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Abstract

An earlier study (Nettle 1999b) concluded, based on computer simulations and

some inferences from empirical data, that languages will change the more slowly

the larger the population gets. We replicate this study using a more complete

language model for simulations (the Schulze model combined with a Barabási-

Albert network) and a richer empirical dataset (the World Atlas of Language

Structures edited by Haspelmath et al. 2005). Our simulations show either a weak

or stronger dependence of language change on population sizes depending on the

parameter settings, and empirical data, like some of the simulations, show a weak

dependence.
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1 Introduction

Do languages spoken by lots of people change less than those spoken by less

people? Common sense says yes: The more people speak a language, the

more inertia this language has, similar to the influence of mass on velocity

changes in physics. Indeed, one of the successful computer models for lan-

guage change, the so-called Viviane model (Oliveira et al. 2006, Oliveira et

al. 2007) of physicists, assumes this effect from the beginning. However,
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human beings sometimes behave differently from inanimate atoms and thus

a direct test of this hypothesis would be desirable.

Nettle (1999b) presents such a test for human languages. He argues

that “spreading an innovation over a tribe of 500 people is much easier and

takes much less time than spreading one over five million people”. His pa-

per mainly contains a computer simulation of language change for just two

linguistic features (the simulations can also be interpreted as describing the

competition between two languages). He finds that the rate at which the

majority of the population switches between these two choices decreases to

a small but nonzero limit if the population increases from 120 to 500. Such

switching processes could also have been studied in the simpler Ising model

of statistical physics, where the switching rate is known (Meyer-Ortmanns

and Trappenberg 1990) to decay exponentially to zero with increasing pop-

ulation size. (We also found switching in Nettle’s model at high noise level

and everybody being influenced by all speakers equally, without having to

use any differences in social status, bias, distance or age.) However, these

models for only two choices cannot be tested on the empirical language size

distribution for the nearly 104 human languages, in contrast to the later Vi-

viane, Schulze, and Tuncay language competition models, to be discussed in

section 2.

Our aim is to investigate whether Nettle’s result may be replicated if

we apply a somewhat different model than the one he described in Nettle

(1999a), which was based on the Social Impact Theory of (Nowak et al.

1990). In Nettle’s model, the impact of a linguistic variant is a function of

the statuses of the individuals using this variant, their social distance from
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the learner, and their number. Our model contains parameters that are

similar but not identical. Rather than assigning variable statuses to indi-

viduals we operate with a scale-free network, where the impact of a certain

individual increases with a probability which is proportional to the impact

that the individual already has had. Social distances correspond to distances

among individuals in the network which we are using. The size of the popu-

lation having a given linguistic variant indirectly affects the probability that

this variant will diffuse further in one version of our model where a speaker

randomly adopts variants from the entire population. The major difference

between our model and Nettle’s is that ours is more realistic inasmuch as it

operates with many languages each of which has several features, whereas

Nettle’s model, depending on how one interprets it, either has one language

with two competing features or two competing languages with no internal

structure.

Towards the end of the paper we analyse empirical data and compare

our findings with Nettle’s inferences based on the empirical data which were

available at his time of writing.

2 Computer Simulation

2.1 Model

Of the many computer models for language competition (Abrams and Stro-

gatz 2003, Patriarca and Leppännen 2004, Mira and Paredes 2005, Kosmidis

et al. 2005, Pinasco and Romanelli 2006; Schwämmle 2005, see also Can-

gelosi and Parisi 2002, Culicover and Nowak 2003, Prévost 2003, Itoh and
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Ueda 2004, Wang and Minett 2005), only the Viviane model (Oliveira 2006,

2007), the Tuncay model (2007) and the Schulze model (Schulze et al. 2005,

2007) gave reasonable agreement with the empirical observed distribution of

language sizes (where the size of the language is defined as the number of

people having this language as their mother tongue.) The Viviane model

assumes from the beginning that small languages change more rapidly than

large ones. The Tuncay model does not deal with the features of a language

and thus seems not suitable to measure language change. The most suit-

able model for our purposes, then, is the Schulze model, details of which are

reviewed in the appendix.

Of the various versions of the Schulze model, we applied the one on scale-

free social networks (Barabási and Albert 1999, used for linguistics already

by Kalampokis et al. 2007) not only because it gave thus far the best size

distribution for languages (Schulze et al. 2007). We also needed it because

we wanted to measure change rates. Normally, once a language is spoken by

more than half of the people, it keeps that status of dominance forever in

the Schulze model. Thus, we observe a situation analogous to what Nettle

called the “threshold problem” and described with reference to other scholars

before him, such as Keller (1994), who observed that if the learner adopts

the norms of his or her immediate surroundings, then the result after a few

generations is always “homogeneity if the starting point is heterogeneous

and stasis if the starting point is homogeneous” (Keller, 1994: 99, cited after

Nettle 1999a: 99). Only on the scale-free networks of Barabási and Albert

(1999) did we observe in the Schulze model that the dominating language

often changes, as has happened in Europe roughly during the course of the
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last two millennia, where Greek, Latin, French, and English have successively

replaced the previous dominating language. In this scale-free network the

most connected individuals are responsible for most, if not all, changes in

the dominating language. We tested to see what happened if we disallowed

modifications in the speech of the centrally connected nodes and found that

the dominating language will then not change.

We made 103 to 105 iterations (sweeps through the network), ignored

the first 100 of them, and counted all later changes where the role of the

dominating language shifts from one language to another one. We counted

both the changes in one arbitrarily selected feature (the first one) and changes

in any of the features. If all F = 8 features would be independent of each

other (which they are not) and if all change rates would be small (which they

are only in some parameter regions) then the change rates for the first feature

would be eight times slower than those for the whole language (denoted by

“all” instead of “first”, i.e. counting the change in any of the features).

Roughly this is the case, i.e. of a pair of curves the higher one counts changes

per language, and the lower one counts changes per feature.

2.2 Local diffusion

To simulate the process where one speaker adopts a feature from another

speaker (diffusion, transfer) we distinguish between a situation where the

donor can sit on a neighbour node of the network (“local version”) or on

any randomly selected node (“global version”). We will start with the local

version and then present the global one.

Fig.1 shows for the local version that neither at intermediate nor at high
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Figure 1: Variation of language and feature change with population size, for

intermediate (higher pair of curves) and high (lower pair of curves) diffusion

probability. The circles correspond to the stars but with 105 instead of 104

iterations.

diffusion probabilities q is there a strong variation of change rates with pop-

ulation sizes (= number of network nodes) varying over five decades from

100 to 10 million. However, the stronger coupling between languages at high

q, compared to low q, makes language change more rare. So, these local

simulations give a clear answer: Population size has little influence.
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Figure 2: As Fig.1 but now for global instead of local diffusion.

2.3 Global diffusion

For global diffusion the situation is quite different. Now for intermediate q

again no clear influence of populations size can be seen in Fig. 2, but for larger

q the rate of change is diminished drastically with increasing population

size. Fig.3 confirms this picture over the whole range of q: Only for large q

when the change rates become small does the population size have a strong

influence on them. (The analogous figure with local instead of global diffusion

has overlapping data, cf. Schulze et al. 2007.) The size effects in the bottom

part are in the same direction but stronger than in the top part. (Migration

via exchange of nearest neighbours had little influence.)

In the results for both the local and the global situation just reported
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Figure 3: Variation of language change versus diffusion probability: p = 0.5,

0.3 and 0.1 from top to bottom; population 104 . . . 106.

the complete language shift remains local. If we change from local to global

interactions in the shift from one language to the other, then the dominating

language always retains its dominating position and no change happens.

One can argue that for small populations global and local diffusion are

more similar than for large populations and thus the distinction is less im-

portant. Only for large populations does global diffusion give change rates

different from their high values for local diffusion.
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3 Empirical data
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Figure 4: Average instability (= 1 minus stability) versus average population

size for real language families.

We used the World Atlas of Language Structures (WALS, Haspelmath

et al. 2005), which maps structural features across a number of the world’s

languages, together with the Ethnologue language statistics (Gordon 2005),

to estimate the instabilities and thus indirectly the change rates of real lan-

guages.

To study rate of change as a function of number of speakers, the number of

speakers of each language was obtained from Ethnologue. Extinct languages

and those with unknown numbers of speakers were omitted from the sample.
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Figure 5: Diffusibility (see text) versus average population size for real lan-

guage families.

The remaining languages were divided into four groups of approximately

equal size: 1 to 999 speakers (423 languages), 1000 to 9999 speakers (513

languages), 10,000 to 99,999 speakers (549 languages), and 100,000 or more

speakers (655 languages).

One way to infer rate of change is from the instability of linguistic features

by assuming that the more unstable the features are, the faster the rate of

change is. Accordingly, the instability of each of the 134 nonredundant WALS

features was estimated in each of the four groups of languages. The measure

of instability is adapted from Wichmann and Holman (n.d.). (See Holman

et al. 2007 for a summary). Within each language family, we look at all the
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pairs of languages located within 5000 km of each other for which a given

feature is attested in both languages, and find the proportion R of such pairs

for which the feature has the same value. We do the same for languages

in different families, getting the proportion U . Then (1 − R)/(1 − U) is

the instability. Instability as defined here is equal to one minus stability as

defined in Wichmann and Holman, except that related languages are here

considered to be those in the same family rather than those in the same

genus, in order to maximize the number of related languages in each group.

Thus the values of instability are higher than those inferred from Wichmann

and Holman, and the two cannot be compared in absolute terms. Fig. 4

plots the mean stability of the features as a function of the geometric mean

number of speakers in the group.

The figure shows a slight decrease in instability with number of speakers.

To determine whether the decrease is statistically significant, the Spearman

rank correlation between instability and number of speakers was calculated

separately for each of the 47 independent features identified by Holman (n.d.).

The mean correlation is –0.18, with a standard deviation of 0.60; the mean is

significantly negative, t(46) = 2.05, p < 0.05. However, the change is much

smaller than in Figs. 2 and 3, and this reality is closer to Fig. 1 based on

local diffusion, where also in the population range between 100 and 106 a

slight decrease of change rates with increasing population was found.

We have also investigated whether diffusibility is dependent on population

sizes. Diffusibility is logically independent of stability, since a particular

feature may remain stable for a long time after it has diffused. Support for the

independence of the two phenomena is provided in Wichmann and Holman
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(n.d.), where it is demonstrated that individual features have comparable

stabilities across languages, while the diffusibility of a given feature may

vary from area to area.

The diffusibility of each feature was estimated in each of the four groups

of languages, again following the procedure described in Wichmann and Hol-

man (n.d.). Among all the pairs of languages in different families located

within 5000 km of each other, we look at the pairs for which a given fea-

ture is attested in both languages, and find the proportion R of such pairs

for which the feature has the same value. We do the same for pairs of lan-

guages in different families located more than 5000 km each other, getting

the proportion U . Then R/(1−U) is the diffusibility. Fig. 5 plots the mean

diffusibility of the features as a function of the geometric mean number of

speakers in the group.

The figure shows little change in diffusibility with number of speakers.

The rank correlation between diffusibility and number of speakers has a mean

of 0.08 for the 47 independent features, with a standard deviation of 0.66,

indicating no significant correlation, t(46) = 0.84.

We believe that these empirical findings based on systematic analysis of

a large dataset are more solid than the more indirect inferences of Nettle

(1999b) and Wichmann (in press) concerning change rates and population

sizes. Nevertheless it is interesting that these inferences point in the same

direction as the findings based on WALS. Nettle (1999b: 131) observed differ-

ences in sizes of languages families in the two hemispheres and explained this

by differences in change rates which would in turn be explained by differences

in population sizes:
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If languages are changing fast internally, then after they split, identifiable re-

lationship will be quickly erased from their descendants, and so, after a given time

period, there will appear to be many, small language families. If the languages

are changing very slowly, then identifiable relationship will persist for longer, and

so the reconstructable language families will be much broader. In short, a slow

rate of change predicts the Old World situation, with few families each of which

has many members, whilst a fast rate of change predicts the New World situation,

with many families each of which contains few languages.

A modified version of this argument was presented in Wichmann (in

press), where not only the number of languages in different families (n) was

taken into account, but also the diversity within families (d). For diversity

measures glottochronological dates were used. The ratio n/d was labelled

the ‘density’ (D). A correlation was found between small values of D and

(present or erstwhile) hunter-gatherer societies and high values of D and

sedentary societies whose subsistence has been based on agriculture or fiver

fishing. Thus, it was argued, hunter-gatherers tend to live in smaller groups

and their languages tend to change faster than sedentary peoples.

We now briefly summarize this section’s findings. Population size has

no systematic effect on diffusibility. The degree to which languages undergo

contact-induced change is probably ultimately dependent on particular his-

tories of interaction among speakers. Internal language change, however, is

more constant across language. Nevertheless, our findings show that there

is a small but significant effect of language size on the rate of change such

that large populations lead to somewhat slower rates of change. More cir-

cumstantial empirical evidence discussed in Nettle (1999b) and Wichmann
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(in press) points in the same direction.

4 Conclusion

Common sense or analogy with physics and with biology (Oliveira et al. 2006,

Sutherland 2003) do not always work: Larger “masses” are not necessarily

less mobile, if we identify mass with population size and mobility with lan-

guage change. We found that only for global as opposed to local diffusion,

and for large as opposed to small diffusion probabilities, the rate of language

change goes down drastically if the population size increases from 100 to ten

million.

We found that only diffusion at the global level may have a size effect.

Given a situation where (a) individuals may adopt linguistic features from

individuals anywhere in the speech community, (b) certain individuals be-

come more connected than others, and (c) diffusion is high, an increased

population size will give a lowered change rate. We can then predict that

languages like English or Mandarin Chinese will change more slowly than

smaller languages spoken by populations in relative isolation from one an-

other, as we might imagine the situation to have been for some traditional

societies. But between these extremes there is a vast gray area of intermedi-

ate situations where our simulations hold little predictive power because our

parameter values for diffusion, population sizes etc. are abstract and cannot

be translated into precise numbers.

Here the empirical data aid us. They indicate that the conditions (a-

c) mentioned above have never been present to such an extent that, over
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the course of recent millenia, smaller languages have changed much faster

than larger ones. Nevertheless, a small but significant effect of population

sizes on language change has been observed, supporting the claims of Nettle

(1999b), and this should be taken into account when attempts are made to

date prehistoric linguistic events.

5 Appendix

A language (more precisely, a grammar) in the Schulze model is defined by F

features each of which has one of Q values 1, 2, . . .Q. (We follow Holman et

al. 2007 and use F = 8, Q = 5.) It evolves in discrete time steps t = 1, 2, . . .;

all individuals are updated once in each iteration.

All versions of the Schulze model are based on change, diffusion, and shift,

using three probabilities p, q, r at each iteration:

• Change: Each feature with probability p(1 − q) is randomly changed

to a new value between 1 and Q.

• Diffusion: Each feature with probability pq is replaced by the corre-

sponding feature from a randomly selected neighbour.

• Shift: Each individual with probability r(1− x)2 gives up its language

and instead shifts to the language of a randomly selected neighbour.

Here, x for the shift is the fraction of people in the whole population speaking

the language of the individual considering a shift. Linguistically these three

types of modification may correspond to the analog of biological mutations, to

the transfer of linguistic features (loanwords or structural features) from one
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language into another, and to the adoption of a new language, for instance

by immigrants.

The simulation first determines, with probability p, whether to modify the

language, and then does it with probability q by learning from a neighbour

and with probability 1 − q by random change. In our “local” version this

neighbour is a nearest neighbour of the considered site, in our “global” version

it can be any member of the population. The shift is a conscious decision to

give up the own language in favour of a more widespread one.

Usually the individuals sit on sites of a square lattice, but for the present

paper they sit on the nodes of a “scale-free” Barabási-Albert network. On

these lattices different nodes have different numbers k of neighbours, with a

probability proportional to 1/k3. These networks are constructed as follows:

We start with m nodes having each other as neighbours. Then new members

join the network one after the other. They select as their own neighbours

(more precisely: teachers) m already existing network members, with a prob-

ability proportional to the number of cases where these teachers were selected

before by earlier members of the network. Thus popular nodes become even

more popular, and unpopular nodes have little chance of becoming selected

later. We used these networks instead of square lattices since on lattices the

dominating language no longer changes once the majority of people speak it.

Mostly we take m = 3. Our networks are directed, that means if a later node

A has selected node B as a teacher ( = neighbour), then B has not selected

node A as a teacher.

We start with everybody selecting randomly one of the QF = 390625

possible languages. At each iteration we determine qmax as the most-often
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spoken value of the first feature, and Lmax as the most-often spoken language.

Then we check how often qmax changes and denote this probability by “first”

in some figures. Analogously we count how often Lmax changes and mark

these probabilities by “all” since all features together determine a language.

All changes during the first 100 iterations were ignored. Thus we find the

rates at which qmax and Lmax change in the stationary regime, while the input

parameter p gives the rate at which any feature is modified.

(We also made some tests with F = 1, Q = 2 close to Nettle’s model, but

then the results were less clear than for our F = 8, Q = 5.)
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