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Abstract

We determine the distribution of size and growthrates of German business firms in
1987-1997. We find a log-normal size distribution. The distribution of growth rates
has fat tails. It can be fitted to an exponential in a narrow central region and is
dominated by finite-sample-size effects far in its wings. We study the dependence of
the growth rate distribution on firm size: depending on procedures, we find almost no
dependence when the center of the distribution is considered or, similar to previous
work, a power-law when the wings are weighted more strongly. Correlations in the
growth of different firms are essentially random. We determine the annual growth of
the entire economy, and successfully correlate it with a standard economic indicator
of business cycles in Germany. We emphasize possible problems related to the finite
number of firms comprised in our database and its short extension in time.

Key words: Company sizes; Firm growth; Log-normal, exponential, fat-tailed
distributions; Business cycles; Economic indicators.

1 Motivation, important problems

To understand the dynamics of economic growth, and its underlying mecha-
nisms, is important for society. Important issues are, among others, the influ-
ence and control of economic growth by government policy (e.g. taxes, employ-
ment conditions, or monetary policy); industrial concentration and antitrust
policy, and its influence on competition and economic growth; changes in the
structure of economies brought about by the globalization of economic activ-
ities, and their consequences. Also, it is unclear if firms which are part of the
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“New Economy” of high-technology sectors grow according to the same rules
as the firms of the “Old Economy”, and if the same macroeconomic indicators
should be used, e.g., to measure the business cycles of both economies.

Surprisingly, it turns out, however, that the dynamics of economies is not
well understood, both empirically and with respect to its underlying mecha-
nisms. “Unfortunately, as is obvious from reading the newspapers, the theory

of macroeconomics is not a settled field. There is much controversy among

economists what is a useful basic approach as well as about the detailed analy-

ses of particular economic events and policy proposals” [1]. Economic growth,
or the concentration of firms in an industry are often measured by some in-
dicators, and the underpinning of these indicators by statistical data on an
economy sometimes remains unclear. Quite generally, economic theories often
focus on mean values, trends, macrovariables [1,2].

Firm sizes in classical theory would be determined by the long-run cost curve:
the cost of output has a U-shaped dependence on the amount of output, and
is minimal at a specific scale. Firms therefore would grow or shrink under
the influence of competition in the market, in order to attain this optimal
size for maximal profits, and an equilibrium would establish at that size. The
question, of course, is if and to what extent, the distributions of firms in an
industry, or an entire economy, are consistent with such arguments and market
mechanisms. It turns out, however, that both the arguments about, and even
more so the evidences for, such “economies of scale” are controversial [3].

A different approach is taken by stochastic growth models [3] which attempt
to describe the distribution of firm sizes in an economy, and relate details of
these distributions to elements of the growth dynamics. The first such model
was formulated by Gibrat [4] who postulated that the relative rate of growth of
a company is independent of its size. Assuming further that the growth rates
are uncorrelated in time and that firms grow independently of each other, he
arrived at a description in terms of a multiplicative stochastic process leading
to a log-normal distribution of firm sizes which was verified by his observations.
Later work by economists also discussed other distribution functions involving
power laws, but the evidence for or against a specific class of distributions has
remained controversial [3]. Moreover, the discussion was strongly focussed on
the shape of the size distribution and a correlation of this distribution with
other properties of the sample was rarely attempted.

In the past few years, physicists have become interested in of economic prob-
lems, mostly financial markets [5]. It is tempting therefore to consider the dy-
namics of economic growth from a physicist’s perspective. Growth processes
are routinely investigated and modelled in Statistical Physics [6]. Examples are
diffusion limited aggregation, or the Eden model, which may approximately
describe the growth of crystals or tumors, respectively. Here, the identification
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of a specific growth mechanism is based on the form of the resulting object, i.e.
on the correlation of its size (volume or mass) with its local fluctuations. This
brings up the question: What can be learned from the study of fluctuations in
economic growth?

This question is not new, and some papers have adressed growth properties
of industries and economies [7–10]. Amaral et al., and Lee et al., found that
(i) the size distribution of US firms and of the gross domestic product of 152
countries approximately follow log-normal distributions; (ii) the distribution
of growth rates conditioned on the size of the firms (countries) are exponential;
(iii) the standard deviation of this exponetial distribution depends on size as
σ ∼ S−β with β ≈ 0.16 both for the US firms and for the countries. These
findings were suggested to be universal, and indicative of the growth dynamics
of systems with complex internal structures [7,8]. Takayasu and Okuyama [9]
performed a similar analysis for different countries. They found that the shape
of the firm size distribution depended on the country (power-law for the US,
more exponential for France, Japan, and Italy) but obtained growth proper-
ties consistent with (ii) and (iii) above. Finally, Ramsden and Kiss-Haypál
established the rank-size relation (Zipf analysis) for firms in the economies of
20 countries in 1994 [11]. Unless there is clustering at certain sizes, this pro-
cedure is rather equivalent to analyzing the cumulative distribution function.
They found significant differences among the countries in their fits.

Interpretations were proposed in terms of systems with complex internal struc-
ture but no competition between firms [7,8], competition of structureless firms
[9], or thermodynamics [11]. The simulation of these models could reproduce
essential features of the empirical data in all cases.

Important questions remain. One of the most immediate is about universality.
How universal are the statistical properties of economies? Another problem
is the correlation of a statistical analysis with economic indicators. To better
understand these issues, we perform an analysis of the growth properties of
German business firms.

2 Method of present work

We investigate two database of German business firms: (i) Datastream pro-
vides a data base with 570 stock companies over the 11 years 1987-1997; (ii)
the Hoppenstedt data base contains about 6500 firms over 20 years. The in-
vestigation of this base is not completed at the time of writing so that only
results based on the more limited database (i) will be presented.

We use the annual sales as an indicator of the size of a firm. Earlier work for US
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firms has shown, however, that other indicators such as assets or the number
of employees, give similar results [12]. Due to the small sample size, we do
not attempt to consider different industries. Earlier work for other countries
shows that the results do not depend on the type of industry within a specific
country [9,12]. Finally, we discard all firms with incomplete data from our
sample. The structure of the sample suggests that in most cases, data are just
“missing” randomly. However, we eliminate in this way also effects of mergers
and acquisitions, as well as newly founded firms and firms going bankrupt.

Our data base finally contains 405 companies with sales data for the 11
years 1987-1997. Their sizes will be denoted by Sj(ti), j = 1, . . . , 405, i =
1987, . . . , 1997. One source of concern is the small size of this sample. Is it
representative for the German economy? We attempt a preliminary answer
by comparing to a standard indicator of economic growth below. More def-
inite statements, however, will have to be based on studies using the bigger
data base (ii), to be published elsewhere. Apart the limited number of com-
panies sampled, we will point out repeatedly the problems associated with
the finite extent in time, of our data base, and the limitations they imply for
interpretation. Notice that many other studies suffer from similar limitations.

3 Firm size distributions, annual growth

Figure 1 shows the firm size distribution of the entire database P [Sj(ti)], i.e.
all years 1987-1997 mixed. Similar results are obtained, though with less good
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Fig. 1. Size distribution of German business firms. Dots: empirical data, line: fit to
a log-normal distribution, parameters 〈ln(S)〉 = 11.8, exp〈ln(S)〉 = 137 × 106 DM,
standard deviation = 2.4.
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statistics, when individual years are analyzed. The size distribution of German
business firms indeed is approximately log-normal, in agreement with Gibrat’s
observations [4] and the US firms [7]. We note, however, that there is a sharp
cutoff at big company sizes, and an excess of weight on the small-size wing of
the distribution. These features are observed systematically with a one-year
resolution, too. The cutoff at big sizes is consistent with similar observations
for Japan, France, and Italy [9] but the data presentation in that work does
not allow to draw conclusions on the small-size limit. We have not checked fits
to alternative distribution functions.

From the firm sizes Sj(ti), annual growth rates rj(ti) are derived as rj(ti) =
ln [Sj(ti)/Sj(ti−1)]. The mean of the distribution of the annual growth rates
gives the growth of the entire economy (to the extent that our limited database
gives a faithful representation), and is shown in Figure 2. Despite the scatter,
one can notice an apparently systematic variation of the economic conditions
in Germany: there is a boom period in the late 80’s and early 90’s, slowing
down and even recessing during the mid 90’s and a restart of positive growth at
the end of the sampling period of our database. While for residents of Germany
this pattern will remind, and correlate with, the media reports on the economic
conditions of the country, it is necessary to compare with established indicators
of business cycles and economic trends, in order to assess the relevance of our
analysis.

One such indicator for business cycles is provided by the (percentage) use of
production capacity of German business firms [2]. Data for the manufactoring
sector are reported annually by the Advisory Panel to the German Federal
Government on the Economic Conditions, and shown in Figure 3 for the same
period as our database. They show a pattern similar to the annual growth
rate derived from our statistical analysis. This suggests that our data base

1990 1992 1994 1996
year
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mean growth rate

Fig. 2. Mean growth rate of the German economy as sampled by our database in
1987-1997.
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Fig. 3. Percentage use of production capacity of German manufactoring sector in
1987-1997.

may indeed provide a good representation of the German economy, despite
its limited size; conversely, the agreement shows that the use of such coarse-
grained indicators can be backed by a more “microscopic” statistical analysis.
A priori, it is not obvious if this quantity, or rather its annual change should
be compared to the mean growth rates shown in Figure 2. Its annual change,
however, correlates less well with our analysis. We therefore conclude that the
use of production capacity itself is the appropriate indicator.

4 Growth rate distributions

We now turn to the distributions of the firm growth rates. Figure 4 shows the
distribution of the fluctuations in the growth rates (i.e. after the subtraction
of the mean 〈rj(ti)〉i,j), for the entire database, all years mixed. Apart the
less good statistics, however, the distributions time-resolved on a one-year
scale, show the same behavior. It is clear that the raw data have a fat-tailed
distribution, far from both the normal distribution associated with a simple
multiplicative stochastic process, and from the exponential distribution which
has been found in earlier work [7–10]. At present, we have not attempted to
fit the entire distribution to a particular form. We rather analyze separately
the center and the wings of the distribution.

Figure 5 shows the distribution of the growthrates of firms with −0.55 ≤
rj(ti)−〈r〉 ≤ 0.45. In this range, a successful fit to an exponential distribution
is possible indeed (standard deviation 0.12). Hence we recover the exponen-
tial growth rate distributions found by Amaral et al., [7] and Takayasu and
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Okuyama [9], albeit only for a very narrow range of growth rates. The wings
of the probability distributions are dominated by effects of finite sample size.
The horizontal line in Figure 6, where the dots are the data shown in Figure
4, represents the lower limit on counting, one count per bin. In the center of
the figure, the exponential fit function derived in Figure 5 is superposed on
the original data. Again, all features are recovered in time-resolved data on a
one-year scale, with less good statistics.
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Fig. 4. Distribution of growth rates of German business firms with respect to their
mean in 1987-1997.
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Fig. 5. Central part of growth rate distribution of German business firms in
1987-1997, and fit to an exponential distribution (solid line). 3788 out of 4050 data
have been used in this analysis.
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Fig. 6. Superposition of growth rate distribution of German business firms with
central fit to an exponential distribution (tent-shaped solid line) and lower-finite
size cutoff. The horizontal line corresponds to one count per bin.

Some observations, however, make us hesitate to endorse an exponential growth
rate distribution at the present level of data analysis without reservations.
They are related to the extremely reduced range over which the exponential
fit can be performed. Counting rates are still rather high (50-200 firms per bin)
in the range where deviations from exponential behavior are clearly marked
already, and the deviation of the data from the exponential fit in the center is
much larger than the error bars. The parameters derived from an exponential
fit depend on the range of data used, and do not converge well as this range
is reduced. Finally, the shape of our bare growth rate distribution, Figure 4,
is very different from those found in other work [7,9], and more reminiscent of
work on stock exchange crashes which have been claimed to be outliers with
respect to a presumed exponential distribution [14].

Earlier work made the interesting observation that both for firms, and for the
gross domestic product of countries, the width σ of the exponential growth rate
distribution depends on the sizes of the firms, resp. countries, when the data
set is binned according to firm or country size [7–9]. A power law dependence
σ ∼ S−β was found with a rather universal exponent β ≈ 0.16. Figure 7
shows the corresponding result for German business firms. To generate this
figure, we divided our firms into ten bins corresponding to the n/10-quantiles
of the sample. We then determined, the distribution of growth rates for each
bin, and performed a fit to the center of the distributions as explained above.
The resulting widths σ are plotted vs. the average firm size in the respective
bin, in Figure 7. There is a large scatter of points in the σ-S plane, and no
clear dependence of width on size emerges. If we – reluctantly – attempt a
power law fit, we find an exponent β = 0.037 ± 0.006, essentially zero. If,
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instead, we use the standard deviation Σ of the entire sample in each bin,
we do recover the power law Σ ∼ S−β with an exponent β = 0.19 ± 0.02,
Figure 8. This power law dependence essentially agrees with the earlier results
[7–9], and supports the claims of universality made there. Notice, however,
that this analysis more strongly reflects the variations in the wings of the
growth rate distribution which may deviate from the exponential statistics
discussed above, and which may suffer from severe finite sample-size effects.

10 12 14 16
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Fig. 7. Dependence of the width σ of the exponential distribution fitting the center
of P (r−〈r〉) vs. firm size. No clear dependence emerges. The solid line is the “best”
fit to a power law σ ∼ S−β with an exponent β = 0.037.
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Fig. 8. Dependence of the standard deviation lnΣ of the individual bins on firm
size. The solid line is a fit to a power law Σ ∼ S−β with β = 0.19.
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In the future, it will be important to understand the consequences of the
dependence of the exponent β on the sampling procedure.

It will also be important to study the reasons for the serious discrepancies
between fitted laws and empirical data, in particular in Figures 7 and 8. In all
figures, error bars are for one standard deviation. The number of data points
deviating from the fitted laws in general is rather larger than 32%. Similar
conclusions would be reached at the 95% confidence level. It is not clear that
going to larger samples would improve the situation: quite generally, the error
bars will decrease with sample size. Also, the apparently random scatter of
the data points around the fitted lines in Figs. 7 and 8 leaves little room
for an improvement in the specification of the theory. However, there is the
possibility that one of the assumptions underlying the error analysis is not
satisfied: randomness of the data, i.e. growth rates. If the growth rates are
strongly correlated, the number of independent entries in each of the histogram
bins will be reduced significantly, and the error bars will be correspondingly
increased.

5 Correlations in firm growth

Many models describing the observed firm size distributions, and those de-
scribing the exponential growth rate distributions [7], assume an uncorrelated
growth of firms both in time, and across the economy. This assumption can
be checked, in principle, from our data set. From an economic point of view,
an assumption of uncorrelated firm growth may appear questionable, a priori.
One the one hand, when a national economy evolves significantly and non-
randomly, this evolution should be visible in the growth dynamics of its mem-
bers, and is likely caused by correlations of the individual growth processes.
In periods where people buy more (less) cars, the sales of Daimler-Chrysler,
Volkswagen, and BMW will increase (decrease) while changes in market share
of the individual companies operate on much smaller scales. On the other
hand, correlations between car producers and, e.g., pharmaceutical companies
are less obvious and may even be negative.

We have computed the covariance matrix of the 405 firms of our database,
and show results in Figures 9 and 10. For reasons of clarity, Figure 9 displays
only the upper left 40 × 40 entries of the entire covariance matrix. Figure 10
shows a cut through the covariance matrix at row 199. Both figures appar-
ently indicate that there are significant correlations in the growth of the firms
[uncorrelated growth would lead to cov(Si, Sj) = δi,j], and that these correla-
tions are essentially random. Recent studies of financial markets indicate that
correlations between stock prices also have a strong random component [15].
There, about 94% of the correlations are consistent with pure randomness,
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and only 6% deviate significantly from such a hypothesis. One might then
ask: Are economies glassy systems?

While the idea of random correlations in firm growth dynamics may have some
appeal (cf. above), we caution against premature conclusions in this direction.
In fact, the apparent randomness, or at least part of it, may be due to the small
temporal extension of our data set. Sufficiently long time series are needed
to make significant cross-correlations between various variables emerge, and
clearly distinguish them from uncorrelated random variables. Even a rather
large number of uncorrelated random variables will show some correlations
provided one does not look at too long a time series (“noise dressing”). This
is demonstrated on a surrogate data set in Figure 11. In this data set, “time
series” for 405 “firms” and lengths of 10, 100, and 1000 entries (“years”) have
been produced with a random number generator. While the covariance matrix
for 10 “years” is essentially indistinguishable from Figs. 9 and 10, and corre-
lations are still pretty strong for a 100 “years”, it is only for 1000 “year” long
time series that the statistical independence of the random numbers becomes
apparent. The upper left 40×40 entries of the covariance matrix for this latter
case are shown in Figure 11.
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Fig. 9. Covariance matrix cov(i, j) of the growth rates of German business firms.
For clarity, we only show the first 40× 40 entries.
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Fig. 10. Cut through the covariance matrix, cov(199, j), of German business firms.

6 Discussion, Open questions

The preceding analysis of the growth dynamics of German business firms shows
notable similarities and differences to earlier work analyzing firms in other
countries. The list of similarities include a log-normal size distribution, and
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Fig. 11. Covariance of 405 series of random numbers with 1000 elements in each
series. Only when the length of the series is comparable to the number of series,
does the uncorrelated nature of the random numbers emerge.
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an exponential distribution of growth rates at least in the center of the distri-
bution, albeit with some reservations with respect to the entire distribution.
Differences are found (i) in certain systematic deviations from the log-normal
distribution which is very well observed by US-firm or country data [7,8], and
which may reflect specific features of the German economy, and (ii) in the
dependence of the width of the growth rate distribution on firm sizes where
no clear dependence emerges when the width of the exponential distribution
in the center is used. However, we do observe a power law σ ∼ S−β as found
elsewhere [7–9] when the standard deviation of the entire sample in each bin
is evaluated. It is not clear if the difference in the exponents (β = 0.19± 0.02
here vs. 0.16 elsewhere) is significant.

The cutoff in the firm size distribution for big firms could be related either to
the size of Germany (the country can’t support firms beyond a certain size)
or, in a more global perspective, to the fact that the biggest multinational
companies are based in the US. The excess of weight for small company sizes
is much less clear and will require further investigation. It may possibly be
related to a traditionally big number of small and medium-size enterprises in
Germany (“Mittelständische Wirtschaft”) which are well supported by pol-
itics, if they comprise a sufficient number of stock companies and therefore
show up in our sample.

Several models have attempted to describe the size and growth rate distribu-
tions and the dependence of the latter on firm size, based on a distribution
of minimal firm sizes necessary for survival in the different industries com-
posing an economy [7], on the amount of competition in an economy and its
control through, e.g., taxes [9], or on managerial culture (lean management
vs. hierarchical and authoritarian) [16]. It will be interesting to interpret the
size-independence of the growth rate distribution found here for the German
economy, with specific features of these models, and to correlate these with
independent economic information on German business firms. This is planned
for future work. If successful, such a program could open the exciting possibil-
ity to correlate statistical properties of an economy with political, historical
and cultural elements, and to closely monitor the changes brought about by
both European integration and the worldwide globalization of the economy.

At the interface between statistics and economy, we have shown that the tem-
poral evolution of the firms listed in our database tracks standard indicators of
economic growth. On the other hand, we again caution against premature con-
clusions: Figure 12 shows the average growth of a surrogate economy (random
numbers), and the differences to Figures 2 and 3 apparently are minor. The
similarity of these figures makes us wonder to what extent the variations in the
growth of the German economy are systematic, i.e. reveal business cycles, and
how big a random component they contain. On what time scales does non-
randomness become important? Data for the growth rate of the gross national
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Fig. 12. “Annual growth” of a surrogate economy (random numbers). Systematic
and random variations cannot be distinguished for few entries only.

product of the US 1870-1988 look random superposed on a small positive off-
set while those for Germany 1950-1992 show a more periodic structure [17].
This points to an important limitation of economic time series, compared to
time series in physics, finance, medicine, etc., namely their short extension in
time. Gross indicators are available over rather long times but detailed firm
data have been collected rather recently only. Finite sample length effects are
a serious problem, and may also have affected the analysis presented here.

Future work therefore should address temporal correlations, and the impor-
tance of business cycles. Some evidence in favor of temporal correlations has
been gathered in the past [3]. It would also be of interest to investigate birth
and death processes in the economy. Finally, it will be interesting to confront
the rather pragmatic approach of a physicist used here, to the more elaborate
tools used by econometricians such as hypothesis tests, etc. These issues will
be taken up in future publications.
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