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We investigate the behavior of a threshold model for the spreading of fads and similar phenomena in society.
The model is giving the fad dynamics and is intended to be confined to an underlying network structure. We
investigate the whole parameter space of the fad dynamics onthree types of network models. The dynamics
we discover is rich and highly dependent on the underlying network structure. For some range of the parameter
space, for all types of substrate networks, there are a greatvariety of sizes and life-lengths of the fads—what one
see in real-world social and economical systems.

I. INTRODUCTION AND DEFINITIONS

A. Background

Society is an epitome of a complex system—at all levels it
is driven by non-equilibrium processes by heterogeneous sets
of agents (or actors, in sociologist speech). One of the more
remarkable phenomena in our everyday world is the presence
of fads. How a certain mp3-player get a substantial part of
market, while other very similar products with advertising
budgets of a similar size, fade into obscurity? The same ques-
tion applies to everything from merchandise to sports, culture
and possibly even science. According to traditional economic
modeling (6) such phenomena are due to “information cas-
cades” in social networks. These can occur since the infor-
mation conveyed by the actions of a person’s friends is more
credible than advertisement (4; 6), thus spreading from one
person to another can be an influential mechanism in a society
with mass-advertisements (6). A popular class of models for
the spreading phenomena of this kind is so called threshold
models (15; 23; 25). These, in general, serve to model social
and economic systems where the agents have a resistance to
change, but do change provided the motivation to do so is big
enough. Threshold models are attractive for physicists: They
are well-suited for the analytical and numerical techniques
used by statistical physicists. Furthermore this kind of models
are by their nature defined on networks, so for the understand-
ing of them one need the theory of network structure (2; 9; 21)
(a currently popular topic among interdisciplinary physicists).
In this report we study an extension of a threshold model pro-
posed by Watts (25) introduced as a model of the dynamics of
youth subcultures in Ref. (15). We perform a more detailed
study of its behavior on several underlying types of networks.
We argue that this model is applicable to a wide range of so-
cial spreading phenomena.

B. Model

Society and markets are non-equilibrium systems—if you
see a twenty year old picture of a downtown street scene, you

would recognize that it is not contemporary; if someone told
you a ten year old mobile phone was brand new, you would
not be fooled. This direction of time in society and markets is
manifested through new things (commodity, music, hobbies,
beliefs, etc.) replacing old. In many cases a person gets her, or
his, motivation to change an old item to a new one by friends,
colleagues or other people in her, or his, social surrounding.
If many neighbors in a person’s social network are doing, or
owning, something new, then that person is likely to follow the
neighbors’ behavior. Another factor in this type of spreading
is that new things are more attractive than old, if this wouldnot
be the case the above mentioned direction of time (manifested
by new inventions replacing old) would simply not exist. But
there is also a resistance to change that slows down the spread-
ing of such habits.—for the sake of convenience or old habits
one may want to stick to the old rather than changing to the
new. In summary, the three main principles of the spread of
fads are:

1. If the fraction of neighbors in the social network of a
person currently adopting a certain fad is big enough,
then that person will adopt that fad too.

2. The attractiveness of a fad decreases with its age.

3. There is a certain resistance to adopting a fad.

(From now on we refer to all habits, merchandise, etc., as
“fads,” regardless if they are large or small.) Too keep
the model simple, we need some further (little less realis-
tic) assumptions—for future studies of this problem these as-
sumptions can be relaxed.

4. The underlying social network is changing much slower
than the dynamics of the fads.—This means that we
can keep the underlying network fixed and run our fad-
simulations on top of it.

5. An individual adopts one fad at a time.—In many cases
we can assume that a fad in one area, say recreational
sports or cell phones, is independent of fads in other
areas, so that the model can be applied separately for
each case.

http://arxiv.org/abs/physics/0505050v1
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To combine points 1 and 2 we assign, for each individuali, a
scoresc(t, i) for every fadc. The score is intended to represent
the attractiveness of the fad to the individual. If the scoreex-
ceeds the thresholdT , then the individual adopts that fad. The
score function we use is:

sc(t, i) =
k
ki

ni(c)
t(c) − t(ci)

t − t(ci)
(1)

wherek = 2M/N is the average degree,ni(c) is the number
of i’s neighbors adopting fadc, ki is i’s degree andt(c) is the
introduction time of fadc andci is i’s fad at timet. The factor
k/ki rescales the score with respect to the degree of the ver-
tex. This enables us to use the same threshold for every vertex
while still fulfilling point 1. The factor [t(c) − t(ci)]/[t − t(ci)]
should be interpreted as the attractiveness of ac being propor-
tional to the age difference betweenc and the vertex’ current
fad ci and inversely proportional to the age ofc.

The dynamic model can thus be defined as:

1. Start with all vertices having the same fad. (The starting
configuration is, in the limit of long run-times, negligi-
ble.) Let this initial fad have age zero att = 0.

2. Go through the vertex set sequentially and, for each ver-
tex i, calculate the score functionsc(t, i).

3. Go through the vertex set sequentially once again. If
sc(t, i) > T changei’s current fad toc. If more than
one fad exceeds the threshold then the one with highest
score is adopted.

4. If the initial fad has vanished, save information about
the fad configuration for statistics.

5. With a probabilityR a new identity is assigned to a ran-
dom vertex. So, on average,NR fads are introduced per
time step.

6. Increase the time counter (i.e. the time is measured in
number of iterations) and go to point 2 unless the simu-
lation is finished.

The only model parameter, apart from the network parameters
and the total time of the simulation, is the thresholdT . We let
the simulation run for 50000 time steps and> 10 network re-
alizations (the precise number chosen to make errorbars suffi-
ciently small—the system is self-averaging so larger networks
needs smaller averages).

C. Networks

We use three types of underlying model networks in our
simulations. The reason for this variety is twofold—first, the
structure of the type of social networks fads spread over is not
exactly known (12); then, by comparing model networks with
well-known structural properties, one can conclude how the
different network structures influence the dynamical proper-
ties of the network. The models we use are the Erdős-Rényi
(ER) random graphs (11), the networked seceder model (12),
and a scale-free network model (SF) model (13).

The Erdős-Rényi model is the simplest, most random, net-
work model. One starts fromN isolated vertices and addM
edges, one by one, such that no multiple edges or self-edges
are formed. These networks are characterized by a very nar-
row distribution of the degrees (Poissonian to be exact), a
vanishing clustering (27) (density of triangles), and no pro-
nounced community structure (22) (i.e. the feature that the
network can be clearly partitioned into subnetworks that are
densely connected within but sparsely interconnected). The
ER model lacks much of the structure (high clustering, pro-
nounced community structure, etc) that social networks are
believed to have (21). On the other hand, its lack of structure
makes it a good reference model to compare results from other
models to. To be well above the threshold for the emergence
of a giant component (which occurs whenM = N) (16) we
set M = 2N. Before applying the dynamics we delete (the
vanishingly small fraction of) vertices and edges outside the
giant component.

Our second network model is the networked seceder model.
It is a model designed to create networks with a strong com-
munity structure by mimicking some features of social net-
working between individuals. For its precise definition we
refer to Ref. (12). The parameters of this model are the net-
work sizesN andM and a parameterp controlling the strength
of community structure—ifp = 1 the network is of ER model
character, ifp = 0 the network has maximal community struc-
ture. Here we useM = 2N and p = 0.1 throughout the pa-
per. Seceder model networks have (just like acquaintance net-
works are believed to have) high clustering, pronounced com-
munity structure, and a positive correlation between degrees
at either side of an edge (20). The degree distribution is expo-
nentially decreasing (we note that some real-world networks
do have an exponential degree distribution (3; 12)).

Both the ER and the seceder model have rather sharply
peaked degree distributions. As mentioned, it is not really
clear what kinds of degree distribution social networks have—
probably different kinds of social networks show different dis-
tributions. Since degree frequently is power-law distributed
we include a model generating networks with a power-law dis-
tribution of degree. The method can in short be described as
a preferential attachment model (5) where the network grows
both by the addition of stubs (a vertex and an edge with one
end attached to the vertex). The model has one parameter,p,
that sets the stub to edge addition ratio. A detailed presenta-
tion of the model can be found in Ref. (13). One starts with a
connected pair of vertices, and, at each time step, with prob-
ability p add a stub to the network. Then, with probability
1 − p, an additional edge is added. Here we usep = 0.5 to
obtain the same density of edges,M = 2N, as for the other
networks. In all steps edges are added preferentially (i.e., the
vertex to attach to is selected with a probability proportional
to the degree of the vertex). The degree distribution at a given
p ∈ (0, 1) and sufficiently large network is a power-law∼ k−γ

with an exponent

γ = 2+
p

2− p
(2)

The generated SF networks have a positive degree-degree cor-
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TABLE I Averages and correlations for the curves in Fig. 2. The
columns display the average largest size of the fads〈S max〉, the av-
erage duration time of the fads〈tdur〉, 〈S maxtdur〉 which has a lower
bound of 1/R = 6400 (attained for the case of rectangular fads ,
i.e. fads with no growth or recess stages of their life-time). We also
measure the Pearson’s correlation coefficientr betweenS max andtdur.
The numbers in parentheses indicate the standard error in the order
of the last decimal place.

type T 〈S max〉 〈tdur〉 〈S maxtdur〉 r(S max, tdur)
ER 0.0 1097(2) 12.53(9) 1.46(1)× 105 0.524(4)

0.5 637(2) 19.54(6) 1.282(4)× 105 0.276(8)
1.0 8.8(3) 2.1(1)× 103 2.7(1)× 105 0.129(7)

sec. 0.0 977(4) 14.4(2) 1.51(1)× 105 0.593(4)
0.5 492(2) 28.3(2) 1.28(4)× 105 0.42(1)
1.0 29(1) 351(6) 2.17(7)× 105 0.32(2)

SF 0.0 1189(1) 10.55(5) 1.34(7)× 104 0.416(5)
0.5 163(5) 43(1) 9.16(7)× 103 0.274(6)
1.0 3.1(1) 2.84(7)× 103 1.57(6)× 104 0.142(7)

relation compared with a randomized version with the same
degree distribution (13), but the effects of correlations are not
further investigated here.

II. SIMULATION RESULTS

A. The time evolution of fads

To get a first picture of the evolution of fads we plot the time
evolution of the size (number of adopters)S in Fig. 1. The ER
and seceder model networks show a rather similar behavior—
for both these systems the effect of the initial network seems
to have disappeared within the intervalt . 200. For the SF
networks the situation is radically different—despite the sim-
ilar threshold value (T = 0.7), the fads only spread to very
limited surrounding. The reason for this is the presence of
hubs in the SF networks (i.e. vertices with a degree far bigger
than the average). The hubs have a larger influence on the oth-
ers, but are also less sensitive to new fads in their surrounding.
In the time evolution depicted in Fig. 1(c) no fads manage to
replace the initial fad of a hub.

B. Distribution of fad sizes and durations

From Fig. 1(a) and (b) we see thatS really can grow to
very big fraction of the system size. But this does not mean
that there, in general, always can be fads of all sizes. Let the
threshold be fixed and finite and consider a network ensemble
with fixed average degree and a monotonically growing aver-
age distance between the vertices (such as the three models
considered—and, indeed, anything else would be rather ex-
treme). Since a fad can spread out from its origin one edge
at a time step, and since new fads can appear everywhere in
the network, there will almost surely be new fads to stop an
old fad before they reach a (big enough) fixed sizeS ′ in the
N → ∞ limit. I.e., the probability thatS > S ′ goes to zero
fast asS ′ → ∞. On the other hand, the large size limit does

not make much sense for social systems. The reason for this
is that social networks are of the small-world type (19; 24)
with extremely short average path lengths. Anything spread-
ing from friends to friends will only need the six degrees of
separation (26) to reach an extension where the finite size of
humanity needs to be accounted for. This means our model
will not have phase where fads can grow without limit (like
Watts’ model has (25)). If “revival” fads (retro fashion and
the like) are treated as new fads, this is not a problem—in
the real world there are simply no fads with unlimited stay-
ing power. Even without fads that can grow boundlessly, the
model can (of course) show a broad spectrum of dynamic be-
havior. To investigate this we start by plotting the probability
distribution function of the maximal number of adopters of
a fad S max, for our three network models and a number of
threshold values (see Fig. 2(a), (b) and (c)). We see that the
functional form ofp(S max) takes drastically different shapes
of the different parameter values. ForT = 0 the curves are
almost non-decreasing for all model networks. As mentioned
above, the monotonically increasingp(S max)-curves are finite-
size effects (we will see this more clearly later). In Fig. 1(d),
(e) and (f) we plot the probability density function oftmax—
the time it takes for a fad to reach its maximum value. For low
threshold valuesp(tmax) has a sharp peak. This observation—
that fads reach their peak after a characteristic time—is a pos-
sible test of the model (unfortunately we do not know of such
a data set). In Fig. 1(g), (h) and (i) we show the probability
density function of the life-times of fads. We note that the gen-
eral shape of thep(tdur) curves is rather similar to thep(tmax)-
curves—the average and the variance increase withT . How-
ever, the double peaks of thep(tmax)-curves, for low thresh-
old values, are now gone. This means that the fads with an
early peak does not go extinct sooner than the fads of the sec-
ond peak, they just do not enter a stage of growth (i.e. they
probably only consist of one or a few vertices). The relation
between thep(tmax)- andp(tdur)-curves can also tell us some-
thing about the typical life span of a fad. On average,NR fads
are introduced per time step, the average integrated time per
fad is 1/R:

1
R
=

1
ntot

ttot∑

t=1

ntot∑

i=1

S (i, t) <
1

ntot

ntot∑

i=1

S max(i)tdur(i)〈S maxtdur〉 (3)

If 〈S maxtdur〉 is close to 1/R the shape of a fad (in aS (t)-plot)
will be near rectangular. In Tab. I we list values of〈S maxtdur〉

(for the curves of Fig. 2) along with values ofS max, tdur and the
correlation between the two latter quantities. What we find is
that the SF model network have〈S maxtdur〉-values quite close
to 1/R (0.5-2.4 times larger), thus for these networks it may
be relevant to divide the life-time of a fad into a growth stage,
a quasi-stationary stage and stage of decline. The other net-
works have〈S maxtdur〉-values far above 1/R = 6400, we can
thus conclude that fads in these network have a much slower
growth or decline than fads in the SF model networks.
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C. What determines the size of the fad?

The early time-evolution of a new fad depends on the
age and configuration of fads in the surrounding of the first
adopter. Another factor is the network characteristics of the
first adopter. For example, if the first adopter has a high de-
gree, there are more people the fad can spread to, and thus the

chances for it to spread will increase. To test this, we plot the
average maximal sizeS max conditioned on the degree of the
first adopter in Fig. 3. As expected for all network types and
threshold valuesS max is (within the errorbars) strictly increas-
ing with the degree of the first adopterk1. The broad degree
distribution of the SF-model networks is also strengthening
this effect. The increase seems to be most dramatic for low-
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degree vertices and intermediateT -values—for thek1 = 3
vertices of SF model networksS max increase over 15 times
whenT decreases from 0.5 to 0.

Another network property than can influence the size of the
fad is the centrality of the first adopter. If a fad starts at a pe-
ripheral vertex, it would be old already at the time it reaches
the more central regions. As seen in Fig. 4 this is indeed true
for almost all network models and threshold values (the one
exception is theT = 1 curve in Fig. 4(b) where thee1 = 8
point lies below thee1 = 9 point). The effect is (just as for
the degrees of the first adopter) strongest for the SF networks
with T = 0.5. Networks with a power-law degree distribution
are known to have a very compact core within which the av-
erage path lengths scale as log logN (to be compared with the
logN/ log logN scaling in the graph as a whole) (7; 8). It is
thus not a surprise that the fads starting in the core (e1 = 5 in
Fig. 4(c)) are more likely to spread to a large population than
the peripheral vertices.

D. Finite-size scaling of the fad sizes

As discussed above we do not expect a phase where the
fads can grow boundlessly. To investigate this further we plot
the standard deviation of the maximal fad size divided by the
system sizeN (Fig. 5). In a situation where variance of the
maximal sizes of the fads does not diverge, this quantity will
tend to zero as the system size increases. As expected, this is
exactly what we observe for all networks and threshold values.
For networks with a small diameter, and thresholds that allow
high growth rates of the fads, the finite system size will limit
the growth of a significant fraction of the initiated fads. There-
fore, for small systems sizes and threshold values, the variance
appears to diverge asN grows. For a sufficiently large network
though (in which one observes the maximum sizes of the fads
to be significantly smaller than the size of the network); the
growth of a fads will, in general, not be limited by the bound-
ary. Thus the variance will in this case not be bounded by the
finite size of the system, but rather be bounded by the appear-
ance of new (and thus more attractive) fads at the boundary
of the fad. In this situation the maximal size of a fad highly
depends its possible growth rate while being young, and thus
on the network structure. This implies that scaling up the net-
work without altering its topological characteristics, will not
produce larger fluctuations. Specifically, if we consider the
fluctuations at the thresholdT = 0, we see that the relative
size of the fluctuations grows with the system size until a cer-
tain N is reached, and from there on it does not increase with
the system size. For the biggest systems simulated,N = 6400,
the largest fluctuations atT = 0 are found in the SF networks
because of the potentially much faster growth rate of a fad
here than in the other networks.

The peaked shape of theσ(S max)/N vs.N curves can be ex-
plained by two competing mechanisms governing the variance
of the fads; ifT is small newer fads will spread to vertices cur-
rently occupied by older fads until they get old and unattrac-
tive or replaced by new fads, and it is reasonable to believe
S max will be sharply peaked around its average in this case; if

T is large, most fads will die out as soon they are born, some
fads may spread to a large population but not many enough to
make the variance large. In the real world we expect the fads
to have a rather broad, but decreasing, distribution of maximal
sizes (15; 25), a situation resembling intermediateT -values.

III. SUMMARY AND CONCLUSIONS

The spreading of fads is a peculiar and poorly understood
phenomenon in social and economic systems. In this paper
we present a thorough investigation of a dynamical model for
the spreading of fads put on three types of underlying complex
network models: Erdős-Rényi random graphs, the networked
seceder model and a model generating networks with power-
law distributed degrees. The reason to use several underlying
network models is that the network structure of social net-
works in general (and the kind of social network fads spread
over in particular) is in several aspects unknown. The reason
we include the Erdős-Rényi model is that it is the simplest,
most well-studied and most random network model. The net-
worked seceder model captures many features—assortative
mixing, high clustering and community structure—that social
networks are believed to have. Studies of some types of social
networks (sexual networks (18) and networks of electronic
communication (1; 10; 14)) report fat-tailed distributions of
degree, something the Erdős-Rényi and seceder model net-
works lack. For this reason we also include the model pro-
ducing networks with a power-law degree distribution.

The fad dynamics is based on five assumptions about the in-
dividual’s responses to his/her social surrounding. In brevity,
a person is only adopting one fad at a time, and (s)he is willing
to adopt a new fad only if its attractiveness exceeds a certain
threshold value. The attractiveness of a fad increases withthe
number of network neighbors that are currently following that
particular fad, and decreases with the age of the fad. For small
threshold values, the life-length of a fad is rather sharplydis-
tributed whereas the maximal size can take a broad range of
values. For high thresholds, the probability distributionof the
life-time of a fad decreases slowly (i.e. some fads live a very
long time, but most fads die as soon as they appear), and the
distribution of maximal sizes is decaying rather fast. In the
intermediate regime there are fads of all kinds of sizes and
life lengths. While this general picture is true for all three un-
derlying network models other features are different between
the models: The shape of the time-evolution (i.e. the func-
tional shape of the size of the fadS vs. time t) differs—the
SF model has fads with distinct stages of growth and decline,
whereas the ER and seceder models have more complex time
evolutions (being much smaller than their maximal value most
of the time). Furthermore, we investigate how the size of the
fad depends on the network characteristics of the first adopter.
We find that a fad is more likely to be large if the first adopter
has a high degree or a low eccentricity.

Our model captures some known features of fad-sensitive
social and economic systems, like a wide-distribution of fad
sizes and duration times (15; 25); and other features that seem
very plausible, like that the largest fads typically start at so-
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ER model, (b) is the corresponding plot for the seceder modeland (c) shows the curves for the SF model. The density of edgesis constant
M = 2N. Lines are guides for the eyes. Errorbars are smaller than the symbol size.

cially well-connected and central persons. This field would
however benefit substantially from quantitative data, bothre-
garding how individuals respond to their social surrounding
(in terms of their fads) and the time evolution of the fads them-
selves. We note that, in the respect, the study of fad-dynamics
lags behind related fields like the study of voluntary organiza-
tions (17).

References

[1] W. Aiello, F. Chung, and L. Lu. A random graph model for
massive graphs. InProceedings of the 32nd Annual ACM Sym-
posium on Theory of Computing, pages 171–180, New York,
2000. Association of Computing Machinery.

[2] R. Albert and A.-L. Barabási. Statistical mechanics ofcomplex
networks.Rev. Mod. Phys, 74:47–98, 2002.

[3] L. A. N. Amaral, A. Scala, M. Barthélémy, and H. E. Stanley.
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