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Abstract: We study the dynamics of a set of agents distributed in the nodes
of an adaptive network. Each agent plays with all its neighbors a weak
prisoner’s dilemma collecting a total payoff. We study the case where the
network adapts locally depending on the total payoff of the agents. In the
parameter regime considered, a steady state is always reached (strategies
and network configuration remain stationary), where co-operation is highly
enhanced. However, when the adaptability of the network and the incentive
for defection are high enough, we show that a slight perturbation of the
steady state induces large oscillations (with cascades) in behavior between
the nearly all-defectors state and the all-cooperators outcome.
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Résumé : Nous étudions la dynamique d’un groupe d’agents distribués dans
les noeuds d’un réseau. Chaque agent joue avec tous ses voisins un Faible Di-
lemme du Prisonnier en collectant un pay-off total. Nous étudions le cas d’un
réseau qui s’adapte localement selon les pay-off des agents. Premiérement, un
état stationnaire est toujours trouvé pour les paramétres étudiés, ot la frac-
tion d’agents qui coopére est stationnaire. Pour quelques paramétres méme
on a trouvé un état presque complétement coopérative. Cependant, quand
Padaptabilité du réseau et l'incitation & la défection sont assez grands, on
montre que une petite perturbation de ’état stationnaire induit des grandes
oscillations (avec cascades) dans le comportement entre 1 état quasi-tout-
defection et quasi-tout-cooperation.

Mots-clés : Organisation sociale, Réseaux, Théorie des jeux, Models
d’agents, Faible Dilemme du Prisonnier

1. Introduction

A subject which has intrigued many economists is how the organization
of an economy arises and evolves. Agents interact in multiple ways, as for
example information transmission in financial markets®, or firms competition
or collusion in an oligopoly®. These interactions can be described by a set
economic agents which sit in the nodes of a network. Among other approaches
(for areview see [KIR 99]), the mechanisms of interactions and the emergence of
collaboration in a group of agents have been analyzed by the use of evolutionary
game theory [WEI 96]. Using the Prisoner’s Dilemma (PD) game, [AXE 81]
and [AXE 84] showed how cooperation may be sustained by a population of
agents meeting repeatedly and having certain degree of rationality. Strategies
were allowed to mutate and reproduce in proportion to the difference between
the agent’s payoff and the population’s average payoff. Cooperation was shown
to be sustained by the use of the evolutionary stable strategy Tit-For-Tat. This
approach assumes that the game is carried out by randomly matching a pair of
agents from a fixed population. This assumption seems plausible for systems
with a large number of agents where the probability of playing several times
with the same agent is extremely low, and for systems where the agents cannot
create links or preferences between them.

However, in many social and economic environments this assumption does
not hold, and each agent interacts only with a small subset of the whole pop-
ulation”. One reason for this might be that agents have imperfect information
on the whole population, except for a small subset which can be considered as
“the neighbors”.

5See for example [BAN 92], [KIR 93], [CON 99], [EGU 99].

6See for example [FER 98], [GOY 99].

"For a deep study of the dynamics of a PD game with different strategies, evolution of
the strategies and networks see [COH 99].
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In this paper we introduce a spatial Weak Prisoner’s Dilemma (WPD)3
model played on an endogenously adaptive network where cooperation is pro-
moted and sustained by local interactions and the adaptation of the network.
To simplify matters we do not allow the strategies to evolve and consider only
zero-memory strategies, i.e. all-C [all-D] strategy means doing C [D] all the
time irrespective of the outcome.

Each agent plays the same strategy either C (cooperate) or D (defect) with
all its local neighbors, as in [NOW 92]. Each agent revises his strategy at each
iteration of the game and imitates the strategy of the neighbor with highest
aggregate payoff. Finally we consider the adaptation of the network by allowing
the possibility of changing the neighborhood whenever an agent was unsatisfied
and imitated its best local neighbor. Specifically, if this best local neighbor is
a D-neighbor, the imitating agent cuts the link with the D-neighbor, with
some probability, and establishes a new link selecting randomly a new agent to
become its neighbor from the whole population of agents.

As possible scenarios where these cooperative networks might arise we can
mention a network of individuals or firms that have some agreements among
them but with some risk involved in the cooperation. The agreements corre-
spond to the links in the network, and respecting their agreements results in
playing Cooperation (C), while not respecting their agreement corresponds to
Defection (D). An interesting application might be a network of firms which
share their research and development outcome. Another application might be
a network of scientist which agree to collaborate in different projects.

We have determined from numerical experiments the following main results.
First, for the range of parameters studied, the network always reaches a steady
state where the fraction of cooperating agents (C-agents) is high. In these states
the network remains stationary. However, most of the agents are unsatisfied
and thus are continuously imitating their best neighbor’s strategy, which is
the same strategy they are using. This does not change the local payoffs and
thus it remains in a stationary state. We find also that although the dynamics
always converges to a steady state, when the incentive to defect is sufficiently
high, a perturbation may induce large oscillations in the fraction of C-agents
together with a large reorganization of the network. These oscillations stretch
between the quasi-all C-agents, to the quasi-all D-agents networks. We stress
the fact that these are transient and they last for some time before a new
steady state is reached. In most cases high cooperation is again reached, but
there is a small probability to reach the gquasi-all D-network. Thus we show
that although cooperation is greatly enhanced by such a network update, the
system may organize in a state where an exogenous or stochastic perturbation

8We will explain in the next section the difference between the classical Prisoner’s Dilemma
and the WPD we use in this paper.



may produce drastic changes on a finite time. The oscillations can be triggered
by a change of strategy of a single agent with a large number of links. This
identifies the importance of the highly-connected agents which play a leadership
role in the collective dynamics of the system. Finally, it is interesting to study
the characteristics of the network that emerges from the interaction between
agents. Such structure is far from trivial in the sense that presents a given
pattern.

The paper is organized as follows. The next section defines the adaptive
model. Section 3 deals with the conducted numerical experiments. First the
case of a fixed network is revisited, and then the full adaptive network is pre-
sented and discussed. Finally, in Section 4, we discuss our results and open
problems.

2. The model

We consider an adaptive game where N agents play a WPD game on a
network I'. Each agent is located in a node of the network (and there is a
single agent per node). Two agents are neighbors if they are directly connected
by one link. We define the neighborhood of agent i as the subset of I' which
are neighbors of ¢, and we represent it as neigh(i); its cardinal is k;. Each
agent plays only with those other agents connected by one link®. If N; is the
total number of links and k; is the number of links of node 4, then the average
connectivity of a network, k, is defined as the average number of links per node

P Sim ki _ 2N )
= N TN =

In this paper we consider two different kind of initial networks on which the
agents start the game: regular lattices in two-dimensions and random networks.
A two-dimensional regular lattice correspond to a Manhattan-like grid, where
the nodes are the intersections of streets and avenues. We will consider first-
neighbor interaction that corresponds to moving North, South, West and East
(thus k; = 4, Vi and k = 4), while the 2nd-neighbor interaction corresponds to
the possible moves a King in Chess can make (thus k; = 8, Vi and k = 8)10.
Random networks of average connectivity k are formed by distributing N; =
kN /2 bidirectional links between pairs of nodes (i, j), with the constraint that
(¢,7) = (4,4) (bidirectional links). The resulting distribution of the number
of links in the network is Gaussian with the maximum located at the average
connectivity k.

9We assume that the links are bidirectional. More general situations can be considered

with uni-directional links, but we do not explore this further.
10Previous results of PD game in regular lattices are investigated in for example [NOW 92].
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Let us denote by s;(t) = {0,1} the strategy of agent ¢ at time step ¢, where
s; = 1 corresponds to play cooperation (C), and s; = 0 corresponds to defection
(D). These will be referred to as C-agents or D-agents, respectively. The payoff
matrix for a 2-agents game is:

C D
C|o,0]|0,b
D |b,0 |66

where we take b > o > ¢ > 0, and b/2 < ¢ for a Prisoner’s Dilemma game. In
this paper we study the case of a Weak Prisoner’s Dilemma (WPD): a Prisoner’s
Dilemma is Weak when § = 0. In a standard Prisoner’s Dilemma there exists a
unique Nash equilibrium (D, D) while in WPD either a (C,D), (D,C) or (D,D)
may be attained as a Nash equilibrium.

We use in this Paper the WPD for which the analysis is much simpler,
taking into account that [NOW 92, LIN 94] showed that, at least for a fixed
regular network, the results do not change qualitatively when using 1 > § > 0.

We consider the situation in which agents always tries to maximize their
utility, and therefore seeks the largest possible benefit from their local interac-
tions in the network I'. We assume each agent plays the same strategy with all
its neighbors neigh(i) and only with them. The game is played synchronously,
i.e. the players decide their strategy in advance and they all play at the same
time. The strategy update of agent i is as follows:

1. Each agent i plays the WPD game with each neighbor using the same
strategy s; and collecting a total individual payoff II;.

2. Agent 7 revises its current strategy at each iteration of the game (i.e., at
every time step), and updates it by imitating the strategy of its neighbor
with a highest pay-off. Agent i is said to be satisfied if his pay-off is
the maximum of its neighbors; otherwise it will be unsatisfied and it will
revise its strategy.

3. The agents have also the possibility of an extra action which adapts its
neighborhood. Namely we consider:

Network Rule: if agent i is unsatisfied and imitates from a D-agent j,
then with probability p, © breaks the link with j and establishes a new link
with another agent chosen randomly in the network T.

This rule leads to a time evolution of the local connectivity of the network,
leaving the global connectivity k, as defined in Eq. 1, constant. For each agent
i which imitates a D-agent j and decides to break the link and choose a new



agent 3, neigh(i) changes by replacing j — £ and k;(¢t + 1) = k;(¢). However j
will lose a link, k;(t+1) = k;(t) — 1, and the new agent 3 will increase its local
connectivity kg(t + 1) = kg(t) + 1. Thus, the network adaptation introduces a
diversity in the agents local neighborhoods.

Agreements between satisfied agents do not change. This does not mean
that new agreements with other agents are not possible (these agents may al-
ways receive new links), but those which exist remain untouched. The same
is true for unsatisfied C-agents imitating another C-agent. However neighbor-
hoods of D-agents that have the maximum pay-off in the neighborhood could
change abruptly in just one iteration.

The network rule can be understood as a risk minimization. If agent ¢ is
a D-agent and is unsatisfied he minimizes the risk of cooperation by taking
chances and selecting a new neighbor from the whole network. In the context
of game theory, this can be seen as a retaliation, because is highly unlikely that
he will play with those agents in the future.

The probability p represents a transaction cost of breaking one agreement
and establishing a new agreement with a new partner. It can also be understood
as a measure of the tolerance of being exploited. We would like to stress that the
transaction cost has two components: first, the cost of breaking an agreement
and second, the cost of finding a partner and that this new partner accepts
the agreement!!. The case p = 0 corresponds to an infinite transaction cost for
breaking the link, while p = 1 corresponds to the limiting case of no transaction
cost. It is clear that breaking at the same time more than one link, and finding
their respective partners is more unlikely. The probability p is also a measure
of the adaptability of the network to the results of the game at each iteration.

It will be useful to define the looking function of agent ¢ which will be denoted
by I(7). This function points to 4’s neighbor with highest payoff, including
himself; thus if i is not imitating any neighbor then (i) = i. From this we
can define an agent being a local maximum in payoff as the one which satisfies
i =1(4) and at least one of its neighbors is looking at it.

Suppose that at a given time step there is a D-agent which is a local maxi-
mum. This implies that at the next time step, the D-strategy will be replicated
on all of its neighbors, and its links will be destroyed with probability p. Thus,
a D-local maximum at one time step, is an unstable situation where the agent
looses a fraction p of all its links on the next time step, and these links will be
replaced by new neighbors.

With the network rule implemented in this Paper the total number of links
1 One could separate these two costs, and would have a process of breaking links (with a

given probability ¢) and another process of generation of links (with a probability r). This
line of research is not explored in this paper.
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Figure 1: Time evolution of the fraction of C-agents fo for a non-adaptive
network p = 0, in a two-dimensional regular lattice with second-neighbors
interaction (k = 8: (top trajectory) asymptotic periodic trajectory for b =1.15
and (bottom trajectory) chaotic trajectory for b = 1.65. Payoff matrix: o =1,
6=0.

in the network T' is conserved. We do not take into account more complicated
network dynamics as spontaneous creation or destruction of links, that will
break the conservation of total number of links.

3. Numerical studies

We have characterized numerically the model described above using as pa-
rameter the incentive to defect b. We have used as initial networks random
networks with an average connectivity ¥ = 4 and k¥ = 8 and two-dimensional
regular lattices with first- (k = 4) and second-neighbor (k = 8) interaction. We
have also fixed the adaptability p = 1. The statistical measures that we have
studied are:

e The fraction (normalized to the whole population N) of cooperating
agents (C-agents), denoted by fc = (Zfil s;)/N.

e The average payoff per agent II = (Zf;l I1;)/N of the whole network.

e The probability of having a link between two C-agents, pcc, between a
C-agent and a D-agent, pcp, and between two D-agents, ppp. These
probabilities satisfy:

1 =pcc+2pcp +pob 2]
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Figure 2: No network adaptation (p = 0). Average fraction of C-agents, fc, vs.
defecting incentive, b, in 1st and 2nd neighbors regular lattices, and in random
networks with k = {4, 8}.

In the numerical simulations we maintain fixed the parameters 6 = 0 and
o = 1 of the payoff matrix and we vary b in the range 1 < b < 2. Finally,
in most simulations we take N = 10000 agents, and we start with an initial
population of 0.6 N C-agents randomly distributed in the network T'.

The game in a fixed network (p = 0) and regular lattices, has been pre-
viously studied by [NOW 94, NOW 92, NOW 93]|. Typically the behavior of
the fraction of C-agents, fco, can show different features. The simplest is an
asymptotic stationary or periodic state, where fc remains stationary or fluc-
tuates periodically. A more complex behavior is the spatio-temporal chaotic
regime, where fo fluctuates in time around an average value while the spatial
distribution of C- and D- agents present evolving patterns at each iteration.
Finally, if the incentive to defect b, is high enough the asymptotic state of
the system is all D-agents. Also the introduction of elements that disrupt
the spatial correlations present when the game is played in a regular lattices
(e.g., random lattices, noise and errors in the imitating process), was shown to
destroy the periodic fluctuations and regular patterns observed, as expected.

One of the main result of these studies is that partial cooperation can be
sustained by local interactions, together with a very simple choice of strategies
which does not include memory. This can be illustrated by studying the average
fraction of C-agents for an increasing value of the incentive to defect b (see
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Figure 3: Network adaptation (p = 1). Fraction of cooperative agents vs. b in
different initial networks.

Fig. 2). We have extended previous results by explicitly considering random
networks, which is a more natural assumption in an economic context.

The numerical results also show that increasing the average size of the neigh-
borhood, i.e. average number of links per agent, k, the average fraction of
C-agents fo decreases faster with b. Several extensions of this model have
been studied in the literature: introducing asynchronous updates [HUB 93] or
introducing errors in the imitation process [MUK 96], where the basic results
shown above persist [NOW 94].

It is also worth noting that the fraction of C-agents depends strongly on
the network. As can be seen from Fig. 2, both the regular lattice with first
neighbor interaction and the random network with k& = 4 have the same av-
erage connectivity, however fo behaves differently with b. Same applies for
the regular lattice with second neighbor interaction and random network with
k=8.

In Fig. 3, we plotted the averaged asymptotic value of fo for the fully
adaptive network p = 1 and for different initial networks. The average is over
10 different random initial conditions with a density of 0.6 C-agents. Unlike
the non-adaptive case, the fraction fo seems to be quite independent of the
incentive to defect b, and the initial network chosen (regular or random). Only
the average connectivity k& seems to play a role for determining the asymptotic
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Figure 4: (Top) Time series of C-fraction fo and average payoff in a random
network: without network adaptation (p = 0) for ¢ < 60, and thereafter in
the full adaptive network (p = 1). (Bottom) Corresponding time series of the
different link probabilities: two C-agents (pcc), a C and a D-agent (pcp), and
two D-agents (ppp) having a link. Parameter values: b = 1.35, k = 8.

fraction of cooperation. To illustrate how cooperation is enhanced against the
non-adapting network, we show in Fig. 4 a simulation where the system first
evolves with p = 0 until at T = 60 time iterations the adaptation is switched
on (p =1). It is clear from the figure that the fraction of C-agents is highly
enhanced with respect to the static network.

One of the most interesting features encountered when the network is able
to adapt with the game (p = 1), is that throughout the whole range of pa-
rameters studied (1 < b < 2), the dynamics settles onto a steady state after
some transient time. Figure 4 also shows the time series of the different links
probabilities (pcc,pep,ppp). The steady state corresponds to a stationary
network structure and individual payoffs II;. Notice how the network adapta-
tion clearly favors having links between C-agents. Most agents are unsatisfied!?
in this steady state and they continuously imitate the strategy of their neigh-
bors with highest payoff (all of them C-agents). Also note that at the steady
state, the probability of having a link between a C and a D-agent pcp is finite,
while for two D-agents ppp — 0. This shows that D-agents end up without

12Tn a weak sense, after all they are benefiting from cooperation.
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Figure 5: Time series for high b. During 0 < ¢t < 120, the network is left fixed
(p = 0), while for ¢ > 120, p = 1. Below the corresponding time series of the
link probabilities pcc, pcp, ppop- b =175,k = 8.

links to other D-agents and exploiting other C-agents. Also note that when
ppp = 0, there is no D-agent which will change their neighborhood, so the
system may reach a stationary state. In this case D-agents will be satisfied
“passive” local maxima, in the sense that nobody is imitating their strategy'®.

A stationary situation with individual payoffs II; may arise with a number
of agents forming, what we shall denote a chain, such that: sim ;) = sm-1(;) =
... = sy(5 = 8; = 1, where (i) is the only agent which is satisfied. All others
in the chain are actually unsatisfied, but as they imitate the same strategy they
were playing on the previous step, they never change their relative payoff, and
the chain becomes a steady state.

An interesting result arises when one looks at the time series for large values
of p (p ~ 1) and a high value of the incentive to defect b. Before reaching the
asymptotic steady state, one observes that large oscillations occur for different
choices of initial conditions. Figure 5 shows an example of the dynamics start-
ing from the fixed network. From other initial conditions, similar oscillations
are observed. The time evolution of the system before the network is allowed to

13 A highly unlikely situation where two D-agents are neighbors in a steady state would
occur if they have exactly the same payoff.
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in Fig. 5.
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Figure 7: Histogram of number of links, ¢, for a C and D-agents, at different
time steps (from time series in Fig. 6) during large oscillations. ¢ = 155 corre-
sponds to the distributions of the initial random network with k = 8. ¢ = 202
corresponds to the maximum of pcc, while at ¢ = 208 to the maximum of ppp.
Finally at ¢t = 800 the distributions of the asymptotic steady state are shown.

adapt is governed by the high reward of D-agents. However, when the network
starts the adaptation (p = 1 for ¢ > 120) the dynamics promotes the creation of
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more links between C-agents, while decreasing dramatically the links between
D-agents, as can be seen at time step ¢t ~ 150. However, first attempts to build
a global cooperative behavior are unsuccessful because the system frustrates.
The defecting behavior is so rewarding, that the cooperation has to be built in
a specific network configuration in order to be robust against eventual changes
of strategy. This correspond to the successive oscillations shown in Fig. 5. The
systems reaches a similar fraction of C-agents as in the stationary solution, but
several oscillations occur before the stationary regime settles.

In Fig. 6 we show a blow-out of two oscillations. Note the drastic change
in the connectivity between C and D-agents. To quantify this phenomenon
we determined the distribution of links for the population of each strategy
at different time steps as shown in Fig. 7. The initial distribution (¢ = 155)
shows a Gaussian distribution around the starting ¥ = 8 value. Then at the
maximum of pco (t = 202) it is observed that the tails of both distributions
extend up to 28 links. Then very rapidly the network switches to the almost
defective solution (¢ = 208). However there are a small number of C-agents
with a large payoff, which permits the gradual build-up of cooperation. Finally
for large times (¢t = 800), the D-agents distribution shrinks to a very narrow
distribution, while the C-agents distribution displays a long exponential decay.
The stationary network configuration is thus dominated by a few C-agents with
a large number of links (the tails of the histogram of links for C-agents). These
highly-connected agents dominate the collective behavior of the network.

To illustrate the relevance of the highly connected agents we have built a
numerical experiment in which after the system reaches a steady state, the
best connected agent, that is the one with a largest number of links switches
strategy (from C to D). Figure 8 shows the resulting oscillations, before the
system reaches again a (possibly different) steady state. This makes very clear
the dominant role of these best connected agents.

4. Discussion

The main results of this work are the following. We have introduced a
model of cooperation on an adaptive network, where the cooperation is highly
enhanced. The network adaptation involves exclusively the D-agents, which in
some sense are allowed to “search" for new neighbors, in the hope of finding
C-agents to exploit. However our study reveals that this mechanism benefits
in the long run cooperators. The asymptotic state reached by the system is a
steady state in which the network structure and the average payoff II remain
stationary. However, most agents are unsatisfied, and continuously imitate the
strategy of their neighbors with highest payoff (most of them C-agents). Also
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Figure 8: Time series of fo, where at t = 300 the agent with most links changes
strategy from C to D. Parameter values: b = 1.75 and k = 8.

the structure of the stationary network presents interesting characteristics. The
distribution of links for C-agents has a long exponential tail, with a very few
number of highly connected C-agents having up to 4 times the average number
of the links in the whole network. These agents dominate the cooperative
network structure.

We have also obtained that, for sufficiently high values of the incentive to
defect b, the induced network structure may suffer large reorganizations. These
manifest themselves as large oscillations in the fraction of C-agents, where the
network visits for a short time the nearly full cooperative regime, followed by
a short time of nearly full defecting regime. In the current dynamical model,
these large oscillations are long lived transients, but the system reaches a final
stationary state. The interesting aspect is that these large oscillations might be
easily triggered by the spontaneous change of the strategy of a highly connected
agent.

Acknowledgment. We acknowledge useful discussions with D. Cardona-Coll,
P. Battigalli, A. Kirman and J. Weibull. M.G.Z., V.M.E. and M. S. M ac-
knowledge financial support for DGYCIT (Spain) project PB94-1167.



Cooperation in an Adaptive Network 15

References

[AXE 81] R. AXELROD AND W. D. HAMILTON. The evolution of cooperation. Sci-
ence, 211:1390-1396, 1981.

[AXE 84] R. AXELROD. The Ewvolution of Cooperation. Basic Books, New York,
1984.

[BAN 92] A. BANNERIJEE. A simple model of herd behaviour. Quarterly Journal of
Economics, 108:797-817, 1992.

[COH 99] M. CoHEN, R. RioLo AND R. AXELROD. The emergence of social orga-
nization in the prisoner’s dilemma: how context-preservation and other factors
promote cooperation. Santa Fe Institute Working Paper 99-01-002, 1999.

[CON 99] R. ConT AND J. P. BoucHAUD. Herd behavior and aggregate fluctuations
in financial markets. Macroeconomic Dynamics, 1999. In press.

[EGU 99] V. M. EguiLuz AND M. G. ZIMMERMANN. Dispersion of rumors and herd
behavior. Los Alamos e-print archive (www.lanl.gov): cond-mat/9908069, 1999.

[FER 98] C. ALOs FERRER, A. B. AN1A AND F. VEGA-REDONDO. An evolutionary
model of market structure. Preprint from http://merlin.fae.ua.es/fvega/#rp,
1998.

[GOY 99] S. GovaL AND S. JosHI. Networks of collaboration in oligopoly. Mimeo,
1999.

[HUB 93] B. A. HUBERMAN AND N. S. GLANCE. Evolutionary games and computer
simulations. Proc. Natl. Acad. Sci. USA, 90:7716-7718, 1993.

[KIR 93] A. KIRMAN. Ants, rationality and recruitment. Quarterly Journal of Eco-
nomics, 108:137-156, 1993.

[KIR 99] A. KIRMAN. Aggregate activity and economic organisation. Revue
Economique des sciences sociales, 113:189-230, 1999.

[LIN 94] K. LINDGREN AND M. G. NORDAHL. Evolutionary dynamics of spatial
games. Physica D, 75:292-309, 1994.

[MUK 96] A. MUKHERJI, V. RAJAN AND J. R. SLAGLE. Robustness of cooperation.
Nature, 379:125-126, 1996.

[NOW 92] M. A. Nowak AND R. M. MaAy. Evolutionary games and spatial chaos.
Nature, 359:826-829, 1992.

[NOW 93] M. A. NowAK AND R. M. MAy. The spatial dilemmas of evolution. Int.
Jour. of Bif. and Chaos, 3(1):35-78, 1993.

[NOW 94] M. A. NOWAK, S. BONHOEFFER AND R. M. MAy. Spatial games and the
maintenance of cooperation. Proc. Natl. Acad. Sci. USA, 91:4877-4881, 1994.

[WEI 96] J. WEIBULL. Ewolutionary Game Theory. MIT University Press, 1996.



16



