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Summary. Many peer-to-peer (P2P) applications require that nodes behave altru-
istically in order to perform tasks collectively. Here we examine a class of simple
protocols that aim to self-organise P2P networks into clusters of altruistic nodes
that help each other to complete jobs requiring diverse skills. We introduce a vari-
ant (called ResourceWorld) of an existing model (called SkillWorld) and compare
results obtained in extensive (ten billion interactions) simulation experiments. It was
found that for both model variants altruistic behavior was selected when certain cost
/ benefit constraints were met. Specifically, ResourceWorld selects for altruism only
when the collective benefit of an action is at least as high as the individual cost.
This gives a minimal method for realizing so-called “social rationality” where nodes
select behaviors for the good of the collective even though actions are based on in-
dividual greedy utility maximization. Interestingly, the SkillWorld model evidences
a kind of super-altruism in which nodes are prepared to cooperate even when the
cost is higher than the benefit.

1 Introduction

For many applications peer-to-peer (P2P) systems require their member nodes
(or agents) to behave in a socially beneficial (non-egotistical) way. Kalenka and
Jennings [7] termed this requirement as the Principle of Social Rationality: if
an agent has a choice of actions it should chose the action that maximizes the
social utility (sum of all agent utilities in the system). This principle can be
contrasted with classical individual rationality that states agents should select
actions that maximize their individual utility. However, developing protocols
for realistic P2P systems that adhere to the principle of social rationality is
very difficult and potentially so costly as to negate the benefits. This is be-
cause P2P systems have no central control, are potentially huge (composed
of millions of nodes) and have high node turnover (with users continually en-
tering and leaving the system). In addition, selfish or malicious nodes can get
into the system via hacked client programs. These factors mean that individ-
ual nodes, even if they wish to follow a socially rational principle, often will
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not have enough information to gauge the effects of their actions on others.
Recently, simple locally adaptive protocols have been proposed that claim
to produce socially rational outcomes through a process of self-organisation
even though nodes only act on their own utility values. In this approach nodes
preferentially copy other nodes (by duplicating their behaviour and links) that
have higher utilities. However, in these previous works only specific scenarios
are considered in which certain plausible utility values are selected. In this
paper we introduce a variant (ResourceWorld) of one such existing P2P sce-
nario [3] (SkillWorld). For both models we explored a large space of different
cost / benefit values to check if the protocols maximized the collective utility
or not. In ResourceWorld we found that if the collective cost of an action
was less than or equal to the collective benefit the protocol self-organized the
network to a state where nodes selected this action. For SkillWorld we found
a less socially rational rule. Additionally we performed a large set of experi-
ments exploring different values of Network Degree (d) and Number of Skills
involved in the system (sn) with the aim to find combinations of them leading
to socially good performances of the system. Finally some experiments testing
the robustness of the protocols under churn condition are exposed.

2 The ResourceWorld Scenario

The ResourceWorld model, which takes inspiration from a previous model [4],
represents the situation in which nodes in a P2P network can store and serve
a single resource from a set (R). Each node may have a maximum of 20 links
to other nodes (peers). Each link is bidirectional: if node a is connected to
node b, even node b is connected to node a. Links are undirected so the entire
network can be considered as an undirected graph where each vertex is a node
and each edge is a link.

The state variables of each node is shown in table 1.

Table 1. Nodes state

Parameter Value

Altruism flag A ∈ {0, 1}
Resource/Skill type R ∈ {1, 2, 3, 4, 5}
View d = 20 links to other nodes
Utility U ∈ R

The Resource, which indicates the ability held by a single node, is the only
parameter which does not evolve: it is not copied during the reproduction
phase (see section 4), but it may “mutate” (that is change) with a very small
probability. Periodically (at each iteration cycle, where a cycle is all nodes
firing in a random order) with probability 0.5, nodes receive a request or job
(J) to be completed. The request is produced by selecting at random a value
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from a set of 5 elements (J ∈ {1, 2, 3, 4, 5}) and the receiving nodes, in order
to complete the request, must hold the appropriate resource. Suppose node
i having a certain Ri and a certain strategy Ai receives a request J . Three
situations can take place:

• J = Ri: in this case (cf. figure 1a) i can satisfy the request by itself (doesn’t
matter if A is set to 0 or 1) and node i increases its utility by a benefit
payoff b (Ui := Ui + b) ;

• J 6= Ri ∧ Ai = 1: in this case (cf. figure 1b) i itself can not satisfy the
request but since it is a cooperating node (Ai = 1), it can pass the request
to its neighbors (given in the node view) in turn. If one of them (say j) has
the appropriate resource (Rj = J), then the request can be satisfied; in
this case node j gets the benefit payoff (Uj := Uj + b) while node i pays a
cost payoff (Ui := Ui− c); if none of neighbors has the requested resource,
the request J can not be completed and no payoffs are given;

• J 6= Ri ∧ Ai = 0: in this case (cf. figure 1c) since node i is a selfish node,
it cannot pass the job to its neighbors, even though they have the needed
resource.
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Fig. 1. An illustration of the “ResourceWorld” model. Shading of nodes represents
strategy; the number inside the node indicates the resource. In (a) node i receives
a certain request J : since it has the appropriate resource to satisfy it (Ri = J) it
gains the benefit payoff (b = 1). In (b) Ri 6= J : since node i is an altruistic node
(Ai = 1), it can pass J to its neighbor j which holds the right resource (Rj = J); in
this case j earns the b payoff and i pays the c payoff (c = 0.25). In (c) since node i
is a selfish node, it can’t pass the request to its neighbor j.

This means that each node receiving a request, if not able to satisfy it
with its own resource, it is willing to pay a cost in order to have the request
completed.

This minimal scenario represents a situation in which user-level requests
of resources (disk space, files, programs, etc..) are supplied to a P2P network
composed of nodes holding just one of such needed resources. Nodes should
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be able to self-organize in a way that makes the most of the created request
to be satisfied in the shortest possible amount of time. This organization task
is performed by the SLAC protocol [5] which is described in section 4.

3 The SkillWorld Scenario

The SkillWorld (SW) model [4] is very similar to the ResourceWorld (RW)
model we have just described but it represents a different scenario. Here, what
we have previously called resource, is called skill (resource and skill are the
same thing, we use different names just to distinguish the two models). This
skill represent the ability of a node to work on a certain Job (J). The state
variables of the nodes is the same reported in table 1. The difference with
RW, is in the way by which the nodes interact.

In SW when a node hasn’t the right skill to execute a job (J), it looks for
an altruistic neighbor to exploit, in order to complete the job and receive a
benefit. Once selected, the altruistic neighbor will have to pay a cost. We can
see this as a “favour” that the selected node does to its friend, but for this
it pays a cost in terms of personal resources (disk space, cpu, ecc..). Figure 2
gives an idea of what happens in this model.
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Fig. 2. An illustration of the “SkillWorld” model. Shading of nodes represents
strategy; the number inside the node indicates the skill. In (a) node i receives a
certain job J : since it has the appropriate resource to satisfy it (Si = J) it gains
the benefit payoff (b = 1). In this case we don’t care about the altruism flag. In (b)
Si 6= J : node i will look among its neighbor list for an altruistic node; in this case j
holds the required skill and is altruistic, so node i earns the b payoff and j pays the
c payoff (c = 0.25). In (c) since node i has just one selfish neighbor, the job is not
executed.
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4 SLAC in ResourceWorld and SkillWorld

The SLAC protocol (Selfish Link-based Adaptation for Cooperation) has the
ability to produce high levels of cooperation in P2P networks while performing
some tasks. It has already been covered in details elsewhere [5, 9] so here we
give just a brief overview.

The SLAC algorithm specifies how nodes should update their strategies
and links. Figure 3 shows the pseudo-code of the relating algorithm.

At each cycle of the simulation task, with a certain probability, each node
selects a random node from the entire network and their utilities are compared.
Suppose node i has an average utility greater than j (Ui > Uj): in this case
j copies node i strategy (not the resource); j drops all its links and moves
to i’s neighborhood (copies all i’s links and adds a link to i itself). After
this, “mutation” is applied with different probabilities, separately, to j’s links,
to j’s strategy and to j’s resource / skill. This involves changing the links,
strategy and resource / skill. The strategy is flipped, the resource is replaced
by uniformly randomly selected new resource value and links are wiped and
replaced with a single link to a randomly selected node from the population.
Mutation of the resource is for introducing some noise in the system.

 
At each cycle with probability rp for node i: 

select a random node j from the population: 
 if (

! 

U
i ≤ 

! 

U j ) then  
  copy strategy from j 
  drop each link from i  
  copy each link from j 
  link i to j 
  with prob(M) mutate strategy of i 
  with prob(MR) mutate links of i 
 reset utility U = 0;   

   

Fig. 3. The generic SLAC algorithm. Each node executes this algorithm.

5 Experiments

We tested our protocol over three different settings; we called these Utility
profile, Network Degree and Skill Number profile, Churn profile:
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• Utility: we varied the benefit and cost payoffs, keeping all the other pa-
rameters fixed, in order to discover when the two protocols performed
better;

• Network Degree and Skill Number: we varied the number of skills in
the system and the network degree, keeping all the other parameters fixed,
in order to discover when the two protocols performed better;

• Churn: we did several experiment to test the robustness of our protocols
under churn conditions

Simulations were carried on Peersim [10], an open source P2P systems
simulator platform, using the Newscast protocol [6] for the management of
the overlay topology. The time is divided in cycles and in each cycle each
node performs the specific actions described in the previous sections. In each
experiment we checked if SLAC maximizes the collective utility or not.

5.1 Utility profile: Experimental Configuration

In this setting we performed a massive number of experiments with both
models modifying the utilities with the aim to explore a large space of possible
values (varying benefit and cost values). The configuration we adopted in the
experiments is shown in table 2.

Table 2. Experiments configuration

Parameter Value

Network size (N) 4000
Network degree (d) 20
Initial topology random
Nodes’ Strategy Initialization Ai = 0 (selfish)
Skill number SN = 5
Links Mutation MRT 0.01
Strategy (MS) and Resource Mutation (MR) 0.0025
Benefit (b) and Cost (c) payoff {0.1 . . . 2.0} steps by 0.1

For each configuration we performed 10 different runs and we took the
average of the results: this means that we performed 20 × 20 × 10 = 4000
different runs.

5.2 Utility profile: Experimental Results

The performance measure we adopted is the percentage of completed jobs
(Pcj). All the results that we show are from an average of ten runs per con-
figuration. We found that in ResourceWorld to obtain a good Pcj (by good
Pcj we mean a value greater than 80%), the benefit payoff must be greater
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a) b) 

Fig. 4. Map diagram indicating the number of cycles needed to obtain a good level
of Pcj (> 80%): (a) relates to the RW model; (b) relates to the SW model. The used
parameters for both models are those indicated in table 2. In both diagrams, the
top left area indicates that no good results are obtained.

than or equal to the cost payoff (b ≥ c). When b < c we obtain a very low Pcj
(ranging from 25% to 35%); when b = c, a good level of Pcj can be obtained,
but the system will take longer to achieve this.

From figure 4a we note that in order to obtain a good level of Pcj in a
small amount of time (less than 180 cycles) the cost payoff must be smaller
than half of the benefit payoff (c < 1

2b). The larger the b/c ratio the sooner
80% Pcj is reached.

We compared these results from RW with similar experiments using the
SkillWorld scenario. What we found here is that to obtain a level of Pcj
greater than 80%, the cost value can be greater then the benefit. Good levels
of Pcj are obtained according to this rule: c < 3

2b (see figure 4b). We also
found that in order to obtain a good level of Pcj with a small number of cy-
cles, the cost payoff should be smaller than half of the benefit payoff (c < 1

2b).
This also happens in RW.

As we said, the above mentioned results are from an average of 10 simula-
tion runs per configuration. In RW the standard deviation (σ) depends on the
ratio between the benefit and the cost payoff: if c ≥ 1

2b then the standard de-
viation is approximately half of the average number of cycles (σ ≈ 1

2n, where
n is the number of cycles); if c < 1

2b, then σ ≈ 1
6n. Figure 5 gives an idea of

this.
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Fig. 5. ResourceWorld: Average number of cycles needed to obtain a good level of
Pcj exploring several cost payoffs: b = 1, c = 0.1 . . . 1. The other parameters are
the same used for results in figure 4. We note that when c ≥ 1

2
b, both average and

standard deviation increase.

5.3 Network Degree and Skill Number profile: Experimental
Configuration

We have seen from the previous experiments that both in RW and SW a social
behavior is selected when c < 1

2b. In order to explore further the dependence
on the parameters of the model we varied the Network Degree value (d) and
the Number of Skills value (sn).

Also here we performed 10 different runs for each configuration and then
we took the average of the results. Table 3 shows the configuration we used.

Table 3. Experiment configuration: Network Degree and SkillNumber setting

Parameter Value

Network size (N) 4000
Network degree (d) d ∈ {10 . . . 21}
Initial topology random
Nodes’ Strategy Initialization Ai = 0 (selfish)
Skill number sn ∈ {4 . . . 10}
Links Mutation MRT 0.01
Strategy (MS) and Resource Mutation (MR) 0.0025
Benefit (b) payoff 1.0
Cost (c) payoff 0.2
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5.4 Experimenal results: Network Degree and SkillNumber setting

As we have seen from the previous experiments, good results in a short time
and with a small variance can be obtained with b = 1 and c = 0.2. We adopted
these values to perform the new experiments. A first interesting result is shown
in figure 6: it gives the percentage of cooperating nodes with different network
degrees. For each network degree value, we performed simulations with the
number of skill values varying from 4 to 10; then we took the average of these
results. The figure shows how with d < 13 the percentage of cooperating
nodes is quite low and the standard deviation is high. On the other hand with
d ≥ 13 we always obtained a very high number of cooperating nodes indicating
a stable behavior of the nodes. For each configuration we performed 180 cycles.
For d < 13 we also performed additional experiments up to 5000 cycles but
the obtained results are very similar to those shown.

 

a) ResourceWorld b) SkillWorld 

Fig. 6. Percentage of cooperating nodes in RW (a) and SW (b). With both models
a high level of cooperating nodes is obtained when d ≥ 13. The parameters used for
these experiments are shown in table 3.

Both in RW and in SW a high number of cooperating nodes is necessary
for achieving a good Pcj, so this result helps in the understanding of the
next two diagrams (figures 7 and 8). The diagrams indicate the percentage of
completed jobs obtained making experiments with different combinations of
d and sn. We can note both in RW and SW that when d ≥ 13 good results
can be obtained according to two rules: in RW a good Pcj can be obtained
when, for d ≥ 13, the number of skills involved in the system is smaller than
or equal to the half of d minus 1 (sn ≤ d−1

2 ); in SW instead, for d > 13 it is
enough that sn is smaller than or equal to the half of d plus 2 (sn ≤ d+2

2 ).
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Fig. 7. ResourceWorld: map diagram indicating the Pcj that can be obtained
combining different values of d and sn. The used parameters are those indicated in
table 3.
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Fig. 8. SkillWorld: map diagram indicating the Pcj that can be obtained combin-
ing different values of d and sn. The used parameters are those indicated in table
3.

5.5 Robustness to Churn

A key requirement for robust P2P overlay networks is robustness to “churn”
(turnover of nodes), so we did some experiments in order to test the robust-
ness of the two protocols under churning conditions. We introduced various
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amounts of churn – where old nodes leave and new nodes join the network.
In these experiments we reset randomly selected nodes to defect strategy and
random skill every 10 cycles. We performed 10 runs for each configuration
and we took the average. Table 4 shows the obtained results. We found that
RW is more robust to churning than SW even though with 10% of churning
results are similar. Figure 9 shows a typical single run of 5000 cycles.

We also performed experiments in which 50% of nodes were replaced at
one cycle after high cooperation is reached: we found that in both models
high Pcj quickly reforms within few cycles. This may be due to the fact that
SLAC already incorporates some noise in the form of mutation to both links
and strategies, driving its evolutionary dynamics and, as we have shown, can
quickly recover from states of complete defection and link disconnection ??.

Table 4. Churn: average Pcj obtained with different amounts of churn

Churn % ResourceWorld SkillWorld

3% 0.74 0.40

5% 0.61 0.39

10% 0.45 0.41

 

a) ResourceWorld b) SkillWorld 

Fig. 9. Churn: Single run experiments. Every 10 cycles a percentage of nodes are
reset. We experimented with 3, 5 and 10 percent.
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6 Discussion and Future Work

The SLAC algorithm implements nodes that myopically and greedily attempt
to maximize their own utility by copying other random nodes if they perform
better. In our simulations even though nodes have no knowledge of the un-
derlying game or of the state of the other nodes, a high number of completed
jobs is produced in both models. This requires the self-organisation of both
altruism and internal specialized structure.

In this work we took the ResourceWorld (RW) and SkillWorld (SW) mod-
els, we varied the cost / benefit values and we found two interesting rules (see
table 5).

Table 5. Utility profile: Rules leading to high Pcj in RW and SW.

Model Rule

ResourceWorld b
c
≥ 1

SkillWorld b
c

> 2
3

Table 6. Network Degree and Skill Number profile: Rules leading to high
Pcj in RW and SW.

Model Rule

ResourceWorld sn ≤ d−1
2

SkillWorld sn ≤ d+2
2

Varying these utilities, we found that in RW a high number of jobs can be
completed when the cost payoff is smaller than or equal to the benefit payoff.
In SW, even when the cost payoff is greater than the benefit (for certain values
only), cooperation is sustained.

We thought that these results may be influenced by the topology of the
network or by the number of skills adopted by nodes, so we did tests exploring
different combinations of Number of Skill and Network Degree values. The
obtained results are interesting and show that a high level of Pcj can be
reached in both models under the conditions reported in table 6: both with
RW and SW we found that with d > 13 high cooperation can be obtained.
We currently don’t know why this happens but we speculate that since links
in our model do not incur a cost to the node then the more links a node can
maintain then the more likely it is that it will find a cooperative partner with
the required skill. Future work will investigate this.

More experiments investigating the topology evolution could also illumi-
nate the results. We have seen from previous works [3] that with SLAC, a
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network starting from any initial topology quickly self-organizes into a set of
disconnected highly clustered components (tribes). We think that the same
happens here, through some kind of “group-selection” between these tribes
leading to the selection of more socially optimal behavior.

However, what is interesting and unique in our results here is that under
certain kinds of interaction rules cooperative groups may be selected even
when the cost of cooperative is greater than the benefit. This indicates a kind
of super-altruism which is not explicable in terms of overall benefit to the
group. To put this another way, although following an evolutionary processes
- myopically optimising - nodes sacrifice more of their own utility to help
another than the other gains. We believe this is interesting because we believe
such behaviour can be seen in human societies but is not easily explainable
with current evolutionary theory or rational action models. It would appear
that this results from the particular interaction structures and group dynamics
for a given scenario. We aim to explore this in more detail in future work.

It is important to note that although selection appears to operate at the
group level it is the result of selection (it is an emergent property) operating
on the individual node level. What is significant here is that for the RW
model this process is sufficient to select a socially rational behavior in the
nodes, maximizing collective or social benefit over individual benefit. The SW
results however show that such behavior is not always selected and future
work will hopefully allow us to give a general theory which can predict what
kinds of scenario will and wont produce social benefit following our simple
approach.

From the point of view of actually implementing such protocols in P2P
systems there are still some potential problems concerning possible malicious
behavior. We have assumed that nodes follow the protocols correctly but
malicious nodes could attempt to subvert the protocol by lying about their
utilities and / or strategies. Although such attacks do damage system perfor-
mance experiments with similar protocols have indicated that in many cases
the damage my be acceptable (i.e. not completely destroy the functioning
of the network) [1]. However, perhaps our results can be applied to under-
standing human social interactions particularly in organisations requiring the
co-ordination of jobs and skills to achieve their goals.
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