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We analyze how difficult it is to synchronize to a periodic sequence whose structure is known,
when an observer is initially unaware of the sequence’s phase. We examine the transient information
T, a recently introduced information-theoretic quantity that measures the uncertainty an observer
experiences while synchronizing to a sequence. We also consider the synchronization time τ , which
is the average number of measurements required to infer the phase of a periodic signal. We calculate
T and τ for all periodic sequences up to and including period 23. We show which sequences
of a given period have the maximum and minimum possible T and τ values, develop analytic
expressions for the extreme values, and show that in these cases the transient information is the
product of the total phase information and the synchronization time. Despite the latter result, our
analyses demonstrate that the transient information and synchronization time capture different and
complementary structural properties of individual periodic sequences — properties, moreover, that
are distinct from source entropy rate and mutual information measures, such as the excess entropy.

PACS: 02.50.Ey 02.50.Ga 05.45.-a 05.45.Tp 89.75.Kd;
Santa Fe Institute Working Paper 02-08-043

I. INTRODUCTION

Imagine you are about to begin observing a sequence
of events. You know the sequence is periodic; you even
know the particular pattern that will repeat. However,
you do not know what phase the sequence is in. How
many observations, on average, would you have to make
before you know with certainty the sequence’s phase?
And, as you obtain this certainty, how uncertain are you
about the phase? Will the answers to these questions
be the same for all sequences of a given period or are
there differences between such sequences? What struc-
tural properties of a sequence determine the difficulty of
synchronization? Here, we answer these questions.

A natural place to begin is with information theory,
since it has long been used to analyze the statistical prop-
erties of sequences that arise in a variety of settings, in-
cluding dynamical systems, time-series analysis, statisti-
cal mechanics, signal processing, and cryptography [1,2].
One of the central quantities in these analyses is the en-

tropy rate hµ, the long-time measure of unpredictabil-
ity of sequences produced by an information source. Al-
though useful and important for quantifying randomness,
hµ does not capture a sequence’s structural properties:
its correlation, memory, or statistical complexity. For-
tunately, today there are scores of measures of these lat-
ter properties. For example, on the information theoretic
side, an oft-used measure of memory is the excess entropy

E — the time-averaged, “all-point” mutual information

between a sequence’s past and future [3–7].

For any sequence of period P , it is well known that
the entropy rate hµ vanishes and the excess entropy
E = log2 P , since a periodic sequence is asymptoti-
cally predictable and since log2 P bits of information are
needed to store in which of the P possible phases a sym-
bol in the sequence is. Thus, all periodic sequences of
the same period have the same entropy rate and excess
entropy, and so these quantities are unable to capture
structural differences between distinct sequences of the
same period. In particular, hµ and E cannot help an-
swer the questions posed above.

We turn instead to a recently introduced mea-
sure, the transient information T [5,8], which captures
information-theoretic differences between sequences of a
given period. We will also make use of the synchroniza-
tion time τ , defined as the average number of observa-
tions needed to synchronize to a periodic information
source. We shall see that there are indeed significant
differences in the synchronization properties of periodic
sequences. Furthermore, while T and τ are related for
extreme cases — minimum and maximum T and τ se-
quences — there is a wide range of T and τ values for
periodic sequences of the same period.

In the following section we review information sources,
entropy rate, and excess entropy. In Sec. III we define
T and τ more carefully. After a brief discussion of com-
binatorics and symmetry types of periodic sequences in
Sec. IV, in Sec. V we discuss methods used to calculate
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T and τ . In Sec. VI we present the results of exhaus-
tively calculating T and τ up to period 23. In Secs. VII
and VIII, we investigate these results, developing ana-
lytic expressions for the minimum and maximum T and
τ values of a given period, exploring relationships and
bounds between the two synchronization measures. Fi-
nally, in Sec. IX we summarize and interpret the results,
pointing out several applications to coordination in mul-
tiagent systems.

II. ENTROPY RATE AND EXCESS ENTROPY

A. Information Sources

We shall be concerned with a one-dimensional infinite
sequence of variables:

↔

S ≡ . . . S−2S−1S0S1 . . . . (1)

Here, the St’s are random variables that range over a
finite set A of alphabet symbols. In general, A =
{0, 1, . . . , k − 1}, although in the following, we will re-
strict ourselves to binary sequences. We denote a block
or word of L consecutive variables by SL ≡ S1 . . . SL.
We follow the convention that a capital letter refers to a
random variable, while a lowercase letter denotes a par-
ticular value of that variable. Thus, sL = s0s1 · · · sL−1,
denotes a particular symbol block of length L.

We assume that the underlying information source is
described by a shift-invariant measure µ on infinite se-
quences · · · s−2s−1s0s1s2 · · · ; st ∈ A [9]. The measure
µ induces a family of distributions, {Pr(st+1, . . . , st+L) :
st ∈ A}, where Pr(st) denotes the probability that at
time t the random variable St takes on the particular
value st ∈ A and Pr(st+1, . . . , st+L) denotes the joint
probability over blocks of L consecutive symbols. We as-
sume that the source is stationary; Pr(st+1, . . . , st+L) =
Pr(s1, . . . , sL).

We are interested in periodic sequences; a sequence
is periodic of period P if si = si+P for all i. The
prime period of the sequence is the smallest such P .
We can specify a periodic sequence by giving the small-
est word — the prime word — that is exactly repeated.
The prime word is aperiodic, necessarily. For example,
. . . 1100110011001100 . . . is period 8 (and period 16 and
so on), but has prime word 1100 and prime period 4.

B. Entropy Growth and Entropy Rate

Here, we give a brief review of the information-
theoretic description of sequences, concentrating on those
that are periodic. For more detail about information-
theoretic measures of uncertainty and structure in the
context of general one-dimensional random sequences,
see, e.g., Refs. [5,10,11] and references therein.

The total Shannon entropy of length-L blocks is defined
by:

H(L) ≡ −
∑

sL∈AL

Pr(sL)log2Pr(sL) , (2)

where L > 0. The sum is understood to run over all pos-
sible blocks of L consecutive symbols. The units of H(L)
are bits. The entropy H(L) measures the average uncer-
tainty in identifying one sequence in the set of length-L
sequences. Equivalently, H(L) tells us how many yes-no
questions, on average, are needed to determine the value
of SL. Another way to state this is that H(L) sets a lower
bound on the size of the code, measured in bits, needed to
encode successive outcomes of the random variable SL.
For more on this coding interpretation of the Shannon
entropy, see, e.g., Ref. [2].

The general behavior of H(L) as a function of L for
periodic information sources is shown schematically in
Fig. 1. Note that we define H(0) ≡ 0.

E
H

(L
)

L

H(L)
E + hµL

T

0
0

FIG. 1. Total Shannon entropy growth: A schematic plot
of H(L) versus L. The entropy H(L) of L-blocks increases
monotonically and approaches the asymptote E+hµL, where
E is the excess entropy and hµ is the source entropy rate. The
shaded area is the transient information T.

The entropy rate hµ is the rate of increase with respect
to L of the total Shannon entropy in the large-L limit:

hµ ≡ lim
L→∞

H(L)

L
, (3)

where µ denotes the measure over infinite sequences that
induces the L-block joint distribution Pr(SL); the units
are bits per symbol. One can also define a finite-L ap-
proximation to hµ,

hµ(L) = H(L) − H(L−1) , (4)

= H [SL|SL−1SL−2 . . . S0] , (5)

where H [X |Y ] is the entropy of the random variable
X conditioned on the random variable Y : H [X |Y ] ≡
−

∑

x,y Pr(x, y) log2 Pr(x|y). One can then show [2] that
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hµ = lim
L→∞

hµ(L) . (6)

Note that Eq. (4) shows that hµ(L) may be viewed as
the slope of H(L). For more on this point of view, see
Ref. [5].

Eq. (6) gives us another interpretation of hµ. The en-
tropy rate quantifies the irreducible randomness or un-
predictability of the sequences; hµ measures the random-
ness that persists even after the statistics of longer and
longer blocks are taken into account. Since all periodic
sequences are, ultimately, predictable, the entropy rate
for all periodic sequences is hµ = 0. For a period-P se-
quence hµ(P ) = 0 and hµ(L) ≥ 0, for L = 1, 2, . . . , P−1.
This is illustrated in Fig. 2 for three different period-8
sequences; when the slope of H(L) vanishes, hµ(L) = 0.

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6 7 8 9

H
(L

)

L

00010111: T = 6.000

00010101: T = 8.080

00000001: T = 10.69

FIG. 2. Shannon entropy growth curves H(L) for three dif-
ferent period-8 sequences: 00010111, 00010101, and 00000001.

C. Excess Entropy: Apparent Memory

The entropy rate measures the randomness of se-
quences. A complementary quantity is the excess entropy
E, which measures the deviations of finite-L estimates of
hµ from its asymptotic value:

E ≡

∞
∑

L=1

[hµ(L) − hµ] , (7)

The units of E are bits. Using this definition, one can
show that the excess entropy is the subextensive part of
H(L) (see, e.g., [4,5,11–13,7]); that is,

E = lim
L→∞

[H(L) − hµL] . (8)

This establishes a geometric interpretation for E, as
shown in Fig. 1; it is the y-intercept of the line to
which H(L) asymptotes. That is, when E is finite, H(L)
asymptotes to E + hµL.

Another way to understand excess entropy is through
its expression as a mutual information: the mutual infor-
mation between the past and future semi-infinite halves
of the chain of random variables:

E = lim
L→∞

I[S−L+1, S−L+2, · · ·S0; S1S2 · · ·SL] , (9)

when the limit exists [5,7]. Eq. (9) says that E measures
the amount of historical information stored in the present
that is communicated to the future.

Our focus here is on periodic sequences, for which it is
easy to show from one or another of the above definitions
that

E = log2P . (10)

That is, the excess entropy is the total phase informa-
tion stored in the periodic source. As noted above, the
entropy of a random variable gives the average number
of yes-no questions (i.e., bits), needed to determine the
outcome of the variable. Since the observer starts out
equally ignorant of the initial phase, it follows that E is
a lower bound on the amount of information (in bits) an
observer must extract in order to know in which phase
the source is — that is, in order for it to be synchronized
to the source.

The entropy growth curves H(L) for three different
period-8 sequences are shown in Fig. 2. Note that all
curves asymptote to the same line, E+hµL. Since hµ = 0
(periodic sequences) and E = log2 P = log2 8 = 3, the
H(L) curves asymptote to the horizontal line H(L) = 3
bits, when L ≥ 8.

Despite the fact that these three period-8 sequences
have the same hµ and E, Fig. 2 shows that their entropy
growth curves H(L) are not the same; for example, they
reach the linear asymptote at different L’s. Do all period-
8 curves have different H(L) behaviors? And do these
different H(L) behaviors matter, or do hµ and E suffice
to characterize periodic sequences?

III. MEASURES OF SYNCHRONIZATION

A. Transient Information

To address these questions, we consider the transient

information T, which was introduced by us in Ref. [5]
and is defined by summing the deviations of H(L) from
its linear asymptote:

T ≡
∞
∑

L=0

[E + hµL − H(L)] . (11)

Note that the units of T are bits × symbols and that
T ≥ E. The transient information is the shaded area in
Fig. 1. We refer to T as transient, since, unlike hµ and E,
it is dominated by nonasymptotic quantities: how H(L)
behaves before it reaches the linear scaling form E+hµL.
By inspection, one sees that the three period-8 sequences
in Fig. 2 all have different T values.
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As noted above, for finite-E processes H(L) scales as
E + hµL for large L [5]. When this scaling form is at-
tained, we say that the observer is synchronized to the
source. In other words, when

T(L) ≡ E + hµL − H(L) = 0 , (12)

we say the observer is synchronized at length-L se-
quences. The quantity T(L) provides a measure of the
departure from synchronization. Note that T(L) is non-
negative. Looking at Eq. (11), we see that the transient
information T may be written as a sum of the T(L)’s:

T =
∞
∑

L=0

T(L) . (13)

To give the transient information a more precise in-
terpretation, let us consider in more detail the synchro-
nization scenario we have in mind. An observer begins
making measurements of a sequence, seeing one symbol
at a time. The observer knows the periodic sequence it
is about to start seeing, but it doesn’t know the phase.
That is, the observer knows the period and the prime
word that will be repeated. The task for the observer
is to make measurements and determine the sequence’s
phase. Exact prediction is possible from this point on-
wards, though not before. How uncertain is the observer
during this synchronization process?

To answer this question, we must introduce some addi-
tional notation. Before the observer is synchronized, its
knowledge is characterized by a distribution over the P
possible phases of the periodic sequence. Equivalently,
the sequence’s phases may be viewed as the periodic
source’s internal states. Let ϕ denote a particular phase,
and let Φ denote the set of all phases. Clearly, |Φ| = P .
Next, let Pr(ϕ|sL) denote the probability, as inferred by
the observer, that the sequence is in phase ϕ, given that
it has just seen the particular sequence of symbols sL.
The entropy of the distribution of ϕ measures the ob-
server’s average uncertainty of the phase Φ. Averaging
this uncertainty over the possible length-L observations,
we obtain the average state-uncertainty:

H(L) ≡ −
∑

sL

Pr(sL)
∑

ϕ∈Φ

Pr(ϕ|sL) log2 Pr(ϕ|sL) . (14)

The quantity H(L) can be used as a criterion for synchro-
nization. The observer is synchronized to the sequence
when H(L) = 0 — that is, when it is completely certain
about the phase, or internal state, ϕ ∈ Φ of the source
generating the sequence. And so, when the condition in
Eq. (12) is met, we see that H(L) = 0, and the uncer-
tainty associated with the next observation is 0.

However, while the observer is still unsynchronized
H(L) > 0. The average total uncertainty experienced
by the observer during the synchronization process is the
total synchronization information S:

S ≡

P
∑

L=1

H(L) . (15)

The synchronization information measures the total un-
certainty H(L) experienced by an observer during syn-
chronization. For the periodic sequences under consider-
ation here, it turns out that

S = T . (16)

That is, the transient information T is equal to the total
synchronization information S.

Eq. (16) is a special case of a theorem recently proved
by us in Ref. [5] and discussed further in Ref. [8]. Here,
we briefly sketch the main argument behind Eq. (16). At
L = 0, no measurements have been made and the ob-
server posits that each phase is equally likely. The state-
uncertainty is thus log2 P = E. After L observations
have been made, the observer has gained, on average,
H(L) bits of information about the phase of the process.
As a result, the average state-uncertainty H(L) is now
E − H(L). Plugging this last observation into Eq. (15),
Eq. (16) follows from the definition of T, Eq. (11).

As a result of Eq. (16), the transient information T

provides a direct measure of how difficult or confusing
it is to synchronize to a periodic sequence. If a periodic
sequence has a large T, then on average an observer will
be highly uncertain about its phase during the synchro-
nization process. The transient information measures a
structural property of a sequence — a property captured
neither by the entropy rate nor by the excess entropy. If
the observer is in a position where it must take immediate
action, it does not have the option of waiting for full syn-
chronization. In this circumstance, the synchronization
information S provides an information-theoretic average-
case measure of the error incurred by the observer during
the synchronization process.

B. Synchronization Time

In addition to measuring the total uncertainty expe-
rienced during synchronization, we can ask a related
question: On average, how many measurements must be
made before the observer is certain in which state the
source is? We call the number τ of measurements, av-
eraged over the P possible starting phases, the synchro-

nization time.
For example, consider the periodic sequence (0001)∞.

There are four possible phases in which one might be-
gin to observe this sequence. If the first symbols parsed
are 1− 0− 0− 0, then the observer is synchronized after
the first observation (a 1). If the observer initially sees
0 − 1 − 0 − 0, it is synchronized after two symbols. If
the observer sees either 0 − 0 − 1 − 0 or 0 − 0 − 0 − 1, it
is synchronized after three measurements. Each of these
initial measurement sequences is equally likely. Thus, on
average, it will take

4



τ =
1 + 2 + 3 + 3

4
= 2.25 (17)

measurements before the observer is synchronized to
(0001)∞.

Below, we conduct a survey of the transient informa-
tion T and synchronization time τ of periodic sequences.
Although there is an overall scaling between them, per-
haps somewhat surprisingly, we shall see that T and τ
capture fundamentally different properties of a sequence.
We shall also see that within different sequences of a given
period there are wide variations of T and τ . First, how-
ever, we pause to consider some combinatorial properties
and symmetry classes of periodic sequences.

IV. ENTROPIC SYMMETRY TYPES AND

COMBINATORICS OF PERIODIC SEQUENCES

How many periodic sequences of a given prime period
are there? Aperiodic length-P words that are related
by an application of a cyclic permutation group CP give
the same periodic sequence. Thus, for our purposes —
considering infinitely repeated periodic sequences — two
length-P words related via the group operation CP are
equivalent; they yield identical infinite sequences. For
example, the aperiodic words 001, 010, and 100 all yield
the same, infinite, period-3 sequence.

However, we are interested in looking for distinct H(L)
versus L behaviors, and this induces another set of equiv-
alences on the period-P sequences. Because H [X ] de-
pends only on the distribution of X , and not on the
values X assumes, the entropy of a random variable is
unchanged under a one-to-one mapping of alphabet sym-
bols [2]. For the binary cases we are interested in here,
this means that the mapping 0 ↔ 1 leaves H(L) un-
changed; for our purposes, the sequence (011)∞ is iden-
tical to (100)∞. In terms of group action, swapping 1
and 0 is the action of the symmetric group S1. So, any
two sequences that are based on binary aperiodic length-
P words related to each other by some combination of S1

and CP will have identical H(L) versus L behavior.
The number L2 of aperiodic binary words inequivalent

under S1 × CP is given by:

L2(P ) =
1

P

∑

d|P,d odd

µ(d)2P/d . (18)

The sum runs over all odd positive divisors d of n, and
µ(m) is the Möbius function: µ(m) = 0, if m is the prod-
uct of nondistinct primes; +1, if m is the product of an
even number of distinct primes; and −1, otherwise. This
result was first obtained by Fine [14] in 1958 and simpli-
fied a few years later by Gilbert and Riordan [15]. These
words are also related to a version of the famous necklace
problem from combinatorics: the words inequivalent un-
der S1 ×CP are exactly those 2-color necklace sequences
with prime period P where interchanging bead color is
allowed, but turning the necklace over is not.

These aperiodic words are also related to the so-called
Lyndon words. A Lyndon word is aperiodic and the
lexicographically least among its rotations. An unla-

beled Lyndon word is aperiodic and lexicographically least
among its rotations and relabelings. Eq. (18), then,
also counts the number of binary unlabeled Lyndon
words. For more discussion, see Ref. [16] and sequence
#A000048 of Ref. [17]. Titsworth [18] has pointed out
that Eq. (18) also gives the number of distinct finite-state
machines needed to produce all periodic binary sequences
of prime period P .

V. METHODS

We calculated the transient information T and syn-
chronization time τ for all distinct periodic sequences
(unlabeled Lyndon words) up to and including period
P = 23. To enumerate all of these words of a given
period, we used the efficient algorithms available at
Ref. [16].

1

1 1

1 1

1 1

1 1

0

0

0

0

0 0

0 0 0

0 0 0

3 2

2 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

FIG. 3. Parse tree for the period-5 sequence with prime
word 00011. Unvisited paths are not shown. The synchroniz-
ing words are shown with bold paths from the start node.

Prime Word T τ

000001 6.97905 3.33333
000011 5.37744 2.83333
000101 5.58496 3.33333
000111 4.83659 2.66667
001011 4.83659 2.66667

TABLE I. The transient information T and synchroniza-
tion time τ of all five distinct period-6 sequences.
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To calculate T and τ for a given length-P word, we
begin by determining the frequency of occurrence of all
its subwords. This is done by parsing the word and its
P − 1 cyclic permutations into a tree, whose paths from
the root to any node are the subwords and each of whose
nodes contain the number of subwords found that lead
to it from the root.

An example is shown in Fig. 3. Consider the sequence
whose prime word is the length-5 word 00011. We start
at the tree root, indicated by the double circle at the top,
and follow the leaves labeled with the appropriate sym-
bol. Each time we cross a node we increment the count
there by one. We repeat this procedure for all 5 cyclic
permutations of 00011.

Once the parse tree is built, T can be easily and ex-
actly calculated. First, the node counts are turned into
probabilities by normalizing — dividing each count by
the period P . Reading across the tree at level ℓ gives
the probability of subwords of length ℓ. In the P = 5
example considered here, Pr(00) = 2/5, Pr(01) = 1/5,
Pr(10) = 1/5, and Pr(11) = 1/5. From these probabil-
ities, the block entropies H(L), and, in turn, T, follow
directly by using Eq. (11) and noting that E = log2 P
and hµ = 0.

Calculating τ is only a bit more involved. After build-
ing the parse tree, we reparse each cyclic permutation
of the word. As we reparse and proceed down the tree,
we monitor the node counts. For each cyclic permuta-
tion of the prime word, we follow the corresponding path
from the root. When we come to the first node that has a
count of 1, we are synchronized. That is, for the ith cyclic
permutation of the word, the level ℓ at which we first en-
counter a node count of 1 is the synchronization time τi

for that permutation. The average synchronization time
τ is then simply:

τ =
1

P

P−1
∑

i=0

τi . (19)

For the example in Fig. 3, we have

τ =
1

5
(3 + 3 + 2 + 2 + 2) = 2.4 . (20)

As for T, the above method yields an exact value for τ .
For example, in Table I we show the results of calcu-

lating the transient information T and the synchroniza-
tion time τ for all five distinct period-6 sequences. (The
reader may find it helpful to verify these results.)

VI. EMPIRICAL RESULTS

We empirically investigated the behavior of T and τ
by first exhaustively enumerating all distinct periodic se-
quences up to and including period P = 23 and then ex-
actly calculating these two quantities for each using the

methods of the previous section. The results are sum-
marized in Figs. 4, 5, 6, 7, and 8. In Table II we show,
for periods 2 through 23, the number of distinct periodic
sequences, the number of distinct T and τ values, and
the mean, minimum, and maximum T and τ values.

Based on these results, one can make a host of obser-
vations. First, note that T and τ are not the same for
all sequences of a given period. This can be seen in our
period-6 results of Table I, as well as in Figs. 4, 5, and
6. Thus, within a given period, there are many different
synchronization behaviors. As noted before, these differ-
ences are not accounted for by the entropy rate hµ and
the excess entropy E, since E and hµ are the same for all
sequences with the same period.

FIG. 4. Scatter plot of the transient information T for all
distinct periodic sequences as a function of their prime pe-
riod P , up to P = 22. The dashed lines are the maximum
and minimum T values computed analytically; see text. The
solid line gives the estimated average T value at the given
period.

FIG. 5. Scatter plot of the synchronization time τ for all
distinct periodic sequences as a function of their period P , up
to P = 22. The dashed lines are the maximum and minimum
τ values computed analytically; see text. The solid line gives
the estimated average τ value at the given period.
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Period Distinct Distinct 〈T〉 Tmin Tmax Distinct 〈τ 〉 τmin τmax

P Periodic Sequences T Values τ Values

3 1 1 2.25163 2.25163 2.25163 1 1.66667 1.66667 1.66667
4 2 2 3.34436 3.00000 3.68872 2 2.12500 2.00000 2.25000
5 3 3 4.73957 4.07291 5.27291 3 2.80000 2.40000 3.20000
6 5 4 5.52293 4.83659 6.97905 3 2.96667 2.66667 3.33333
7 9 8 6.77183 5.48662 8.78940 8 3.58730 2.85714 4.71429
8 16 13 7.42624 6.00000 10.6907 10 3.72656 3.00000 5.37500
9 28 21 8.27733 6.76598 12.6728 12 4.05556 3.22222 6.22222

10 51 35 8.89152 7.39483 14.7274 22 4.22549 3.40000 6.60000
11 93 53 9.63275 7.94889 16.8480 29 4.50733 3.54545 7.72727
12 170 90 10.0802 8.42155 19.0290 28 4.57157 3.66667 8.41667
13 315 145 10.7162 8.88705 21.2656 49 4.80293 3.76923 9.23077
14 585 261 11.1637 9.29398 23.5540 60 4.89634 3.85714 9.71429
15 1091 484 11.6530 9.66732 25.8906 64 5.03367 3.93333 10.7333
16 2048 610 12.0846 10.0000 28.2725 78 5.13293 4.00000 11.4375
17 3855 1091 12.5298 10.4930 30.6969 104 5.25312 4.11765 12.2353
18 7280 1878 12.9133 10.9359 33.1614 104 5.33134 4.22222 12.7778
19 13797 3205 13.3158 11.3449 35.6640 132 5.43299 4.31579 13.7368
20 26214 5015 13.6772 11.7168 38.2027 143 5.50798 4.40000 14.4500
21 49929 10355 14.0405 12.0774 40.7759 153 5.59134 4.47619 15.2381
22 95325 16031 14.3815 12.4083 43.3818 191 5.66223 4.54545 15.8182
23 182361 27322 14.7179 12.7191 46.0192 207 5.73570 4.60870 16.7391

TABLE II. The number of distinct periodic sequences, the number of distinct T and τ values, and the average, minimum,
and maximum T and τ values as a function of period, up to P = 23.
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FIG. 6. The number of distinct periodic sequences, distinct
T values, and distinct τ values as a function of period P . Note
the logarithmic scale on the vertical axis.

Second, there are words with the same period that have
identical T or identical τ values. This can be seen in
Fig. 6, in which we have plotted the count data shown in
Table II. The number of distinct T and τ values clearly
grows less quickly than the total number of distinct peri-
odic sequences. Note also that the number of distinct T

and τ values grow at different rates. This provides direct
evidence that the transient information and the synchro-
nization time measure different qualities. For example,

in Table I, note that two sequences have the same τ but
different T’s. The converse also occurs, but much less
frequently. There are sequences with the same T but
different τ values, but this does not occur until P = 12.
As can be seen from both Table II and Fig. 6, τ tends
to be substantially more degenerate than T; τ is some-
how a coarser measure of a sequence’s synchronization
properties.

Third, note that for a given period there is a consider-
able range of transient information and synchronization
time values. This can be seen in Figs. 4 and 5, where
the minimum and maximum T and τ values are shown
as dashed lines. This suggests that there are significant
differences in synchronization behaviors among different
sequences with the same period. We will return to the
question of minimum and maximum T and τ sequences
in some detail in Sec. VII.

Another way to view the range of T values is found in
Fig. 7, in which we plot the distribution of T values for
period-16 and period-23 sequences. Note the asymmetry;
most T values are closer to the minimum T than the
maximum T. Similar observations can be made about
the distribution of τ values shown in Fig. 8.
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Finally, note from Fig. 6 and Table II that the num-
ber of distinct τ values is not strictly monotonic with
increasing periodicity. Curiously, the number of distinct
τ values decreases as the period goes from 11 to 12 and
it remains constant in going from P = 5 to P = 6, while
it increases for all other P increases.

VII. MINIMUM, MAXIMUM, AND AVERAGE T

AND τ

Here we develop analytical expressions for the extreme
behaviors of the transient information and the synchro-
nization time, and we determine how these extreme val-
ues grow asymptotically with period. This analysis al-
lows us to derive a number of important conclusions
about which complementary structural features these
quantities capture.

First, some notational preliminaries. For a given pe-
riod, we denote by 〈T〉 the average transient information,

averaged over all distinct prime words. Similarly, Tmin

and Tmax denote the minimum and maximum T values
at a given period, respectively. We use similar notation
for the average, maximum, and minimum τ values.

A. Maximum-T Sequence

A sequence’s transient information T is large if H(L)
approaches its asymptotic value of E = log2 P slowly.
This can be deduced graphically from Figs. 1 and 2.
The H(L) curve that grows most slowly is that in which
the distribution over subwords is maximally nonuniform,
since the entropy of a random variable decreases as its
distribution departs from uniformity. For a given period
P , the sequence with the maximum value of T is one
consisting of P−1 0’s followed by an isolated 1, since this
sequence is the one whose distribution over subwords is
as nonuniform as possible. This behavior is seen in one
of the period-8 sequences shown in Fig. 2.

A direct calculation for the maximal-T sequence yields:

Tmax =
1

P

P
∑

n=2

n log2 n . (21)

To develop a functional form for Tmax we approximate
the sum by an integral. After some work, one obtains,

Tmax ≈
1

ln(16)P

[

2 − P − P 2 + 4 ln(2)

+ P 2 ln(P ) + (1+P )2 ln(1+P )
]

. (22)

For large P , this scales as

Tmax ≈
1

2
P log2P . (23)

The values obtained from Eq. (21) agree with the exact
numerical results shown in Table II. In Fig. 9 we plot the
approximation of Eq. (22) and compare them with our
exact numerical results. As expected, the approximation
is quite good and improves at larger P .

The synchronization time τ for the maximum-T word
can be calculated directly by noticing that one is synchro-
nized as soon as one sees a 1, or after P−1 measurements,
whichever comes first. One obtains, for large P :

τmax T ∼
P − 1

2
, (24)

B. Minimum-T Sequences

The minimum-T word is particularly easy to analyze
when the period is a power of 2. We begin with this spe-
cial case and use it to derive a simple form for Tmin as a
function of the period.
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The sequences with the minimum transient informa-
tion Tmin correspond to those whose H(L) curves rise
most quickly to E. This is achieved by a sequence whose
distribution over subwords, at each subword length, is
most nearly uniform and so gives high entropy: the mea-
surements are most informative about the phase.

When the period P = 2M , where M is an integer, the
distribution over subwords for the Tmin sequence is ex-
actly uniform. Words with this property are known as
de Bruijn sequences. A binary de Bruijn sequence of or-
der k is a binary circular string containing every binary
substring of length k exactly once. For example, the lexi-
cographically smallest order-3 binary de Bruijn sequence
is 00010111. Note that this was one of the period-8 se-
quences whose H(L) curve was plotted in Fig. 2. In that
figure, the rapid convergence of H(L) to log2 8 = 3 is
clearly seen.
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FIG. 9. The minimum, maximum, and average transient
information values plotted as a function of period. The solid
points are our exact results; the dashed lines are the approx-
imations developed in the text: Eq. (22) for Tmax, Eq. (26)
for Tmin, and Eq. (34) for 〈T〉.

Because every subword appears with equal probability,
H(L) = L, until L = log2 P . That is, H(L) converges lin-
early to the excess entropy E = log2 P . In other words,
the source appears to be a fair coin until synchrony is
achieved. At that time, exact predictability becomes pos-
sible. This linear convergence can be seen in Fig. 2. The
transient information is thus given by the area between
H(L) and log2 P ;

Tmin =

log
2

P
∑

n=1

n . (25)

Evaluating the sum, one has:

Tmin ≈
1

2

(

log2
2 P + log2 P

)

. (26)

Equivalently, since E = log2 P , we may write this as:

Tmin ≈
1

2
E (E + 1) . (27)

This result is exact for all P that are a power of 2 and
serves as an excellent lower bound for P ’s that are not.

For periods that are not a power of 2, the minimum-T
words are those for which the distribution over subwords
is as uniform as possible. For example, for P = 10 there
are two prime words with minimum T: 0000101111 and
0001011101. Each has Tmin of 7.39483. Note that for
each word, the distribution over subwords of length 1 is
uniform, while the distribution over words of length 2 is
as uniform as can be, given that there are 10 occurrences
of subwords of length 2; for each, two length-2 subwords
occur with a frequency of 3/10 and two occur with a
frequency of 2/10.

We have obtained an analytic expression for Tmin for
sequences of general period P . The main idea, as stated
above, is to distribute the frequencies of the subwords as
uniformly as possible. How uniform this distribution is
depends on how 2L (the number of subwords of length-L)
divides into the period P . Following this line of reason-
ing, we obtain the following results. Let

np(L) ≡

⌊

P

2L

⌋

(28)

and

Nodd(L) ≡ P mod 2L , (29)

Neven(L) ≡ 2L − Nodd(L) . (30)

Here, ⌊x⌋ denotes the floor of x — the largest integer
smaller than x. Similarly, ⌈x⌉ is the ceiling of x — the
smallest integer larger than x.

The H(L) curve converges to E = log2 P by length L∗,
where

L∗ ≡

⌈

log2 P

2

⌉

+ 1 . (31)

Then, we find that the transient information is given by:

Tmin = (L∗ + 1) log2 P − φ , (32)

where

φ =

L∗

∑

n=1

[

−Nodd

np(L) + 1

n
log2

(

np(L) + 1

n

)

− Neven(L)
np(L)

n
log2

(

np(L)

n

)]

. (33)

Values obtained using Eq. (32) agree with the exact re-
sults of Table II.
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C. Average T

In Fig. 9 we have also plotted 〈T〉, the average value
of the transient information, as a function of the period
P . These average values were also given in Table II. The
average values appear to be well approximated by

〈T〉 =
1

2
log2

2 P + log2 P . (34)

This is an empirical fit. Note that 〈T〉 and Tmin of
Eq. (26) are the same to leading order in P . This is
not surprising, given the asymmetry in the distribution
of T values evident in Fig. 7.

D. Minimum-τ Sequences

For a given period P , we found that the sequences
with the minimum transient information Tmin are the
same as the sequences with the minimum synchroniza-
tion time τmin. As noted above, these sequences are those
for which the distribution of subwords is most nearly uni-
form at each subword length. Using this observation, it is
possible to derive an analytic expression for τmin among
the sequences of period P .

As discussed above when considering the minimum-
T word, if P = 2M , where M is an integer, then the
minimum-τ word is such that all subwords appear with
equiprobability. In particular, each subword of length
log2 P occurs exactly once. Thus, regardless of the phase
in which one begins observing such a sequence, there is
no ambiguity about the phase of the sequence after mak-
ing log2 P observations. For observations shorter than
log2 P , there will always be some uncertainty about the
phase of the process. Thus, the synchronization time is:

τmin = log2 P = E . (35)

This result is exact when P = 2M and is an excellent
approximation for other periods.

As mentioned above, E is the total phase information
stored in the periodic source; it is simply the Shannon en-
tropy of the P possible phases. Recall that the entropy
of a random variable sets a lower bound on the number of
yes-no questions needed, on average, determine the value
of that variable. The synchronization time τ is equivalent
to this average number of yes-no questions — measuring
a binary symbol entails asking a yes-no question of the
source. Eq. (35) thus shows that the periodic word with
the minimum τ saturates the lower bound set by the en-
tropy.

As was the case for Tmin, one can derive an expres-
sion for τmin for periods that are not a power of 2. As
with the minimum-T word, in the minimum-τ word the
distribution over the subwords is as uniform as possible.
In the case where P = 2M + 1, P − 2 phases will syn-
chronize in M observations. The remaining two phases,

though, require an additional observation to synchronize;
an additional symbol must be seen to distinguish between
these two phases. This was the case, for example, for the
period-5 case considered in Fig. 3. Here, P = 5 = 22 + 1
and M = 2. Three of the phases synchronize after two
observations, while two phases synchronize after three
observations.

Generalizing this observation to P = 2M + N , we ob-
tain the following result:

τmin =
1

P
[ 2N(M +1) + (P−2N)M ] , (36)

where

M =

⌊

log2 P

⌋

(37)

and

N = P mod 2M . (38)

Eq. (36) can also be written as [17, seq. A061717]:

τmin =
1

P

⌈

log2 PP

⌉

. (39)

The minimum-τ values given by Eq. (36) agree with the
exact numerical results shown in Table II. For large P ,
Eq. (39) scales as log2 P , in agreement with Eq. (35).

E. Maximum-τ Sequence

Recall that the maximum-T sequence consisted of P−1
0’s followed by one 1. For example, the Tmax sequence is
000000001 for P = 9. However, this is not the maximum-
τ sequence. The sequence 000000001 has an H(L) that
grows very slowly, leading to its large T. However, once
one sees a 1, one is synchronized. Thus, it is possible
for an observer to get lucky, see a 1 after one or two
observations and be synchronized quickly. As a result,
the expected synchronization time for this sequence is
relatively low, only τ = 4.88889.

In contrast, the sequence with the largest synchroniza-
tion time for period 9 is 000010001 and has τ = 6.2222.
This sequence has the maximum τ due the presence of
an additional 1 which prevents an observer from synchro-
nizing after a single observation; this leads to a larger τ .

The maximum-τ word for periods 4-16 are given in
Table III. Note that a maximum-τ word need not be
unique, although we find that it is unique for all periods
examined, except for P = 6.

For P odd, we noticed the maximum-τ word takes on a
particularly simple form: two 1’s separated by (P − 3)/2
zeros. This allows us to determine a simple expression
for τmax in this case. We find:

τmax =
3

4
P −

1

2
−

1

4P
, P odd . (40)
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If the period is even, it is also possible to write down
an expression for τmax. If P is divisible by 4, then

τmax =
3

4
P −

1

2
−

1

P
, P divisible by 4 . (41)

However, if P is divisible by 2, but not by 4, then:

τmax =
3

4
P −

1

2
−

4

P
, P divisible by 2 and not 4 . (42)

Note that, in all cases, to leading order in P , τmax grows
linearly with P :

τmax ∼
3

4
P . (43)

Also, in all cases the preceding results agree with the ex-
act values obtained by enumeration and shown in Tables
II and III. Eqs. (40) through (42) were obtained by not-
ing various regularities in the enumeration data and not
via a first-principles calculation of the subword statistics.

It is also possible to calculate the transient information
T for the word that maximizes τ for the case in which P
is odd. Recall that the τmax word in this case consisted
of two 1’s separated by (P − 3)/2 zeros. A brute force,
direct counting approach yields, for large P :

Tmax τ ∼
1

4
PE +

P

2
. (44)
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FIG. 10. The minimum, maximum, and average synchro-
nization time plotted as a function of period. The solid points
are the exact results from the enumeration; the dashed lines
are the approximations developed in the text. The approx-
imation for τmax is that of Eq. (40), which is exact for odd
periods. The approximation for τmin is that of Eq. (35), which
is exact for periods that are a power of 2. The approximation
for 〈T〉 is the empirical fit of Eq. (45).

F. Average Synchronization Time 〈τ 〉

Figure 10 also shows 〈τ〉, the average synchronization
time at a given period, as a function of the period. The
dashed line in this figure is an empirical fit:

〈τ〉 ≈
5

4
log2 P . (45)

As was the case with the transient information, the aver-
age and minimum synchronization times appear to grow
asymptotically at the same rate.

VIII. RELATIONSHIPS BETWEEN τ AND T

Throughout the foregoing we have argued that there
are important structural differences between distinct pe-
riodic sequences at a given period. Moreover, the struc-
tural properties captured T and τ , though both related to
synchronization, can be different. Perhaps the differences
are not surprising. Based on their definitions these quan-
tities have different interpretations: T measures the total
uncertainty experienced while synchronizing; τ measures
the expected number of observations needed in order to
synchronize. To clarify the differences and similarities,
in this section we analyze more directly the relationship
between T and τ . We shall see that, while there are
relationships between T and τ for the extremal synchro-
nization behaviors, there is a fairly wide range of T and τ
combinations possible among different words of the same
period.

Period τmax τmax word

4 2.25 0001
5 3.2 00101
6 3.3333 000101, 000001
7 4.71429 0001001
8 5.375 00100101
9 6.222 000010001
10 6.6 0001001001
11 7.72727 00000100001
12 8.41667 001010010101
13 9.23077 0000001000001
14 9.71429 00001000010001
15 10.7333 000000010000001
16 11.4375 0010101001010101

TABLE III. Maximum synchronization-time words and
τmax values as a function of period P .

Function Minimum Maximum

T 1

2
log2

2
P = 1

2
E2 P

2
log

2
P = P

2
E

τ log
2
P = E 3

4
P

TABLE IV. Summary of minimum and maximum T and τ

behaviors expressed as a function of period P and as a func-
tion of the excess entropy E.
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A. Extreme Synchronizations

We start by summarizing the behaviors of the mini-
mum and maximum values of the transient information
T and the synchronization time τ to leading order in the
period P in Table IV. Note the enormous range in T

and τ values. For example, if P = 256, Tmin ≈ 32, while
Tmax ≈ 1024. Similarly, for P = 256, τmin ≈ 8 while
τmax ≈ 192.

Note that for both the minimum and maximum cases,
T and τ are related to each other by:

T = aτE , (46)

where a is a constant that does not depend on the pe-
riod P . For the minimum-(T, τ) case a = 1/2 and for
the maximum case a = 2/3. Recall, however, that the
maximum-T word is not the same as the maximum-τ
word. If one uses Tmax and τmax T from Eq. (24) in
Eq. (46), one finds a = 1. And, if one uses Tmax τ and
τmax, one find a = 1/3.

In all cases, note that the ratio of T to E gives a quan-
tity proportional to τ . This ratio may thus be viewed as
setting a characteristic time for synchronization.

B. Nonextreme Synchronizations

It turns out, however, that these simple relations mask
a wide diversity of synchronization behaviors. Fig. 11, a
scatter plot of T and τ for all period-18 sequences, shows
that the relationship between T and τ for individual se-
quences is quite a bit more complicated. For example,
recall from the previous section that the maximum-T
sequence does not correspond with the maximum-τ se-
quence. In the Fig. 11, the maximum-T value is shown
by a solid triangle and the maximum-τ value by a solid
square. The minimum-T and -τ sequences are identi-
cal, however. This corresponds to the single point in the
figure’s lower left corner.

The wide range of points in the scatter plot of Fig. 11
makes it clear that T and τ do indeed measure differ-
ent properties: T and τ are not simply rescaled versions
of each other. Any simple functional relationship is pre-
cluded by the diffuse scatter of points. Said another way,
if one lists sequences of a given period in order of in-
creasing T, this order will not be the same as listing the
sequences in order of increasing τ .

Although there is considerable spread evident in
Fig. 11, there are bounds limiting the range of T val-
ues at each τ .

In fact, one can develop an approximate form for the
upper bound in Fig. 11 as follows. Given an arbitrary τ
value and the period P , we are interested in determining
the largest possible T. Call this maximum value Tupper.
Recall that the synchronization time τmax T for the max-
imum T word scales as P/2 for large P , as shown in
Eq. (24). This lets us write

Tmax =
1

2
PE = Eτmax T . (47)

To maximize T for a given τ , assume that the given τ is
that which maximizes T. Then, using the above equa-
tion, we see that Tupper ∝ Eτ . That is, the slope of the
linear upper bound is E. To get the full equation of the
line, we require that it go through the minimum-(τ,T)
point on the lower left hand corner of Fig. 11. Using
Eqs. (26) and (35) for the values of Tmin and τmin, re-
spectively, we then obtain

Tupper ≈ E [τ −
1

2
(E− 1)] . (48)

This upper bound is plotted in Fig. 11, with E =
log218 ≈ 4.1699 . . .. This upper bound is only approxi-
mate because the minimum-(τ,T) values used in its cal-
culation are the asymptotic values for large P . The
bound is also approximate because the relationship in
Eq. (47), which is true for the maximum-T sequence (the
solid triangle in the figure), is assumed to hold for all se-
quences. Despite these approximations, the linear upper
bound appears to fit the data quite well, as shown in
Fig. 11.
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FIG. 11. A scatter plot of T versus τ for all period-18 se-
quences. The upper bound is that of Eq. (48) and the lower
bound is that of Eq. (50). The solid triangle is the (τ,T)
point for the Tmax sequence; the solid square denotes the
τmax sequence.

A similar line of reasoning allows us to form a lower
bound Tlower for the smallest possible T, given a value
of τ and the period P . From Eqs. (27) and (35), for large
P we know that Tmin ≈ 1

2
E2 and τmin ≈ E. This gives

us

Tmin =
1

2
Eτmin . (49)

To minimize T, we assume that the given τ is the min-
imum τ . This tells us that the slope of a linear lower
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bound is 1
2
E. Requiring the line to go through the mini-

mum τ,T point yields

Tlower =
1

2
τ +

1

2
E2 . (50)

This is only an approximate bound, for the same rea-
sons that Tupper is approximate. Eq. (50) is plotted in
Fig. 11. It is indeed a lower bound, but the bound is not
very tight.

IX. DISCUSSION AND CONCLUSION

We began by introducing two measures of how difficult
it is to synchronize to a sequence: the transient infor-
mation T, an information-theoretic measure of the total
uncertainty experienced by an observer during the syn-
chronization process; and the synchronization time τ , the
number of symbols an observer expects to measure be-
fore it is synchronized. We exactly calculated T and τ
for all synchronization-distinct periodic sequences up to
and including period 23. We also derived a handful of an-
alytic expressions and approximations for the minimum,
maximum, and average T and τ as a function of period.

Our results show that there are many structural differ-
ences between periodic sequences, even within sequences
of the same period. These differences are simply not
captured by commonly used information theoretic mea-
sures, such as the entropy rate and the excess entropy.
Are all periodic sequences of a given period the same
from an information-theoretic standpoint? The answer
we gave here is “no”; the recently introduced transient
information, in fact, captures the information-theoretic
differences between sequences of a given period. Are
there structural differences between different periodic se-
quences of the same period? We showed that the answer
is “yes” and argued that the differences are significant.
Are there distinct classes of periodic sequence? Again, we
provided a positive answer, partly by contrasting prop-
erties captured by the transient information with a se-
quence’s group theoretic properties and its synchroniza-
tion time. The latter measures the average number of
observations needed to synchronize to the sequence and,
for a given sequence at a given period, this number was
neither the same nor simply proportional to the transient
information. Nonetheless, at a coarse level, the leading-
order approximations we developed provide simple and
direct links between the three different concepts of phase
memory E, synchronization time τ , and the total uncer-
tainty experienced during synchronization T.

There are a number of areas in which our results may
find application. For one, recognizing the phases of long
periodic sequences of the type investigated here is a key
technology for current and future large-scale satellite-
to-satellite communication systems. These multiagent
systems require extremely accurate and robust satellite-
to-satellite synchronization [19] generally for coordina-
tion in signal processing and navigation and specifically

for estimating inter-satellite signal delays and distances.
Synchronization between two satellites is effected by one
transmitting a very long (P ∼ 1, 000) and known bi-
nary periodic sequence. The receiver then infers the
phase, using a hierarchical correlation algorithm adapted
to account for noise corruption of individual symbols
during transmission. It turns out that the long peri-
odic acquisition sequences are aperiodic sequences formed
from relatively “prime” short aperiodic sequences. In
fact, the synchronization properties of the component
sequences and the composite acquisition sequence deter-
mine bounds on the computational effort and noise ro-
bustness that can be achieved by the receiver’s detection
system. We conjecture that the transient information of
the acquisition sequence is a key parameter determining
these properties.

More generally, these results bear on any situation in
which an intelligent agent needs to learn the phase of
a periodic component in its environment’s behavior; cf.
Ref. [8]. This arises in multiagent systems if an agent
needs to know where it is in a physical environment that
varies periodically in space or time, if it needs to ad-
just its behavior in response to the repetitive behavior of
other agents, or if a collective decision requires coordi-
nated information processing.

Finally, we mention several open questions and di-
rections for future work. First, do these results hold
if the synchronization process is noisy and bits flip oc-
casionally? They should extend relatively directly to a
class of “noisy-periodic” processes in which one or sev-
eral symbols in a periodic sequence are random. How-
ever, can these results be extended to the full class of
finite-memory sources? For a further discussion of the
synchronization scenario in a setting not restricted to pe-
riodic sequences see Refs. [5] and [8].

Second, one may view those sequences at a given pe-
riod with the same T as forming an equivalence class. Re-
call that distinct periodic sequences were defined by the
group Sk ×CP . These are the equivalence classes of zero
entropy rate, finite excess entropy sequences. But what
new algebra or symmetry group of periodic sequences
characterizes those sequences that are equally hard to
synchronize to, as measured by T or τ? If we can charac-
terize identical T or τ sequences in terms of a symmetry
group or algebra, it should be possible to obtain an ana-
lytic expression for the number of distinct T or τ values
at a given period.

Third, as noted above, Titsworth [18] pointed out that
Eq. (18) gives the number of distinct finite-state machines
needed to generate all sequences of a given prime period.
The picture is that starting in a different state of such
a machine gives the cyclic permutations, while exchang-
ing the output symbols gives the permutation 0 ↔ 1.
Titsworth does not comment on the structure of the syn-
chronizing states of these machines. To account for syn-
chronization one wants each finite-state machine to have
a unique start state that corresponds to the condition of
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an observer not knowing in which phase a periodic se-
quence starts. It turns out that ǫ-machines [20–22] cap-
ture this synchronizing structure in their transient states,
and these in turn determine T. Moreover, this is true
for both periodic and random sources. Based on these
observations we conjecture that the number of distinct
T values for a given period is the number of distinct ǫ-
machines needed to recognize all periodic sequences of
a given prime period. That is, we conjecture that those
sequences with the same T value have the same transient
ǫ-machine structure, up to edge relabeling.

In summary, we analyzed what is arguably the sim-
plest class of sequences: zero entropy rate, finite-period
sequences. The sequences represent behaviors that are
often ignored in many fields as being too simple. As we
demonstrated, however, their structural complexity and
synchronization properties are rich and subtle. Within
a given period, there are large differences in structural
complexity, as measured by the transient information T

and the synchronization time τ . Thus, even simple peri-
odic systems are surprisingly complex.
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