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Scaling effects in the Penna ageing model
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Abstract: We have analysed the possibility of scaling the sexual Penna ageing model. As-
suming that the number of genes expressed before the reproduction age grows linearly with the
genome size and that the mutation rate per genome and generation is constant, we have found
that the fraction of defective genes expressed before the minimum reproduction age drops with
the genome size, while the number of defective genes eliminated by the genetic death grows
with genome size. Thus, the evolutionary costs decrease with enlarging the genome. After
rescaling the time scale according to the mutational clock, age distributions of populations do
not depend on the genome size. Nevertheless, enlarging the genome increases the reproduction
potential of populations.
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1 Introduction

The Penna ageing model [1] is the most often used Monte Carlo model for simulating the
dynamics of age-structured populations. Properly rescaled and interpreted simulation results
mimic very well the age distribution of real populations, including the human one [2]. Changing
only one parameter describing the relations between the genotype (phenotype) and the envi-
ronment, it is possible to simulate the changes of the age distribution of human populations
during the last centuries and predict the human life expectancy in the future [3], [4]. One of
the most important problems concerning this model is the question how the genome size in
the model influences the results of simulations. Thus far, the genome size implemented in the
sexual model as two bit-strings, with relatively low number of bits (genes) (from 8 up to around
1000 bits), does not correspond to the real sizes of natural genomes, which in the case of higher
eukaryotes are of the order of dozens of thousands of genes. Our question was if it is possible to
generate in simulations populations with similar age distributions independently of the genome
size. This problem was already addressed by [5] without conclusive results and recently by [6]
whose results suggested roughly the scaling properties of the model. In our analyses we have
tried to show how the parameters describing the simulated populations change depending on
the length of the genomes.

2 Model

In the Penna sexual model each individual is represented by its genome composed of two bit-
strings — each L bits long. Bits (genes) are switched on in pairs, consecutively, one pair during
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each Monte Carlo step. If a bit is set for 0 it means that it is functional, if it is set for 1, it
is defective. Defective genes are recessive — both bits (alleles) in the same locus have to be
defective to determine the defective phenotype. After a defined number of steps, and switching
on the corresponding pairs of bits, the individual reaches the minimum reproduction age R.
An individual of reproductive age produces gametes by crossing over its parental bit-strings
at a randomly chosen point with a declared probability C. One mutation is added to the
recombined strings in one randomly chosen locus. If the bit chosen for mutation is already
set to 1 it stays 1, so there are no reversions. A gamete produced by a female is joined by
another one produced by a male and offspring is born. Each female produces an offspring
with a declared probability during each MC step. The sex of the newborn is randomly chosen
with an equal probability for male and female. If, after switching on bits in consecutive loci,
the declared number T of defective phenotypes is reached — the individual dies because of its
genetic status. To avoid unlimited growth of the population, the Verhulst factor V is introduced:
V = 1 −Nt/Nmax where Nmax — the maximum population size — is often called the capacity
of the environment, and Nt is the current population size. For each zygote a random number
between 0 and 1 is generated and if it is greater than V , the zygote dies. Thus, there could
be three different causes of death: — genetic death caused by reaching the threshold T of the
number of expressed deleterious genes; — random death because of overcrowded environment;
— death at maximum age which corresponds to the total number of bits in the bit-string. In
practice, organisms do not reach the maximum allowable age determined by the length of the
bit-strings. Since random deaths caused by the Verhulst factor could happen only at birth, the
only deaths observed in the evolving populations are genetic deaths caused by surpassing the
declared threshold T . Summing up, there are only a few parameters crucial for the final state
of the population simulated by the Penna model: T - the upper limit of expressed phenotypic
defects, at which an individual dies; R - minimum reproduction age; B - birth rate, the number
of offspring produced by each female at reproduction age at each time step; M - mutation rate,
the number of new mutations introduced into the haploid genome during gamete production;
C - the probability of cross-over between parental haplotypes during gamete production or the
number of cross-overs.

3 Scaling experiments

We have performed three different sets of simulations (parameters shown in Table 1). Note
that the cross-over frequency per bit was constant for all simulations and no dominant loci
were declared.

a) M per bit and R constant.
In the first series, the minimum reproduction age (8) and M = 1 per bit was constant.

Under such parameters, in equilibrium, in the population with the shortest genome (L = 32),
all bits beyond the 15th turned out to be set to 1. It means that the rest of the genome
is dispensable. Since in the simulations with larger genomes the parameters in the first part
(call it the monomer genome) are the same, the results of simulations are also the same. All
genes (and further monomers) expressed after the first 15 loci are dispensable and set for 1. In
fact only the first ”monomer genome” is responsible for the age structure of populations. The
results are trivial. This is not a scaling.
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b) M per bit constant, R proportional to the genome size.
In the second series, where the mutational pressure per bit was constant and the minimum

reproduction age was proportional to the genome size, the mutational pressure exerted on the
genes expressed before reproduction grew and as a result the populations with longer genomes
died out. The conclusion seems to be obvious - species with larger genomes require higher
fidelity of replication.

c) M per genome constant, R proportional to genome size.
In the third series of simulations the mutation rate per genome and generation was constant.

The constant mutational pressure per genome seems to be biologically legitimate. Besides the
conclusions from the second series of simulations, many experiments on living systems [7] as
well as theoretical considerations [8] indicate that the mutational pressure is of the order of one
mutation per genome replication independently of the size of the genome. Thus, the time of the
simulations may be measured in MC steps (each step corresponding to a single bit) or by the
”mutational clock” ticking slower for longer genomes. In this series, the minimum reproduction
age was proportional to L. The most critical was the birthrate which was set for 1 per MC
step. Under such a parameter the reproduction potential was regulated only by Verhulst factor
which controls the population size by killing the newborns, and the value of Verhulst factor
could be considered a real birthrate regulation [9]. In fact, instead of the birthrate parameter,
we have the reproduction potential of the population which is an output of the model rather
than its parameter.

The results of this third series of simulations should be discussed separately for the part of
the genome expressed before the minimum reproduction age (lets call them the housekeeping
genes), and the part expressed after the minimum reproduction age, i.e. during the ageing
period (death genes) [10]. One of the measures of the genetic status of genomes or populations
is the genetic load, the fraction or frequency of defective genes in the genome. From the point
of view of the evolutionary costs, the winning strategy is the strategy which eliminates more
defects by one genetic death. Simulations show that under the constant mutational pressure
per genome, the proportional increase of the number of housekeeping genes with the genome
size is associated with lowering the fraction of defective housekeeping genes (Figs. 1a and 1b),
while the number of defective genes eliminated by a single genetic death grows with the genome
length (Table 2). We would like to stress that the results of simulations with haploid genomes
or with diploid genomes but with declared dominance of defective genes would be different.
In such simulations, the number of defective genes among the housekeeping genes is rather
constant and set by the threshold T parameter.

One of the important features of populations with larger genomes is their higher reproduc-
tion potential. As a result, the populations’ size grows and the limitations set by the Verhulst
factor are stronger. One can expect further amelioration of the genetic pool of populations
with larger genomes if the random death introduced by Verhulst factor is replaced by selection
mechanisms. The results of simulations, shown as a fraction of populations at a given age are
shown in Fig. 2. The age axis co-ordinates correspond to the length of the genomes and the
consecutive genes switched on. Since the numbers of genes in the genomes and the minimum
reproduction age increases, the life span of organisms is increasing on this bit scale, too. The
plots in Fig. 3 show the age distribution of the populations shown in Fig. 2 after normalization
of the y-axis scale. Note, that the time scale in the plots is still in MC steps. Fig. 4 shows the
results of normalization when the mutational clock is the base of the time scale, which means

3



that the x-axis is reduced to the scale corresponding to the frequency of mutations. In this
figure, the plots representing the age structure of all simulations give similar results. One can
conclude that the Penna model has scaling properties when simulations are performed under
specifically related simulation parameters. These results are in better agreement with scaling
than those obtained by [6]. Nevertheless, it is important to note that populations with different
sizes of the genomes and very similar age distributions are characterised by very different other
parameters describing their genetic status as well as reproduction potential. The values of the
parameters describing the populations are shown in Table 2.

4 Conclusions

It is possible to generate similar age distributions of populations with different sizes of genomes
of their individuals. Thus the properties of the model have become independent of the choice
of the Monte Carlo time step. The main feature of populations with larger genomes is the
higher fidelity of their genome replication: it has to be constant per genome rather than per
length unit. Populations with larger genomes are characterised by higher reproduction potential
which results in better filling the available environment. The fractions of defective genes among
the genes indispensable for reaching the reproduction age in larger genomes are lower but
the number of genes eliminated from the genetic pool by one genetic death is higher. The
last property is true only for diploid organisms and the fraction of loci where the defects are
recessive. Haploid, asexually reproducing organisms have to keep the same number of defects
in this part of the genome.

We wish to thank the European project COST-P10 for supporting a visit of S. Cebrat at
Cologne University. A. L. and S.C. were supported by Foundation for Polish Science. D.S.
thanks J.S. Sá Martins for many discussions during his unsuccessful attempts to get scaling.
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L R M B C T
32 8 1 1 0.015 3
64 8 2 1 0.03 3
128 8 4 1 0.06 3
256 8 8 1 0.12 3
512 8 16 1 0.24 3

32 8 1 1 0.015 3
64 16 2 1 0.03 3
128 32 4 1 0.06 3
256 64 8 1 0.12 3
512 128 16 1 0.24 3

32 8 1 1 0.015 3
64 16 1 1 0.03 3
128 32 1 1 0.06 3
256 64 1 1 0.12 3
512 128 1 1 0.24 3

Table 1: Parameters for three series of simulations, where M = mutation rate per genome.

L R maxgen defects V Pop Eliminated
32 8 15 0.387 0.443 5568 6.2
64 16 25 0.283 0.304 6963 9.0
128 32 48 0.198 0.188 8124 12.7
256 64 94 0.139 0.095 9050 17.8
512 128 202 0.093 0.040 9603 23.9

Table 2: Characteristics of the populations for third series. L and R - parameters of simulations;
maxgen - the first locus, where all bits in the genetic pool are set for 1; defects - average fraction
of defective genes in the section of housekeeping genes; V - fraction of surviving newborns (since
the birthrate in all simulations was set to B = 1 per MC step, in fact, Verhulst factor controlled
the reproduction rate); Pop - size of populations in equilibrium, Nmax = 10000; Eliminated -
average number of defects in the housekeeping genes of one genome.
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Figure 1: Part a: Distribution of defective genes in the genomes of different length. Simulation
parameters as shown in Table 1 for third series. X-axis co-ordinates correspond to the number
of bits in the bitstring. Part b: Fraction of defective genes in the sections of housekeeping
genes in genomes of different length (right scale, empty circles); average number of defective
house keeping genes in diploid genomes, genes eliminated by one ”genetic death” (left axis,
filled squares).

6



Figure 2: Age distribution of populations with different length of genomes; y-axis shows
fractions of populations at a given age.

Figure 3: Normalized age distribution of populations. Age scale still in MC steps or numbers
of bits in the bitstrings.
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Figure 4: The same as in Fig. 3 but the age axis is rescaled according to the mutational
pressure (see text for detailed explanation).
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