

σ = 0.00 1.0000 0.7125 0.8386 0.6899 0.8103

σ = 0.01 0.6979 0.5590 0.6099 0.4770 0.5860

σ = 0.05 0.4555 0.4320 0.4116 0.3161 0.4038

Overall 0.7178 0.5678 0.6200 0.4943 0.6000

SWC-ICP k = 75% 0.00 10.00 20.00 50.00 Overall

σ = 0.00 1.0000 0.7487 0.8673 0.9267 0.8857

σ = 0.01 0.6979 0.5442 0.6088 0.6243 0.6188

σ = 0.05 0.4545 0.4365 0.4408 0.4263 0.4395

Overall 0.7175 0.5765 0.6390 0.6591 0.6480

SWC-ICP k = 50% 0.00 10.00 20.00 50.00 Overall

σ = 0.00 1.0000 0.7492 0.8715 0.9408 0.8905

σ = 0.01 0.6980 0.5502 0.6143 0.6272 0.6224

σ = 0.05 0.4534 0.4377 0.4380 0.4237 0.4382

Overall 0.7171 0.5789 0.6413 0.6639 0.6503

SWC-ICP k = 15% 0.00 10.00 20.00 50.00 Overall

σ = 0.00 1.0000 0.7509 0.8858 0.8403 0.8692

σ = 0.01 0.6980 0.5317 0.5986 0.5294 0.5894

σ = 0.05 0.4482 0.3927 0.3468 0.3200 0.3770

Overall 0.7154 0.5584 0.6104 0.5632 0.6119

SWC-ICP k = 5% 0.00 10.00 20.00 50.00 Overall

σ = 0.00 1.0000 0.7452 0.8691 0.6472 0.8154

σ = 0.01 0.6979 0.5414 0.5494 0.3621 0.5377

σ = 0.05 0.4272 0.3254 0.2913 0.2141 0.3145

Overall 0.7084 0.5373 0.5699 0.4078 0.5559

SWC-ICP k = 1% 0.00 10.00 20.00 50.00 Overall

σ = 0.00 1.0000 0.7553 0.8697 0.9556 0.8952

σ = 0.01 0.5050 0.2710 0.2912 0.2151 0.3206

σ = 0.05 0.0997 0.0902 0.0831 0.0879 0.0903

Overall 0.5349 0.3722 0.4147 0.4196 0.4353

GMM 0.00 10.00 20.00 50.00 Overall

σ = 0.00 0.3793 0.3673 0.3734 0.3862 0.3765

σ = 0.01 0.2952 0.2769 0.2746 0.2754 0.2805

σ = 0.05 0.2086 0.2149 0.2076 0.2099 0.2103

Overall 0.2943 0.2864 0.2852 0.2905 0.2891

S4PCS + GMM 0.00 10.00 20.00 50.00 Overall

σ = 0.00 0.9415 0.4504 0.4689 0.5515 0.6031

σ = 0.01 0.6759 0.3312 0.3619 0.4024 0.4429

σ = 0.05 0.4488 0.2278 0.2565 0.2623 0.2989

Overall 0.6887 0.3365 0.3624 0.4054 0.4483

BESL 0.00 10.00 20.00 50.00 Overall

σ = 0.00 0.2817 0.2504 0.2463 0.2505 0.2572

σ = 0.01 0.2212 0.2040 0.2067 0.2032 0.2087

σ = 0.05 0.1722 0.1702 0.1713 0.1734 0.1718

Overall 0.2250 0.2082 0.2081 0.2090 0.2126

ICP-CTSF F. k = 50% 0.00 10.00 20.00 50.00 Overall

σ = 0.00 1.0000 0.9963 0.8937 0.8241 0.9285

σ = 0.01 0.6982 0.6643 0.5932 0.5369 0.6231

σ = 0.05 0.4575 0.4360 0.3791 0.3599 0.4082

Overall 0.7186 0.6989 0.6220 0.5736 0.6533

Sparse ICP 0.00 10.00 20.00 50.00 Overall

σ = 0.00 0.3564 0.3454 0.3229 0.3013 0.3315

σ = 0.01 0.2710 0.2604 0.2537 0.2368 0.2555

σ = 0.05 0.1907 0.1942 0.1906 0.1900 0.1914

Overall 0.2727 0.2667 0.2558 0.2427 0.2595

Sparse ICP CTSF F. 0.00 10.00 20.00 50.00 Overall

σ = 0.00 1.0000 0.8583 0.7646 0.6649 0.8219

σ = 0.01 0.6965 0.5868 0.5200 0.4605 0.5660

σ = 0.05 0.4098 0.3428 0.3143 0.2674 0.3358

Overall 0.7021 0.5960 0.5329 0.4734 0.5773

Table C.2: Score by noise and outlier level from different methods on the Octopus. The
Overall row is the average for a fixed amount of outliers, while the Overall column is the
average for a fixed noise value.
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SWC-ICP k = 100% 0.00 10.00 20.00 50.00 Overall
σ = 0.00 1.0000 0.5631 0.4871 0.4089 0.6148
σ = 0.01 0.7344 0.4972 0.4356 0.3837 0.5127

σ = 0.05 0.4281 0.3574 0.3356 0.3201 0.3603
Overall 0.7208 0.4726 0.4195 0.3709 0.4959

SWC-ICP k = 75% 0.00 10.00 20.00 50.00 Overall

σ = 0.00 1.0000 0.6862 0.5958 0.4805 0.6906
σ = 0.01 0.7597 0.5303 0.4920 0.4538 0.5589
σ = 0.05 0.4500 0.3835 0.3630 0.3532 0.3875

Overall 0.7366 0.5334 0.4836 0.4292 0.5457
SWC-ICP k = 50% 0.00 10.00 20.00 50.00 Overall

σ = 0.00 1.0000 0.7426 0.6269 0.5035 0.7182

σ = 0.01 0.7459 0.5587 0.5184 0.4582 0.5703
σ = 0.05 0.4527 0.4152 0.3996 0.3793 0.4117
Overall 0.7329 0.5722 0.5150 0.4470 0.5667

SWC-ICP k = 15% 0.00 10.00 20.00 50.00 Overall
σ = 0.00 1.0000 0.6133 0.5116 0.4254 0.6376
σ = 0.01 0.6003 0.4232 0.3950 0.3757 0.4486

σ = 0.05 0.3860 0.3359 0.3328 0.3119 0.3417
Overall 0.6621 0.4575 0.4131 0.3710 0.4759

SWC-ICP k = 5% 0.00 10.00 20.00 50.00 Overall

σ = 0.00 1.0000 0.6469 0.5080 0.3870 0.6355
σ = 0.01 0.5010 0.3656 0.3447 0.3333 0.3861
σ = 0.05 0.3136 0.2844 0.2884 0.2723 0.2897
Overall 0.6049 0.4323 0.3803 0.3309 0.4371

SWC-ICP k = 1% 0.00 10.00 20.00 50.00 Overall

σ = 0.00 1.0000 0.9356 0.7874 0.4521 0.7938
σ = 0.01 0.1572 0.1129 0.1056 0.0891 0.1162
σ = 0.05 0.0866 0.0825 0.0814 0.0840 0.0836

Overall 0.4146 0.3770 0.3248 0.2084 0.3312
GMM 0.00 10.00 20.00 50.00 Overall
σ = 0.00 0.5251 0.5252 0.5113 0.5221 0.5209

σ = 0.01 0.4333 0.4303 0.4375 0.4284 0.4324
σ = 0.05 0.2574 0.2721 0.2688 0.2692 0.2669

Overall 0.4053 0.4092 0.4059 0.4066 0.4067

S4PCS + GMM 0.00 10.00 20.00 50.00 Overall
σ = 0.00 0.9977 0.6142 0.5772 0.6468 0.7090

σ = 0.01 0.8115 0.4565 0.4939 0.5226 0.5717

σ = 0.05 0.4362 0.2944 0.2814 0.2899 0.3255
Overall 0.7485 0.4550 0.4509 0.4861 0.5353

BESL 0.00 10.00 20.00 50.00 Overall

σ = 0.00 0.4752 0.3931 0.4194 0.4340 0.4304
σ = 0.01 0.3819 0.3328 0.3492 0.3832 0.3618

σ = 0.05 0.2316 0.2268 0.2304 0.2497 0.2346

Overall 0.3629 0.3176 0.3330 0.3556 0.3423

ICP-CTSF F. k = 50% 0.00 10.00 20.00 50.00 Overall
σ = 0.00 1.0000 1.0000 0.9973 0.8562 0.9634

σ = 0.01 0.8134 0.7797 0.7751 0.6353 0.7509

σ = 0.05 0.4700 0.4552 0.4439 0.3858 0.4387
Overall 0.7611 0.7450 0.7388 0.6258 0.7177

Sparse ICP 0.00 10.00 20.00 50.00 Overall

σ = 0.00 0.5385 0.4994 0.4725 0.4460 0.4891
σ = 0.01 0.4561 0.4364 0.4149 0.3797 0.4218

σ = 0.05 0.2535 0.2640 0.2505 0.2473 0.2538

Overall 0.4160 0.3999 0.3793 0.3576 0.3882

Sparse ICP CTSF F. 0.00 10.00 20.00 50.00 Overall
σ = 0.00 1.0000 0.7452 0.7106 0.6665 0.7806

σ = 0.01 0.6439 0.5811 0.5637 0.5517 0.5851

σ = 0.05 0.3361 0.3178 0.3140 0.2906 0.3146
Overall 0.6600 0.5481 0.5295 0.5029 0.5601

Table C.3: Score by noise and outlier level from different methods on the Happy. The
Overall row is the average for a fixed amount of outliers, while the Overall column is the
average for a fixed noise value.
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SWC-ICP k = 100% 0.00 10.00 20.00 50.00 Overall

σ = 0.00 1.0000 0.8126 0.6068 0.4650 0.7211

σ = 0.01 0.8364 0.5532 0.4669 0.3840 0.5601
σ = 0.05 0.3557 0.2887 0.2684 0.2301 0.2857

Overall 0.7307 0.5532 0.4474 0.3597 0.5227

SWC-ICP k = 75% 0.00 10.00 20.00 50.00 Overall
σ = 0.00 1.0000 0.9779 0.9410 0.5916 0.8776

σ = 0.01 0.8363 0.7336 0.6202 0.4413 0.6579
σ = 0.05 0.4222 0.3255 0.3019 0.2312 0.3202
Overall 0.7528 0.6806 0.6210 0.4214 0.6189

SWC-ICP k = 50% 0.00 10.00 20.00 50.00 Overall
σ = 0.00 1.0000 0.9856 0.9717 0.6961 0.9134
σ = 0.01 0.8364 0.7530 0.6639 0.5028 0.6890

σ = 0.05 0.4581 0.3469 0.3344 0.3158 0.3639
Overall 0.7648 0.6968 0.6567 0.5049 0.6557

SWC-ICP k = 15% 0.00 10.00 20.00 50.00 Overall

σ = 0.00 1.0000 0.9772 0.9208 0.6209 0.8797
σ = 0.01 0.8363 0.6118 0.5166 0.4650 0.6074
σ = 0.05 0.3420 0.2479 0.2702 0.2788 0.2848

Overall 0.7261 0.6137 0.5692 0.4549 0.5909
SWC-ICP k = 5% 0.00 10.00 20.00 50.00 Overall

σ = 0.00 1.0000 0.9809 0.9537 0.6073 0.8855

σ = 0.01 0.6984 0.4790 0.4634 0.4106 0.5128
σ = 0.05 0.2810 0.2413 0.2315 0.2032 0.2392
Overall 0.6598 0.5677 0.5495 0.4071 0.5460

SWC-ICP k = 1% 0.00 10.00 20.00 50.00 Overall
σ = 0.00 1.0000 0.9784 0.9971 0.9486 0.9810

σ = 0.01 0.3568 0.1792 0.1704 0.1816 0.2220
σ = 0.05 0.1314 0.1052 0.1006 0.1092 0.1116
Overall 0.4961 0.4230 0.4227 0.4131 0.4387

GMM 0.00 10.00 20.00 50.00 Overall
σ = 0.00 0.5283 0.5438 0.5350 0.5360 0.5358
σ = 0.01 0.4606 0.4563 0.4472 0.4420 0.4515

σ = 0.05 0.2680 0.2713 0.2743 0.2656 0.2698
Overall 0.4190 0.4238 0.4188 0.4145 0.4190

S4PCS + GMM 0.00 10.00 20.00 50.00 Overall

σ = 0.00 0.9790 0.4568 0.4749 0.4636 0.5936
σ = 0.01 0.7766 0.3497 0.3680 0.3907 0.4713

σ = 0.05 0.2903 0.2054 0.2358 0.2106 0.2356

Overall 0.6820 0.3373 0.3596 0.3550 0.4335
BESL 0.00 10.00 20.00 50.00 Overall

σ = 0.00 0.4124 0.3664 0.3922 0.3940 0.3912

σ = 0.01 0.3676 0.3150 0.3268 0.3214 0.3327
σ = 0.05 0.2237 0.2074 0.2176 0.2177 0.2166

Overall 0.3345 0.2963 0.3122 0.3114 0.3136

S4PCS 0.00 10.00 20.00 50.00 Overall

σ = 0.00 0.9835 0.4275 0.4349 0.4317 0.5694

σ = 0.01 0.7663 0.3679 0.3301 0.3821 0.4616
σ = 0.05 0.3039 0.1977 0.2024 0.2087 0.2282

Overall 0.6846 0.3310 0.3225 0.3410 0.4198

ICP-CTSF F. k = 50% 0.00 10.00 20.00 50.00 Overall
σ = 0.00 1.0000 1.0000 0.9567 0.6491 0.9015
σ = 0.01 0.8362 0.7556 0.7032 0.5321 0.7068
σ = 0.05 0.4627 0.4063 0.3546 0.2925 0.3789

Overall 0.7663 0.7215 0.6715 0.4912 0.6626
Sparse ICP 0.00 10.00 20.00 50.00 Overall

σ = 0.00 0.5359 0.4717 0.4609 0.3840 0.4631
σ = 0.01 0.4637 0.4003 0.3810 0.3396 0.3962
σ = 0.05 0.2681 0.2528 0.2448 0.2253 0.2478
Overall 0.4226 0.3749 0.3622 0.3165 0.3691

Sparse ICP CTSF F. 0.00 10.00 20.00 50.00 Overall
σ = 0.00 0.8904 0.6207 0.5739 0.5712 0.6640

σ = 0.01 0.5525 0.4938 0.5034 0.4970 0.5117
σ = 0.05 0.2797 0.2799 0.2858 0.2753 0.2802
Overall 0.5742 0.4648 0.4544 0.4479 0.4853

Table C.4: Score by noise and outlier level from different methods on the Genus. The
Overall row is the average for a fixed amount of outliers, while the Overall column is the
average for a fixed noise value.
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