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COARSENING OF VORTEX RIPPLES IN SAND
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The coarsening of an array of vortex ripples prepared in an unstable state is discussed within the
framework of a simple mass transfer model first introduced by K.H. Andersen et al. [Phys. Rev.
E 63, 066308 (2001)]. Two scenarios for the selection of the final pattern are identified. When the
initial state is homogeneous with uniform random perturbations, a unique final state is reached which
depends only on the shape of the interaction function f(λ). A potential formulation of the dynamics
suggests that the final wavelength is determined by a Maxwell construction applied to f(λ), but
comparison with numerical simulations shows that this yields only an upper bound. In contrast, the
evolution from a perfectly homogeneous state with a localized perturbation proceeds through the
propagation of wavelength doubling fronts. The front speed can be predicted by standard marginal
stability theory. In this case the final wavelength depends on the initial wavelength in a complicated
manner which involves multiplication by factors of 2 and rational ratios such as 4/3.

Uns überfüllts. Wir ordnens. Es zerfällt.

Wir ordnens wieder und zerfallen selbst.

Rainer Maria Rilke1

I. INTRODUCTION

Vortex ripples are a familiar occurrence in coastal waters, where the waves expose the sand surface at the sea
bottom to an oscillatory flow. The name reflects the important rôle of the separation vortices that form on the lee
side of the ripples in stabilizing the ripple slopes [1,2]. In laboratory experiments, one observes the formation of a
stable periodic pattern with a ripple wavelength proportional to the amplitude a of the water motion [3,4].
The purpose of the present contribution is to analyze a simple model that was recently introduced by Andersen

and coworkers to describe the stability and evolution of vortex ripple patterns [5]. We focus here on the mathematical
aspects of the problem, and refer the reader to the literature for further motivation and a detailed comparison to
experiments [5,6]. The model of interest is introduced in the next section. Sections 3 and 4 discuss the selection of
the final ripple pattern for the cases of uniform and localized perturbations of an unstable initial state, while Section
5 contains some remarks concerning the description of vortex ripples using continuum equations.

II. THE MASS TRANSFER MODEL

We consider a fully developed ripple pattern of the kind obtained in a quasi one-dimensional annular geometry
[3,6,7] (see Figure 1, which is taken from [6]). Each of the N ripples is described by a single size parameter λn(t),
which can be thought to represent its length, or the amount of sand it contains. The periodic (annular) boundary

conditions imply that the total length L =
∑N

n=1 λn is conserved2. During one period of fluid motion, ripple n
exchanges mass (or length) with its neighbors n− 1 and n+ 1. This leads to the balance equation

dλn

dt
= 2f(λn)− f(λn+1)− f(λn−1). (1)

The interaction function f(λ) is the central ingredient in the model. It describes the amount of sand that is transferred
to a ripple of size λ due to the vortex forming behind this ripple.

1From the eighth Duino elegy.
2Models in which the ripple lengths and masses are conserved separately have been developed in [5].
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a
FIG. 1. Experimental image of a ripple pattern obtained in an annular container under oscillatory driving. The line above

the sand surface shows that the pattern can be fitted to an array of triangles with constant slope. The amplitude of fluid
motion a is indicated.

The following argument suggests that f(λ) should be a nonmonotonic function with a maximum near λ = a [5].
Small ripples create a small separation vortex which is unable to erode much of the neighboring ripples, hence f(λ)
vanishes for small λ. On the other hand, even for a large ripple the size of the vortex cannot be much larger than the
amplitude a of the fluid motion. If λ ≫ a, the vortex does not reach beyond the trough to the next ripple, so f(λ)
vanishes also. The mass transfer is most efficient, and f is maximal, when λ ≈ a. The interaction function can be
measured in fluid dynamical simulations [5] and experiments [6], which confirm these qualitative considerations. In
the following we shall take f(λ) to be an arbitrary, single humped function which vanishes3 at λ = 0 and at λ = λmax,
and displays a maximum at λ = λc. The physical meaning of λmax is that new ripples are created in the troughs
when the ripple spacing exceeds λmax. Since we are concerned here with the coarsening of ripples, this process plays
no rôle.
Any homogeneous pattern with λn ≡ λ̄ is a stationary solution of (1). To investigate its stability, we impose a

small perturbation, λn = λ̄ + ǫn, and linearize (1) in ǫn. We find solutions of the form ǫn ∼ exp[iqn+ ω(q)t], where
the growth rate of a perturbation of wavenumber q is given by

ω(q) = 2f ′(λ̄)(1− cos q). (2)

This implies that (i) a homogeneous state is stable iff f ′(λ̄) < 0, and (ii) an unstable state decays predominantly
through perturbations of wavenumber q = π, in which every second ripple grows and every second ripple shrinks. The
model (1) thus predicts an entire band of stable homogeneous states with wavelengths λc < λ̄ < λmax, in qualitative
accordance with experiments [3,4,6]. The existence of a multitude of linearly stable, stationary states is a property
that the model shares with many other systems in granular physics.
When investigating the dynamics of unstable states, (1) has to be supplied by a rule which decides what should

happen when the length of a shrinking ripple reaches zero. We impose simply that such a ripple is eliminated, and
the remaining ripples are relabeled so that the earlier neighbors of the lost ripple now are next to each other. Since
the time derivatives of the lengths of these neighboring ripples jump at the instant of disappearance of the lost ripple,
this elimination procedure introduces a distinctly non-smooth element into the dynamics.

III. WAVELENGTH SELECTION FROM GENERIC UNSTABLE STATES

In this section we are concerned with the evolution out of generic unstable states. In practice this means that the
initial state is of the form λn = λ̄ + δn, where λ̄ < λc and the δn are random numbers smaller than λc − λ̄. The
evolution is then followed numerically to the point where all surviving ripples are in the stable regime, λn > λc.
Beyond this time no further ripples are eliminated, and hence the mean ripple length 〈λn〉 = L/N no longer changes4.
Simulations using a wide range of interaction functions strongly indicate that the evolution selects a unique equilib-

rium wavelength λeq which is independent of the initial conditions, and depends only on the shape of the interaction
function. In view of the large number of linearly stable stationary states, and the deterministic character of the
dynamics, this is a highly nontrivial property of the model, which requires explanation. While a full understanding is
still lacking, we present here a partial solution which appears to yield at least an upper bound on λeq.
The key observation is that (1) can be cast into the form of an overdamped mechanical system by introducing the

positions of the ripple troughs xn(t) as basic variables, such that λn = xn+1 − xn. Then the dynamics (1) becomes

dxn

dt
= − ∂V

∂xn
, (3)

3Note that the dynamics (1) is invariant under shifts f → f +const. In general, λmax is therefore determined by the condition
f(λmax) = f(0).
4When all ripples are in the stable regime, (1) describes a diffusive evolution towards a completely homogeneous state.
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where V is a sum of repulsive pair potentials acting between the troughs,

V =
∑

n

v(xn+1 − xn) = −
∑

n

∫ xn+1−xn

0

dλ f(λ). (4)

This is supplemented by the elimination rule, which corresponds in the particle picture to a coalescence process5.
Equation (3) suggests that the dynamics is driven towards minimizing V . It is then natural to surmise that the

final state is determined by the minimum of V under the constraint of fixed total length L. Since the final state is
clearly homogeneous, the quantity to be minimized is

Vhom(λ) = N

∫ λ

0

dλ′ f(λ′) =
L

λ

∫ λ

0

dλ′ f(λ′). (5)

This leads to the prediction that λeq = λ∗, where λ∗ is the solution of

∫ λ∗

0

dλ f(λ) = λ∗f(λ∗). (6)

This is of course the analytic form of the Maxwell construction, as it would be applied to the chemical potential in a
coexistence region.
The prediction (6) has several desirable properties. First, it is manifestly independent of the initial condition.

Second, it guarantess that λ∗ is located in the stable region, i.e. λc < λ∗ < λmax. Third, it is invariant under
multiplication of f by an arbitrary factor6. Nevertheless it is wrong: Comparison with simulations shows that λ∗ > λeq

always. Table 1 contains some typical results obtained using a family of piecewise linear interaction functions,

f(λ) =

{

λ/λc : λ < λc

(λmax − λ)/(λmax − λc) : λ ≥ λc.
(7)

In this case

λ∗/λc =
√

λmax/λc. (8)

The two wavelengths λ∗ and λeq appear to become equal, in the sense that (λ∗ −λc)/(λeq−λc) → 1, when the stable
branch of the transfer function becomes very steep, i.e. when λmax − λc ≪ λc. On the other hand, when the stable
branch is shallow, the prediction λeq = λ∗ fails completely. This can be seen by considering the extreme case of an
interaction function that remains constant for λ > λc, i.e., (7) with λmax/λc = ∞. Then we find numerically that the
final wavelength is λeq ≈ 1.61 λc, while clearly λ∗ = ∞.

TABLE I. Comparison of the wavelength λ∗ predicted by (6) with the equilibrium wavelength λeq obtained in numerical
simulations of the model. The simulation results were averaged over 100 runs using 1000 initial ripples with lengths uniformly
distributed in [0.5,1].

λmax/λc 1.1 1.25 1.5 2 4 6 8 ∞

λ∗/λc 1.0488 1.118 1.225 1.414 2 2.449 2.828 ∞

λeq/λc 1.0477 1.1105 1.196 1.307 1.461 1.516 1.536 1.607

An obvious interpretation of the finding λeq < λ∗ is that the deterministic, overdamped dynamics (3) gets stuck in
a metastable state before reaching the configuration of minimal “energy” V . This suggests that it should be possible
to increase the final wavelength by either making the dynamics less damped, or by introducing noise. The first
modification implies that the trough “particles” are supplied with a mass and a momentum variable along the lines of
[8]. Preliminary simulations show that this does indeed increase the final wavelength, but not sufficiently to reach λ∗.
A noisy version of the model has been described in [6]. Noise also increases the final wavelength, however in addition
it introduces a new coarsening mechanism involving rare fluctuations [9], which in principle drives the wavelength
towards λmax, as long as ripple creation is not included.

5Related particle systems have been considered in [8].
6This is required because such a multiplication only affects the time scale of evolution and should not change the final state.
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IV. FRONT PROPAGATION

We now consider a perfectly ordered, homogeneous, unstable initial condition, λn ≡ λ(i) < λc for all n, which
is destabilized by a local perturbation, e.g. by making a single ripple shorter or longer. Then two fronts emanate
from the perturbed region which propagate into the unstable state and leave in their wake a stable homogeneous
configuration at a new wavelength λ(f) > λc (Figure 2). The elimination of ripples occurs in the vicinity of the fronts.
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FIG. 2. Front propagation for a parabolic interaction function f(λ) = 2λ − λ2 with initial wavelength λ(i) = 1/2 and final
wavelength λ(f) = 1. The figure shows the ripple wavelength λn as a function of the scaled ripple number n/N (note that N
decreases with time).

Since the period-2 mode (q = π) is the most unstable according to (2), its growth controls the propagation of
the fronts. Following the standard theory of front propagation into unstable states [10], we write the propagating
perturbation as a traveling wave with an exponential tail,

ǫn(t) = (−1)n exp[−α(n− ct)], (9)

where c is the propagation speed and α the decay constant. Inserting this into the linearization of (1) we find the
relation

c(α) =
2f ′(λ(i))

α
(1 + cosh(α)) (10)

between c and α. Localized initial conditions usually propagate at the “marginal stability” speed c∗ corresponding to
the minimum of (10) [10], and hence we expect that the front velocity is given by c∗ ≈ 4.4668 f ′(λ(i)). This prediction
is well confirmed by numerical simulations.
We next turn to the relationship between the initial and final wavelengths. In stark contrast to the situation

discussed in Section 3, here the final selected wavelength depends on the initial state in a surprisingly complex manner
(Figure 3). The most prominent feature in the graph is a straight line of slope 2 which extends from λc/2 = 0.5 to
λmax/2 = 0.75. In this regime the wavelength selection process is very simple. The growth of the period-2 mode near
the front implies that every second ripple is eliminated, hence the wavelength doubles. When λ(i) > λc/2, this is
sufficient to bring the ripples into the stable band. We therefore conclude that

λ(f) = 2λ(i) for λc/2 < λ(i) < λmax/2. (11)
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FIG. 3. Final wavelength as a function of initial wavelength for the piecewise linear interaction function (7) with
λmax/λc = 3/2. For each value of λ(i) a system of initially 200 ripples was simulated until all ripples reached the stable
regime. All wavelengths are measured in units of λc

When λ(i) < λc/2, the ripples are still unstable after the doubling of the wavelength. The simplest scenario for
the further evolution is that the new state again becomes unstable with respect to the period-2 mode, so that the
wavelength doubles once more. Indeed a segment with slope 4 can be detected in Figure 3, which starts near λc/4. For
smaller initial wavelengths this scenario breaks down because the accumulation of exponentially growing perturbations
prevents the intermediate homogeneous states to become established. We have not attempted any further analysis of
the complicated behavior seen in Figure 3 for λ(i) < λc/4.
A different kind of complication arises when λ(i) > λmax/2. In this case the growth of the period-2 mode terminates

before the smaller ripples have reached zero length, because the system gets temporarily trapped in a stationary

period-2 state with alternating ripple lengths λA > λc and λB < λc (Figure 4). It is possible to prove that such a
state, which has to satisfy the constraints

f(λA) = f(λB), (λA + λB)/2 = λ(i) (12)

always exists when λmax < 2λc and λ(i) > λmax/2. Indeed, consider the function

F (λA) = f(λA)− f(λB) = f(λA)− f(2λ(i) − λA). (13)

This function vanishes at λA = λB = λ(i), where its slope F ′(λ(i)) = 2f ′(λ(i)) > 0. Furthermore F is odd under
reflection around λA = λ(i), and F (λmax) = −f(2λ(i) − λmax) < 0, because 2λ(i) − λmax > 0. It then follows by
continuity that F has to possess two additional zeros, corresponding to a solution of (12) with λA > λB . It also
follows that

f ′(λA) + f ′(λB) < 0 (14)

which is the condition for stability within the space of period-2 configurations.

5
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FIG. 4. Front propagation for λ(i) > λmax/2. The figure shows a system of initial 500 ripples at time t = 50. The interaction
function was piecewise linear with λmax/λc = 3/2. Note the period-2 state appearing between the front and the homogeneous
final state. Here λ(i) = 0.9 λc and λ(f) = 1.2 λc = 4/3 λ(i).

A stability analysis of the stationary period-2 state yields the linear growth rate

ω(q) = f ′(λA) + f ′(λB) +
√

(f ′(λA)− f ′(λB))2 + 4f ′(λA)f ′(λB) cos2 q. (15)

Since f ′(λA)f
′(λB) < 0, the growth rate is maximal at q = π/2, and it vanishes at q = 0 and q = π. We conclude

that the stationary period-2 solution is most unstable with respect to perturbations of period 4. In effect, this implies
that one out of four ripples is eliminated, and hence λ(f)/λ(i) = 4/3. This explains the region of slope 4/3 in Figure
3 starting around λ(i) ≈ 0.8. Other rational ratios can (and do) appear in a similar manner.

V. CONTINUUM EQUATIONS FOR VORTEX RIPPLES?

The model (1) was proposed to describe the stability and evolution of fully developed ripple patterns, but it does not
address the question of how these patterns emerge from the flat bed. In part, this reflects the fact that the separation
vortices appear only once the pattern has reached a certain amplitude, so a different mechanism must control the
initial instability [11]. On the other hand, a theoretical description that encompasses the transient evolution from
the flat bed as well as the fully developed ripple pattern would be highly desirable, in particular for the analysis of
two-dimensional systems [4]. In this section we suggest that such a comprehensive description may be difficult to
achieve.
For the related problem of wind-driven (aeolian) sand ripples, a description in terms of partial differential equations

for the (one-dimensional) continuous profile h(x, t) of the sand surface has been developed [12]. Let us collect the
properties that such an equation should have for the case of vortex ripples under water. (i) Since the pattern does
not depend on the thickness of the water layer, the dynamics should be invariant under constant shifts of the height,
h → h + const. (ii) The oscillatory driving implies symmetry under x → −x. (iii) The slope of the ripples should
saturate around the angle of repose, and (iv) the pattern should not be invariant under h → −h (closer inspection
of profiles like that in Figure 1 show that the peaks are cusp-like while the troughs are rounded, see [3]). Restricting
ourselves to terms which are polynomial in the derivatives of h, the simplest equation satisfying these requirements is

ht = −hxx − hxxxx + (hx)
3
x − b(hx)

2
xx, (16)

where subscripts refer to partial derivatives and b is a positive constant. It is easy to see that the flat bed solution of
(16) is unstable, with the fastest growing mode (corresponding to the initial pattern) occurring at wavelength 2π

√
2.

The third term on the right hand side leads to a selected slope of ±1, while the last term sharpens the peaks and
rounds off the troughs of the ripples.
A detailed study of (16) has been carried out by Politi [13], who shows that the wavelength of the pattern coarsens

indefinitely as ln t. This conclusion appears to apply generally to equations of the same general form with polynomial
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terms [12]. Patterns which do not coarsen can be obtained only at the expense of introducing unbounded growth of
the slope, and hence of the amplitude, of the pattern [14]. A class of equations which contains both types of behavior
is

ht = −
{

hx

1 + h2
x

+
1

(1 + h2
x)

ν

[

hxx

(1 + h2
x)

3/2

]

x

}

x

, (17)

which arises in the context of meandering instabilities of stepped crystal surfaces [15]. The exponent ν is characteristic
of the relaxation mechanism of the steps, the cases of immediate physical relevance corresponding to ν = 1 and ν = 1/2
[15]. The analysis of this equation shows that unbounded amplitude growth occurs for −1/2 < ν < 3/2, and coarsening
for ν < −1/2.
We therefore conjecture that local height equations generally cannot describe the emergence and evolution of

patterns of constant wavelength and amplitude. A general proof, or the discovery of a counterexample, would be
of considerable interest. Meanwhile, we believe that models like (1) can play a useful part in the analysis of such
patterns.
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