
ar
X

iv
:c

on
d-

m
at

/0
00

64
86

v1
 [

co
nd

-m
at

.d
is

-n
n]

 3
0

Ju
n

20
00

00 $03.00/0

Adv. Complex Systems (2018) 1, 1–12

Forecasting price increments

using an artificial Neural Network

FILIPPO CASTIGLIONE

Center for Advanced Computer Science, University of Cologne
ZPR/ZAIK, Weyertal 80, D - 50931 Köln, Germany

filippo@zpr.uni-koeln.de

ABSTRACT . Financial forecasting is a difficult task due to the intrinsic com-
plexity of the financial system. A simplified approach in forecasting is given
by “black box” methods like neural networks that assume little about the
structure of the economy. In the present paper we relate our experience using
neural nets as financial time series forecast method. In particular we show that
a neural net able to forecast the sign of the price increments with a success
rate slightly above 50 percent can be found. Target series are the daily closing
price of different assets and indexes during the period from about January
1990 to February 2000.

KEYWORDS : Forecasting, Neural Networks, Financial Time Series, Detrend-
ing Analysis.

1. Introduction

Forecasting future values of an asset gives, besides the straightforward profit
opportunities, indications to compute various interesting quantities such as the
price of derivatives (complex financial products) or the probability for an adverse
mode which is the essential information when assessing and managing the risk
associated with a portfolio investment.
Forecasting the price of a certain asset (stock, index, foreign currency, etc.) on

the ground of available historical data, corresponds to the well known problem in
science and engineering of time series prediction. While many time series may be
approximated with a high degree of confidence, financial time series are found
among the most difficult to be analyzed and predicted. This is not surprising
since the dynamics of the markets following at least the semi-strong EMH should
destroy any easy method to estimate future activities using past informations.
Among the methods developed in Econometrics as well as other disciplines

c© 2018 HERMES

http://arxiv.org/abs/cond-mat/0006486v1

2 Filippo Castiglione

†, the artificial Neural Networks (NN) are being used by “non-orthodox” scien-
tists as non-parametric regression methods (Campbell, Lo and MacKinlay, 1997;
Moody and Neuneier + Zimmermann, 1998). They constitute an alternative
to nonparametric regression methods like kernel regression (Campbell, Lo and
MacKinlay, 1997). The advantage of using a neural network as non linear function
approximator is that it appears to be well suited in areas where the mathemat-
ical knowledge of the stochastic process underlying the analyzed time series is
unknown and quite difficult to be rationalized. Besides, it is important to note
that the lack of linear correlations in the financial price series and the already
accepted evidence of an underlying process different from i.i.d. noise point out to
the existence of higher-order correlations or non-linearities. It is this non-linear
correlation that the neural net may eventually catch during its learning phase. If
some macroscopic regularities, arising from the apparently chaotic behaviour of
the large amount of components are present, then a well trained net could iden-
tify and “store” them in its distributed knowledge representation system made
by units and synaptic weights (Moody and Neuneier + Zimmermann, 1998;
Refenes, Burgess and Bentz, 1997).
In the following we will see that a well suited NN for each of a set of price time

series showing a “surprising” rate of success in predicting the sign of the price
change on a daily base can be found. Not less interesting, we will see that the
foretold regularities in the time series seem to be more present on larger time
scale than on high frequency data, as the performance of the net degrades if we
go from monthly to minutes data.

2. Multi-layer Perceptron

Multi-layer perceptrons (MLP) are the neural nets usually referred to as func-
tion approximators. A MLP is a generalization of Rosenblatt’s perceptron (1958);
ni input units, nh hidden and no output units with all feed forward connections
between adjacent layers (no intra-layer connections or loops). Such net’s topology
is specified as ni-nh-no.
A NN may perform various tasks connected to classification problems. Here

we are mainly interested in exploiting what is called the universal approximation
property, that is, the ability to approximate any nonlinear function to any arbi-
trary degree of accuracy with a suitable number of hidden units (White, 1992;
Cybenko, 1989).
The approximation is performed finding the set of weights connecting the

units. This can be done with one of the available methods of non-parametric
estimation techniques like nonlinear least-squares. In particular we choose error
back propagation which is probably the most used algorithm to train MLPs
(Rumelhart, Hinton and Williams, ; Rumelhart, Hinton and Williams, 1986). It
is basically a gradient descent algorithm of the error computed on a suitable
learning set. A variation of it use bias, terms and momentum as characteristic

† see the vast bibliography with more than 800 entries at
www.stern.nyu.edu/ aweigend/Time-Series/Biblio/SFIbib.html reported from (Weigend
and Gershenfeld, 1994)

Forecasting price increments with NN 3

-15

-10

-5

0

5

10

15

20

500 800 1000

day

learning set and forecast on the test set

Learning Validation Check Test

Pday
Gday

Figure 1: Each time series is divided in four data sets: learning, validation, check-
ing and testing (see text for explanation). A difficulty arise from the fact that
the oscillations in the test set are much more pronounced than in the learning
set. In figure, daily closing price of Intel Corp.

parameters. Moreover we fixed the learning rate η = 0.05, the momentum β = 0.5
and the usual sigmoidal as nonlinear activation function.

3. Detrending analysis

We have trained the neural nets on “detrended” time series. The detrending
analysis was performed to mitigate the unbalance between the learning set, and
the test set. In fact, subdividing the available data in learning set and testing set
as specified in the following section (have a look at figure 1), we train the nets
on a data set corresponding to a periods much back in time while we test the
nets on data set corresponding to the most recent period of time. This problem
is know in literature as noise/nonstationarity tradeoff (Moody and Neuneier +
Zimmermann, 1998).
It is known that during the last ten years the American market has noticeably

changed in that almost all the titles connected to the information technology
have not only jumped to record values but also the fluctuations of price today

are much stronger than before †. Ignoring this fact would lead to a mistake
because the net would not learn the characteristics of the “actual situation”.

† Pt is what we use to train our nets. Considering log(Pt) instead of Pt would mitigate the
problem but it would introduce further nonlinearities

4 Filippo Castiglione

200

400

600

800

1000

1200

1400

1600

0 500 1000 1500 2000

-200

-150

-100

-50

0

50

100

or
ig

in
al

 ti
m

e
se

rie
s

w
ith

 p
ol

yn
om

ia
l f

it

de
tr

en
de

d
tim

e
se

rie
s

days

Detrend analysis

original time series
fit

detrended

Figure 2: S&P500 detrended time series. The plot shows the original series, the
polynomial fit and the resulting detrended time series obtained just by difference
between the original and the fitting curve. The detrended time series consist of
2024 points.

To detrend a time series we performed a nonlinear least squares fit using
the Marquardt-Levenberg algorithm (Campbell, Lo and MacKinlay, 1997; Press,
Teukolsky, Vetterling and Flannery, 1994) with a polynomial of sixth degree.
Then we just computed the difference of the series with the fitting curve. For
each time series considered we ended up with a detrended series composed by
2024 points corresponding to the period from about January 1990 to February
2000. For example, the plot in figure 2 shows the detrended time series of the
index S&P500 along with the original series and the polynomial fit.
We choose daily closing for 3 indexes and 14 assets historical series on the

NYSE and Nasdaq. In particular the assets were chosen among the most active
companies in the field of information technology.

4. Determining the net topology

One of the primary goals in training neural networks is to ensure that the
network will perform well on data that it has not been trained on (called ”gen-
eralization”). The standard method of ensuring good generalization is to divide
our training data into multiple data sets. The most common data sets are the
learning L, cross validation V , and testing T data sets. While the learning data
set is the data that is actually used to train the network the usage of the other
two may need some explanation.

Forecasting price increments with NN 5

Pt0

Pt1

Pt2

Pt3

Figure 3: A three layer perceptron 3−7−1 with three inputs, seven hidden and
one output units.

Like the learning data set, the cross validation data set is also used by the
network during training. Periodically, while training on the learning data set,
the network is tested for performance on the cross validation set. During this
testing, the weights are not trained, but the performance of the network on
the cross validation set is saved and compared to past values. If the network
is starting to overtrain on the training data, the cross validation performance
will begin to degrade. Thus, the cross validation data set is used to determine
when the network has been trained as well as possible without overtraining (e.g.,
maximum generalization).
Although the network is not trained with the cross validation set, it uses the

cross validation set to choose a ”best” set of weights. Therefore, it is not truly
an out-of-sample test of the network. For a true test of the performance of the
network the testing data set T is used. This data set is used to provide a true
indication of how the network will perform on new data.
In figure 3, an example of MLP with ni = 3, nh = 7 and one output unit

takes Pt0 , Pt1 , Pt2 in input and gives the successive value Pt3 as forecast. The
number of free parameters is given by the number of connections between units
(ni + no) · nh.
While the choice of one output unit comes from the straightforward defini-

tion of the problem, a crucial question is “how many input and hidden units
should we choose?”. In general there is no way to determine apriori a good net-
work topology. It depends critically on the number of training examples and the
complexity of the time series we are trying to learn. To face this problem a large
number of methods are being developed (recurrent networks, model selection and
pruning, sensitivity analysis (Moody and Neuneier + Zimmermann, 1998)), some
of which follow the evolution’s paradigm (Evolutionary Strategies and Genetic
Algorithm).

6 Filippo Castiglione

Because we have observed a critical dependence of the performance of the net
from ni and nh, and to avoid the great complexity of more powerful strategies
(Moody and Neuneier + Zimmermann, 1998), we ended up with the decision to
explore all the possible combinations of ni-nh in a certain range of values. Our
“brute force” procedure consists of training nets of different topologies (varying
2 ≤ ni ≤ 15 and 2 ≤ nh ≤ 25) and observe their performance. More precisely we
select good nets on the basis of the mean square error (see eq(4.1)) computed
on 200 points out of the sample set constituting the test set. Thus, besides the
separation in Learning-Validation-Testing of our time series, we further distin-
guish a subset from the Testing set: the Checking C (see fig. 1). The reason is
that while we train the net to interpolate the time series (minimizing the mean
square error) we finally extrapolate to forecast the sign of the increments (to be
defined later).
To assess the efficiency of the learning and to discard bad trained nets during

the search procedure we use the mean square error ǫ defined as

ǫ =
1

σ
·

1

|C|

∑

t∈C

(Gt − Pt)
2

(4.1)

where Pt is the price value, Gt is the forecasted value at time t ∈ C and σ is
the standard deviation of the time series. For good forecasts we will have small
positive values of ǫ (1 ≫ ǫ ≥ 0).
We set the threshold 0.015 to discriminate good from bad nets. Only those

nets for which ǫ ≤ 0.015 are further tested for sign prediction.
In summary, first we learn on set L, and through validation V we find when to

stop learning; then through check on C we see if the learning process worked well,
and in case it did, we make predictions in the test phase on set T for ”future”
(i.e. previously unused) price changes and compare them with reality.

5. Stopping criteria

To avoid overfitting and/or very slow convergence of the training phase, the
stopping criteria is determined by the following three conditions, one of which is
sufficient to end the training phase (early stopping):

1 Stopping is assured within 5000 iterations of cross validation (see section
4);

2 during cross validation the mean square error on the validation set V is
computed as εV = 1

2

∑
t∈V

(Gt − Pt)
2
; during training εV should decrease,

so a stopping condition is given if εV increase again more than 20% of the
minimum value reached up to then;

3 learning is also stopped if εV reaches a plateau; this is tested during cross
validation averaging 1000 successive values of εV and checking if the actual
value is above this average.

6. Results

The plot in figure 4 compares the forecasted Gt and the real Pt values for
the time series of Apple Corp. on the test set T . It also shows a linear fit for

Forecasting price increments with NN 7

the points {Pt, Gt}. A raw measure of performance on the test set T can be
obtained by the slope of the fitting line (let’s call it θ). It will be a value close
to one if the fit corresponds to the y = x line, i.e., if Pt = Gt. We obtained the
following θ’s for the time series in table 2 and 3: θS&P500 = 0.906, θDJI = 0.874,
θNasdaq100 = 0.860. θAAPL = 0.976, θT = 0.921, θAMD = 0.914, θSTM = 0.885,
θHON = 0.885, θINTC = 0.874, θCSCO = 0.860, θWCOM = 0.847, θIBM = 0.842,
θORCL = 0.824, θMSFT = 0.803, θSUNW = 0.774, θDELL = 0.692, θQCOM = 0.488.

-15

-10

-5

0

5

10

15

20

25

30

-15 -10 -5 0 5 10 15 20 25 30

G
t

Pt

fit

-12
-10

-8
-6
-4
-2
0
2
4
6
8

10

-15 -10 -5 0 5 10 15 20 25 30
Pt

Pt-Gt

-15
-10

-5
0
5

10
15
20
25
30

1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100

time (Test set)

P
G

Figure 4: Forecast of the time series AAPL. Price is expressed in US$. A perfect
forecast will be represented by dots on the y = x line (shown as the continuous
line). The dashed line is a linear fit of the points {Pt, Gt}. A raw measure of the
error in forecasting is given by the angular coefficient of the fitting line. Values
close to one indicate Gt ≃ Pt.

The final estimation of the performance in forecasting is made by means of the
one-step sign prediction rate ζ defined on T as follows

ζ =
1

|T |

∑

t∈T

HS(∆Pt ·∆Gt) + 1−HS(|∆Pt|+ |∆Gt|) (6.1)

where ∆Pt = Pt−Pt−1 the price change at time step t ∈ T and ∆Gt = Gt−Pt−1

is the guessed price change at the same time step. Note that we assume to

know the value of Pt−1 to evaluate ∆Gt. HS is a modified † Heaviside function
HS(x) = 1 for x > 0 and 0 otherwise. The argument of the summation in eq(6.1)

† The usual HS function gives 1 in zero, i.e., HS(0) = 1

8 Filippo Castiglione

gives one only if ∆Pt and ∆Gt are non-zero and with same sign, or if ∆Pt and
∆Gt are both zero. In other words ζ is the probability of a correct guess on the
sign of the price increment estimated on T .
In the lower-right inset of figure 4 it is shown Pt −Gt as function of Pt. One

can see that the difference between the real and the forecasted values clusters
for small Pt. Another way see it is to look at the histogram of ζ as function of
∆Pt. In other words the rate of correct guesses on the sign of the price increment
relative to the magnitude of the fluctuation of the real price. To obtain an unbi-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-50 -40 -30 -20 -10 0 10 20 30 40 50

si
gn

 p
re

di
ct

io
n

ra
te

∆P

Figure 5: Normalized ζ as function of ∆P (arbitrary units). The the sign pre-
diction rate seems independent from the magnitude of the price change |∆P |.

ased histogram we have to normalize it dividing each bin by the corresponding
value of the ∆P ’s histogram (the limit of ∆P follows a power law so that large
fluctuations are much less probable). The resulting distribution is plotted in fig-
ure 5. It is now clearly visible that the net does not favor large increments over
small ones or vice versa. In fact the probability to make a correct guess on the
sign of the increment seems independent from the magnitude of the increment
itself. This does not means that the net forecasts “rare events” (i.e., a profit op-
portunity) as easily as normal fluctuation, because the statistics here calculated
are not significant with respect to extreme events.
To interpret the results that we are going to show we have to concentrate our

attention on the way we select a good net to be used to make forecast. For each
time series we have performed a search to determine the topology of a good net
as specified in the last section. Once we get a pool of candidates the question is
“how many of them give a sign prediction rate above fifty percent?”
This question is answered in table 1. There, tot indicates the number of nets

such that ǫ ≤ 0.015, that is, we judged as good nets, while ok is the number of
them that gave ζ ≥ 50. This ratio can be seen as an estimation of the confidence
that the net will perform a “sufficient” forecast of price change, where sufficient
means above fifty percent.
The value of ζ together with the specification of the number of units per layer

Forecasting price increments with NN 9

Table 1: Here tot indicates the number of nets such that ǫ ≤ 0.015, that is, we
judged as good nets, while ok is the number of them that gave a sign prediction
rate ζ above 50 percent.

Series ok/tot Series ok/tot

S&P500 32/54 DowJones Ind 189/450
Nasdaq 100 45/86

SUNW 112/112 DELL 69/69
WCOM 76/76 AAPL 309/311
INTC 46/46 AMD 244/245
STM 33/269 ORCL 35/35
MSFT 21/21 IBM 9/9
CSCO 39/48 HON 22/82
T 6/6 QCOM 43/436

Table 2: For each index the net topology ni − nh − 1 is specified along with ǫ,
ζ, |L| and |V |. |T | = 2024− (ni + |L|+ |V |+ |C|) and |C| = 200.

Symbol ni nh |L| |V | ǫ ζ(%)

S&P500 8 2 500 300 0.008938 52.272727
DowJones Ind 13 2 700 200 0.012074 51.488423
Nasdaq 100 4 25 700 200 0.014182 50.982533

of the best net is reported in table 2 and table 3 along with the dimension of the
learning and validation set.
The sign prediction rates range from 50.29% to 54%. While the smallest values

50.29 may be questionable, the larger values above 54 seem a clear indication
that the net is not behaving randomly. Instead it has captured some regularities
in the nonlinearities of the series.
A quite direct test for randomness can be done computing the probability that

such forecast rate can be obtained just by flipping a coin to decide the next price
increment. For this purpose we use a random walk (pr(up) = pr(down) = 1/2)
as forecasting strategy Grwt

and observe how many, over 1000 different random
walks, give a sign prediction rate ζrw defined in eq(6.1) above the value obtained
with our net. Note that each random walk perform about 1000 time steps, the
same as |T | for that specified time series (see table 2 and 3). These values are
reported in table 4. They indicate that except for QCOM the random walk

assumption cannot give the same prediction rate as the neural net †.

† In other words, given a neural net which produce ζ as prediction rate over a certain
time series Pt we may compute the probability at which the null hypothesis of randomness

10 Filippo Castiglione

Table 3: Success ratio for the prediction of the sign change. For each asset the
net topology is specified along with ǫ, ζ and the number of points in the learning
and validation set. In the second column it is specified the symbols from the
respective stock exchange NYSE(◦) or Nasdaq(•).

Company Symbol ni nh |L| |V | ǫ ζ(%)

• Sun Microsys SUNW 9 7 500 300 0.014435 54.005935
• Dell Computer DELL 4 18 500 300 0.004315 53.543307
• Mci Worldcom WCOM 3 2 500 300 0.004024 53.392330
• Apple Comp Inc AAPL 5 17 700 300 0.013786 53.374233
• Intel Corp INTC 6 6 500 300 0.009953 53.254438
◦ Adv Micro Device AMD 4 23 500 300 0.012339 52.952756
◦ ST Microelectron STM 6 2 500 300 0.003978 52.465483
• Oracle Corp ORCL 6 2 500 300 0.006333 52.366864
• Microsoft Cp MSFT 10 4 500 300 0.008327 52.277228
◦ Intl Bus Machine IBM 10 6 500 300 0.006642 52.079208
• Cisco Systems CSCO 4 14 500 300 0.008364 51.968504
◦ Honeywell Intl HON 8 2 600 200 0.008506 51.877470
◦ AT&T T 3 22 500 300 0.014920 51.327434
• Qualcomm Inc QCOM 4 25 500 300 0.009888 50.295276

Table 4: For every sign prediction rate ζ reported in table 2 and 3 it is here shown
the number of random walks (over 1000) that have totalized a sign prediction
rate ζrw greater or equal ζ.

Series #rw : ζrw ≥ ζ Series #rw : ζrw ≥ ζ

S&P500 78 DowJones Ind 186
Nasdaq 100 258

SUNW 7 DELL 16
WCOM 13 AAPL 25
INTC 21 AMD 30
STM 50 ORCL 69
MSFT 76 IBM 103
CSCO 98 HON 108
T 194 QCOM 431

Forecasting price increments with NN 11

7. Weekly and intra-day data

It is interesting to ask if the MLP may exploit regularities in the time se-
ries of price sampled at a lower/higher rate than daily. Apart from the “scaling
behaviour” observed empirically in real price series we are interested in the per-
formance of our procedure (search plus learn) when we change the time scale on
which we sample the price of the assets or the index at a stock market.
To answer this question we performed the same search for the good net on the

IBM and AMD stock price sampled on weekly basis as well as taking intra-day
data with the frequency of one minute. Both series consisted of 2024 points, the
same as the daily price series.
The outcome is that intra-day data are much difficult to be forecasted with

our MLPs. In fact for both the one-minute-delay data series the search did not
succeeded to find a good net; all the good nets (few) have given a sign prediction
rate ζ < 40%.
On the other hand the forecast of weekly data gave a success rate comparable

with that of daily series (e.g., a 4-2-1 net performed ζ = 51.422764 with ǫ =
0.004947).

8. Artificially generated price series

As last question, and to further test the correctness of our prediction, we
tried to forecast the sign of price changes of an artificially generated time series.
This was generated by the the Cont-Bouchaud herding model that seems one
of the simplest one able to show fat tails in histogram of returns (Cont and
Bouchaud, 1999). This model shows the relation between the excess kurtosis
observed in the distribution of returns and the tendency of market participants
to imitate each other (what is called herd behaviour). The model consists of
percolating clusters of agents (Stauffer, 2000). At a given time step a certain
number of coalitions (clusters) decide what to do: they buy with probability a,
sell with probability a or stay inactive with probability 1 − 2a. The demand of
a certain group of traders is proportional to its size and the total price change
is proportional to the difference between supply and demand.
It is clear that such a model generates unpredictable time series, and our

is rejected. We use a random walk (pr(up) = pr(down) = 1/2) as forecasting strategy Grwt

and then compute ζrw defined in eq(6.1) on the time series Pt. The random variable ζrw
have mean 0.5 and standard deviation σζrw . By definition ζrw is the sample mean of T i.i.d.
Bernoullian random variables. Thus, assuming that ζrw converges to a Gaussian N(1/2, σζrw),

we can estimate the unknown variance of ζrw as σ̂2
rw = 1/N

∑N

i=1
(ζrwi

− 1/2)2. To have

an estimation of σζrw we ran N = 1000 random walks each giving a value for ζrw. Once
we estimate σrw, the null hypothesis becomes “what is the probability Pζrw [x > ζ] that the
neural net is doing a random prediction on Pt with rate ζ ?” or the other way around ”what
is the probability Pζrw [x ≤ ζ] that the net is not doing randomly?”. Formally Pζrw [x ≤

ζ] =
∫ ζ

−∞

N(1
2
, σ̂rw)(x)dx where N(1

2
, σ̂rw) is a Gaussian and σ̂rw is the estimation of the

standard deviation σrw of the random variable ζrw. In summary, for every sign prediction rate
ζ obtained with our neural net on a time series Pt, we first estimate σ̂rw as specified above,
then we compute the probability Pζrw [x ≤ ζ] at which the null hypothesis of randomness
prediction is rejected. The results tell us that for some bad prediction values (like for QCOM
or Nasdaq100) the randomess hyphothesis cannot be rejected but for the majority of the series
the probability to reject the null hypothesis is something between 0.01 and 0.1.

12 Filippo Castiglione

networks should not be able to make any predictions. Indeed, when our method
was applied to this series it did not succeeded to find a good net as all the tried
nets performed bad on the check set C, i.e., ǫ > 0.015.

9. Discussion

We have shown that a suitable neural net able to forecast the sign of the price
increments with a success rate slightly above 50 percent on a daily basis can be
found. This can be an empirically demonstration that a good net exists but we
do not have a mechanism to find it with “high probability”. In other words we
cannot use this method as a profit opportunity because we do not know a priori
which net to use. Perhaps a better algorithm to search for the good topology
(model selection and pruning with sensitivity analysis (Moody and Neuneier +
Zimmermann, 1998)) would give some help. The future work will likely undertake
this direction.
As final remark we have found that intra-day data are much more difficult to

be forecasted with our method than daily or weekly.

Acknowledgements:

The author wishes to acknowledge D. Stauffer and G.H. Zimmermann for
useful comments and hints.

References

A.S. Weigend and N.A. Gershenfeld editors., (1994), Time Series Prediction: Forecasting the
Future and Understanding the Past, Reading, MA: Addison-Wesley.

J.Y. Campbell, A.W. Lo, A.C. MacKinlay, (1997), The Econometrics of Financial Markets,
Princeton Univ. Press.

J. Moody, Forecasting the Economy with Neural Nets: A survey of Challenges and Solutions
and R. Neuneier, H.G. Zimmermann, How to Train Neural Networks, in Neural Networks:
tricks of the trade, edited by Genevieve B. Orr and Klaus-Robert Müller, (1998), Lect. N.
Comp. Sci 1524, Springer Heidelberg.

A.P.N. Refenes, A.N. Burgess and Y. Bentz, (1997), Neural Networks in Financial Engineering:
A Study in Methodology, IEEE Transactions on Neural Networks 8(6).

H. White, (1992), Artificial Neural Networks approximation and Learning Theory, Blackwell
Publishers, Cambridge, MA.

G. Cybenko, (1989), Approximation by superposition of a sigmoidal function, Mathematics of
Control, Signal and Systems, 2, 303-314.

D.E. Rumelhart, G.E. Hinton and R.J. Williams, Learning internal representation by Error
Propagation, in Parallel Distributed Processing: Exploration in the Microsctructure of
Cognition. Volume I: Foundations, edited by D.E. Rumelhart and J.L.McClelland, 318-
362, Cambridge, MA: MIT Press/Bradford Books.

D.E. Rumelhart, G.E. Hinton and R.J. Williams, (1986), Learning representation by back-
propagation error, Nature, 323, pp. 533-536.

W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, (1994), Numerical recipes in
C: the art of scientific computing, Cambridge University Press.

R. Cont and J.P. Bouchaud, (1999), Herd behaviour and aggregate fluctuations in financial
markets, Macroeconomic Dynamics, in press, cond-mat/9712318.

D. Stauffer, (2000), in proceeding of “Economic dynamics from the physics point of view”,
Physics Center Bad Honnef, Germany, March 27-30, 2000, Physica A, in press.

http://arxiv.org/abs/cond-mat/9712318

