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We have examined extended structures, bridges and arches, in computer generated, non-
sequentially stabilized, hard sphere deposits. The bridges and arches have well defined
distributions of sizes and shapes. The distribution functions reflect the contraints associ-
ated with hard particle packing and the details of the restructuring process. A subpopu-
lation of string-like bridges has been identified. Bridges are fundamental microstructural
elements in real granular systems and their sizes and shapes dominate considerations of
structural properties and flow instabilities such as jamming.

1. Introduction

There has always been a fascination, amongst physicists, with the structures and

configurations that exist within disordered packings of hard particles (see for ex-

ample, [1]). One interest stems from the fundamental, frustrated, geometries that

exist within sphere packings, e.g. [2], [3]; another comes from the parallels between

random packings and the structures of real disordered materials like liquids, glasses

and granular solids, [4], [5]. In particular it is clear that the mechanical and trans-

port properties of mesoscale disordered materials, like powders and deposits, are

strongly dependent on the relative positions and connectivity of the constituent par-

ticles. A striking example of this interplay follows when several particles combine

to form an ’arch’ or ’bridge’ near to the outlet of a gravity flow container and cause

the flow to stop. This blocking phenomenon has an enormous impact on a wide
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range of technological and industrial processes; there have been many attempts to

quantify the effect and to optimize operational parameters like the outlet size and

the internal granular flow pattern, e.g. [6]. However there is little information on

the statistical details of the particulate configurations that are the underlying cause

of the blocking.

In two dimensions arches and bridges can be observed throughout dense, ran-

dom, packings of hard disks, e.g. [7], and they appear to be ubiquitous elements of

stable granular structures. In a recent report To et al., [8], described experiments in

which a jamming arch of monosized disks was repeatedly formed, in gravitational

flow, across the outlet of a conical, two-dimensional, hopper. These experiments

indicated that the jamming arches had configurations that were similar to those of

self-avoiding random walks. This statistical appreciation was used to obtain pre-

dictions of crucial macroscopic parameters like the jamming probability.

Below we give some details of bridge structures formed in models of hard sphere

deposits and explore the role of bridges in three-dimensional disordered packings

which are stable under gravity. We do not find ’diffusive’ bridge configurations but

we have identified a special, chain-like, subpopulation of bridges.

In a stable packing of hard particles each particle rests on three others in such

a way that its weight vector passes through the triangle formed from the three

contact points (We do not consider situations involving non-point contacts). A

bridge is a configuration in which the three point stability conditions of two or more

particles are linked i.e. there are mutual stabilizations. In a simple example, with

two particles A and B, particle A would rest on particle B and two other particles

whereas particle B would rest on particle A and two further particles. Neither

particle A or B could rest, i.e. be part of the stable structure, without the other.

Bridge configurations, therefore, are the result of non-sequential stabilizations; they

cannot be formed by the sequential placement of individual particles. In practice

almost all processing operations involving granular materials such as pouring and

shaking etc., are non-sequential processes. Two examples of two particle bridges are

shown in figure 1. Each of these configurations is part of a large, dense, packing of

spheres; all those spheres not involved in the bridge have been deleted so that it is

clearly visible. The configuration on the left uses only three particles as the base of

the bridge whereas that on the right uses four (base particles whilst ensuring the

stability of the configuration don’t, themselves, involve mutual stabilizations with

other particles in the bridge structure). The details of the bridge configurations, in

terms of sizes and shapes, are a manifestation of the volume and angular constraints

that exist in dense hard particle assemblies. In turn these structures reflect the

nature of the processing operations that precede the formation of a stable packing.

In this respect bridges can be seen as part of the ’memory’ of a granular system.
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Fig. 1. Simple two particle bridge with three and four base particles

2. Model deposits

We have examined bridge structures in hard sphere assemblies that are generated

by an established, non-sequential, restructuring algorithm, [9,10]. This algorithm

restructures a stable, hard sphere, deposit in three distinct stages. Firstly free vol-

ume is introduced homogeneously throughout the system and the particles are given

small, random, displacements. Secondly the packing is compressed in a uniaxial ex-

ternal field using a low-temperature Monte Carlo process. Thirdly the spheres are

stabilized using a steepest decent ’drop and roll’ dynamics to find a local mini-

mum of the potential energy. Crucially, during the third phase of the restructuring

the spheres, although moved in sequence, are able to roll in contact with spheres

that are in either stable or unstable positions; thus mutual stabilizations may arise.

The final configuration has a well defined network of contacts and each sphere has

a uniquely defined three point stability (In practice the final configuration may

include a few ’rattlers’, [3]).

Restructuring simulations are performed in a rectangular cell (a square prism)

with periodic boundaries in the lateral directions and a hard, disordered base per-

pendicular to the compression (external field) direction. Our previous investiga-

tions, [9], have shown that, this restructuring process does not depend strongly on

the simulation parameters and that, after many cycles, restructured packings have

a steady state described by particular values for the structural descriptors such

as the mean packing fraction and the mean coordination number. Typically the

steady state mean volume fraction is in the range φ ∼ 0.55 − 0.61 and the mean

coordination number is Z ∼ 5.6± 0.1. The nature of the steady state is determined

by the size of the expansion phase or the ’amplitude’ of the process, [9]. We have

shown, [10,11], that the random packings generated in this way have many features

in common with the states generated in vibrated granular media. In particular we

have shown that by varying the driving amplitude systematically we can explore

’irreversible’ and ’reversible’ branches of a density versus driving amplitude rela-
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tionship analogous to the experimentally observed behaviour, [12]. We have used

monosized spheres in order to avoid any problems with induced size segregation

and a disordered base prevents ordering. In the packings we have considered here

the Q6 order parameter, e.g. [3], has a value Q6/Q
fcc
6

∼ 0.05. This small value indi-

cates only a very limited amount of face centered cubic crystalite formation in the

system (Qfcc
6

is the value of the order parameter for a face centered cubic crystal

structure).

3. Statistics of bridge structures

We have identified clusters of mutually stabilized particles in computer generated

packings of hard spheres. Each configuration includes approximately Ntot = 2500

particles and we have examined approximately 100 configurations from each of two

steady states, with φ = 0.56 and 0.58, of the reorganization process.

Fig. 2. A five particle bridge with six base particles and the corresponding contact network

Figure 2 illustrates a mutually stabilized cluster of five particles that is part

of a large, stable, packing; this figure also shows six particles which form a base

(all other particles in the packing are hidden to make the diagram). Also shown

in figure 2 is the network of contacts for the particles in the bridge. This bridge

is quite complex and includes a set of three particles (lower and to the right) that

each have two mutual stabilizations.

Figure 3 illustrates a seven particle bridge with nine base particles. The contact

network shows that although this bridge is larger than that in figure 2 it has a

simpler topology because all of the mutually stabilized particles are in sequence -

the bridge is string-like. The right hand configuration in figure 1, with four base

particles, is a string-like bridge. In practice string like bridges are common; bridges

such as the one illustrated on the left hand side of figure 1 are very rare in our

packings.

Each packing contains a large variety of bridge sizes and shapes. Approximately
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Fig. 3. A seven particle string-like bridge with nine base particles and the corresponding contact
network

−3

−2.5

−2

−1.5

−1

−0.5

0 0.5 1 1.5 2
Log(n)

L
og

(p
( n

) )

Fig. 4. The size distribution of bridges in non-sequentially reorganized hard sphere deposits; the
full circles correspond to packings with < φ >= 0.58, the open circles correspond to packings with
< φ >= 0.56 and the line is a fitted scaling p(n) ∼ n−α.

80 percent of particles are in mutually stabilized locations. In figure 4 we have

plotted the size distribution of the bridges as Log(p(n)) against Log(n) where

p(n) =< nN(n)/Ntot > and N(n) is the number of bridges which contain n mutu-

ally stabilized particles. Angular brackets indicate an average over configurations in

the steady state. We can consider p(n) as the probability that a particular particle

is included in a bridge with size n. Over a wide range of bridge sizes the distribution

function has a scaling behaviour of the form p(n) ∼ n−α with α ∼ 1.0± 0.03. The

bridge size distribution is not strongly dependent on the volume fraction of the

packings.
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Fig. 5. The mean base size for bridges with size n;the dashed line indicates behaviour for string-
like bridges nbase = n + 2 and the full line is a scaling fitted to the behaviour of the larger
bridges.

For a particular bridge size the number of base particles, which complete the

stabilization, is variable with an upper bound, n+2, corresponding to a string-like

bridge. The mean number of base particles, nbase, is plotted as a function of the

bridge size in figure 5. There is a crossover in behaviour at n ∼ 8; small bridges are

predominantly string-like and larger bridges have more complex structures with

relatively fewer base particles. Again this property is not strongly dependent on

the volume fraction of the packings in the range we have considered. We did not

observe any ’domes’ or ’canopies’ although this could be an artefact of the relatively

small sizes of the deposits. For a particular bridge configuration a triangulation of

the base particles can be used to construct a unique bridge axis as the mean of

the triangle normals. With respect to this axis geometrical descriptors, such as the

radius of gyration or the aspect ratio, also show a cross over that indicates the

significance of a sub-population of string-like bridges.

A string-like bridge has uniquely defined end particles and, therefore, a well

defined extension. The mean squared separation, < r2n >, of the end particles

for string-like bridges scales with the number of stabilizing bonds according to

< r2n >∼ (n − 1)γ with γ = 1.33. This ’superdiffusive’ behaviour is illustrated

in figure 6. The population of string-like bridges we observe, in reorganized three

dimensional deposits, is thus distinct from the random walk structures that have

been identified as the cause of blocking at the outlet of a two dimensional hopper,

[8].

Figure 7 shows the distribution function of base extensions for all bridges in

packings that are part of the restructuring steady state with φ = 0.58. The ex-

tension, bx, is the projection, in a plane perpendicular to the external field, of the
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Fig. 6. The mean squared displacement, < r2n >, for string-like bridges as a function of the
number of mutually stabilizing bonds n− 1. Bridges are part of restructured deposits with steady
state volume fraction φ = 0.58.
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Fig. 7. The distribution of base extensions for bridges that are part of restructured deposits with
steady state volume fraction φ = 0.58. The left hand figure also shows the distributions conditional
on the bridge size, n, for n = 2, 4, 6. The right hand figure shows the logarithm of the density as
a function of the normalized variable bx/ < bx >.

radius of gyration of the base particle configuration (about the bridge axis). Clearly

this measure is related to the ability of a bridge to span an opening and, therefore,

is an indicator of the jamming potential for a bridge. We have also shown, in figure

7, distribution functions that are conditional on the bridge size n (for n = 2, 4, 6).

The conditional distributions are sharply peaked, and are bounded at finite bx, but

the total distribution has a long tail, at large extensions, reflecting the existence of
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large bridges. In the second part of figure 7 we have plotted the logarithm of the

probability density against a normalized variable, bx/ < bx >, where < bx > is the

mean extension of bridge bases. This figure emphasizes the exponential tail of the

distribution function and also shows that bridges with small base extensions are un-

favoured. The absence of bridges with base extensions that are considerably smaller

than the mean extension is a reflection of the angular constraints that exist in hard

particle structures. Small base extensions reduce the number of possible stable con-

figurations for bridges with fixed size n. The form of the distribution in figure 7

can be interpretted, clearly, in terms of a partition, p(bx) =
∑

n p(bx | n)p(n), since

the conditional probabilities have restricted ranges, reflecting hard particle volume

and angular constraints, and the size distribution has a well defined scaling that

reflects the particular bridge creation and anhiliation processes that are included in

the restructuring. In this form it is clear that the tail of the distribution of bx arises

from the summation and not from bridges with a particular size. It is interesting

to note that the form of the normalized distribution in figure 7 is similar to the

distribution of the normal forces in dense packings of hard particles, e.g. [13].

4. Discussion

Bridges and arches are significant elements of the mesostructure in many granular

solids processing scenarios, e.g. [7,14]. These structures, which extend beyond the

scale of single particles, are strongly associated with important macroscopic proper-

ties of materials and with flow instabilities. We have shown that bridge structures

are included throughout the non-sequentially reorganized deposits we have con-

structed. Bridges have well defined statistics and, to a first approximation, they are

distributed homogeneously within the deposits. We have identified a sub-population

of bridges, which have string-like configurations, that dominate for low bridge sizes.

At present it is unclear whether these structures are a property of the particular

reorganization scheme considered here or whether they are a fundamental feature of

non-sequential reorganization in hard sphere deposition. The bridge size statistics

we have presented do not depend strongly on the volume fraction of the deposits but

other measures, such as the bridge orientations (which we will report elsewhere), do

vary with packing density i.e. with the expansion amplitude of the reorganization

process. Additionally it is clear that non-sequential structures like bridges, that

become trapped in the close packed systems, frustrate local ordering in packings

of monosized spheres. Thus the onset of ordering must coincide with changes in

the distribution of bridges; for driving amplitudes that are smaller than those used

to construct the deposits considered above we have observed the sudden onset of

ordering, [15]. We have not examined correlations of the bridges in the series of

packings generated by the reorganization process.

Clearly, based on an assumption that the bridges in bulk are the same as those

close to an opening, the statistics of extended structures in hard particle deposits is

sufficient to estimate the probability that a bridge will form a span at an outlet of a
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fixed size. In three dimensions this probability is not the same as the probability that

a bridge will form a blockage or a ’jam’. However initial investigations, [16], indicate

that data, analogous to the complement of the cumulative form of the distribution in

figure 7, are in qualitative agreement with observations of the jamming probability.

We hope to present details of these analyses in a future report.
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