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Abstract

We study a complementarity game as a systematic tool for the inves-
tigation of the interplay between individual optimization and population
effects and for the comparison of different strategy and learning schemes.
The game randomly pairs players from opposite populations. The game is
symmetric at the individual level, but has many equilibria that are more
or less favorable to the members of the two populations. Which of these
equilibria then is attained is decided by the dynamics at the population
level. Players play repeatedly, but in each round with a new opponent.
They can learn from their previous encounters and translate this into
their actions in the present round on the basis of strategic schemes. The
schemes can be quite simple, or very elaborate. We can then break the
symmetry in the game and give the members of the two populations ac-
cess to different strategy spaces. Typically, simpler strategy types have
an advantage because they tend to go more quickly towards a favorable
equilibrium which, once reached, the other population is forced to accept.
Also, populations with bolder individuals that may not fare so well at the
level of individual performance may obtain an advantage towards ones
with more timid players. By checking the effects of parameters such as
the generation length or the mutation rate, we are able to compare the
relative contributions of individual learning and evolutionary adaptations.

Keywords: Evolutionary Complementarity Game; Individual
Learning; Population Dynamics; Evolutionary Adaptation

1 Introduction

Our first aim is to investigate the relation between individual optimization and
the resulting collective dynamics in an evolving environment. This topic has
a long history, starting (at least) with Mandeville’s essay [12] on bee colonies
and Adam Smith’ [22] invisible hand. From a scientific point of view, it is im-
portant to analyze the validity and generality of the many claims that have
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been brought forward since then and to identify their necessary and sufficient
assumptions. For that purpose, we need a simplified formal model in which one
can isolate the key mechanisms and features without all the contingent details
of real world situations. In order to proceed in that direction, we utilize an
agent based model that can be readily simulated and is also amenable to for-
mal analysis. This model is a population game where the equilibrium at the
individual level is degenerate so that the selection among the possible equilibria
results from the collective dynamics at the population level.
Our second aim is to compare the strength of different learning schemes in an
evolving competitive situation, that is, where the opponents also try to learn
efficiently. For this purpose, in the sense of statistical learning theory, every
agent needs to have a stream of stochastic input data on the basis of which he
can develop his models. In order to overcome the limitations of classical game
theory, an agent encounters in each round an opponent that is randomly chosen
from an opponent population. When all agents in one population employ a par-
ticular learning strategy, and all agents from the opponent population employ
another strategy, we can then see in favor of which population the equilibrium
develops.
Our third aim is to connect and compare the two previous aspects, evolution
and learning. Thus, we want to see what is better for agents and for populations
of agents, to adapt by evolution or to learn by individual experience.
Our model is the following complementary game played between members of
opposite populations, as introduced in [10]: A buyer and a seller meet and in-
dependently each make an offer between 0 and K (K here is a sufficiently large
integer, usually taken to be 50 in our simulations). When the buyer’s offer kb
is at least as large as the seller’s offer ks, a deal is concluded and the buyer
gains K − kb, the seller ks; otherwise, they gain nothing. Thus, in order to be
most successful, the buyer should offer not less than the seller is asking, because
otherwise he will not get a deal, but also not much more, in order not to pay
too much. We note that every integer between 0 and K is an equilibrium in the
sense that no player can do any better than playing that value if his opponent
does so. This game then is played repeatedly between members of two opposing
populations of the same size, the buyers and the sellers. In each round, the
members of the two populations are randomly paired, that is, every buyer is
paired with a randomly chosen seller. After a fixed number of rounds, the accu-
mulated gains of the agents in each population are compared, and on the basis
of this fitness function, some evolutionary scheme constructs a new population.
Thus, the basic situation is symmetric between the two players, the buyer and
the seller, and also between the two populations. We can then break that sym-
metry by equipping the buyers and the sellers with different strategy spaces.
The differences here could simply be differences of memory span, that is, how
many encounters an agent can remember and utilize for determining his own
current bid. The agents could also employ totally different strategies. Here, the
possible strategies could range from playing a random number to an elaborate
scheme for computing a bid on the basis of all information available from the
agent’s experience or even including the experiences of his friends in his own
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population.
In general, the agents of each population will adapt through individual learning
and through fitness based evolution. Thus, even if the agents in a population
act completely independently of each other, they will feel the long term effects
of the actions of their fellows through the collective adaptation of the agents of
the other populations.
If the members of one population, say the sellers, could coordinate their actions,
their best strategy would consist in always choosing that bid that is optimal for
them, K in this case. The other population would then have no choice but to
accept that and also play the same bid. However, as long as the buyer popu-
lation has not evolved to that state that is so unfavorable to them, it pays for
any individual seller to lower his bid and to increase his chance for a success-
ful deal. Thus, such an agent would be more successful than the ones keeping
to the population optimum K, and because of his higher fitness, his strategy
would then be more frequently represented in the next generation. Thus, in this
evolving scheme, the group optimum is not stable against defections in the own
population. In particular, those agents in a population that are individually
fittest can cause a decrease of the fitness of the population as a whole. This
relates to our first aim.
Also, since the members of both populations are trying to maximize their fit-
ness, one cannot expect that either population can enforce that equilibrium
that is optimal for itself onto the other population. In a symmetric situation,
we would expect K/2 as the eventual steady state. When the buyers and the
sellers employ different strategies, we can simply decide which strategy is supe-
rior by checking whether the steady state reached in that situation is smaller or
larger than K/2. In the first case, the buyers are doing better, in the second,
the sellers. This then allows us to address our second aim.
We can also play with such parameters as the generation length or the mutation
rate in the evolutionary step. In that way, we can compare the relative contri-
butions of individual learning and evolutionary adaptations, as formulated in
our third aim.
Although the rules of our game are extremely simple, the action takes place
at three different levels: The individual agents evaluate the information they
obtain from their interactions and use that to compute their next own actions
(first level, information evaluation and learning), they compete with each other
inside a population (second level, adaptation and evolution), and the popula-
tions are compared with each other (third level, competition between strategy
spaces). The link between the first two levels is provided by the fitness function,
the one between the higher levels by the collective dynamics at the population
level resulting from the individual optimizations.

While what we present here, clearly does not yet constitute a complete the-
ory, we believe that we have found a formal model that on one hand is simple
enough for easy simulations and also permits formal analysis, but on the other
hand is rich enough to capture many of the essential features of the conceptual
problems we wish to address.
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We shall first put our model into the perspectives of game theory and of cer-
tain traditions in economics. After that, we shall start with some mathematical
considerations before we present various simulations that both illustrate some
of our formal reasoning and yield insightful results beyond those that we can
demonstrate formally.
We thank a referee for constructive comments.

2 Game theory

In order to put the present work into perspective, we now shall discuss in more
detail how it fits into modern game theory. In the classical model of game theory
as introduced by von Neumann and Morgenstern[27], we have two players that
meets once. They have a finite set of action options, and the pay-off for each
of them is determined by her own and her opponent’s action. They are both
perfectly rational and possess and can utilize all relevant information. Thus,
they both try to maximize their pay-off function, each also knowing her oppo-
nent’s pay-off function and therefore choosing that action that best anticipates
the opponent’s move that is assumed to be in the same way anticipating. In
such a situation, there exists a Nash equilibrium[15] in which no player can
improve her pay-off by changing her action, given that the opponent will react
correspondingly in her own best interest. That Nash equilibrium need not be
unique; in fact, in our basic model game, each value k between 0 and K, when
played by both players, is a pure strategy Nash equilibrium. In addition, there
are mixed strategy equilibria. In particular, there is no rational way for a player
to decide which bid to play because each bid is a pure Nash equilibrium when
also played by her opponent.
We are therefore interested in the mechanisms that can select between all those
equilibria. Since in our model, the game is played repeatedly, and the agents
can benefit from their own experience (or those of other players in some version
of our game), this brings us to the theory of learning in games, see e.g. [5] as
a reference for our discussion of this topic. Also, the game is played in popu-
lations of agents, which leads us into evolutionary game theory where we can
use, e.g., [28] as a reference. Leaving the issue aside for the moment that in our
model we have two distinct populations, we are considering a random-matching
model where in each round, all players are randomly matched, but can observe
only their own matches. Also, in our model, no player acts in the interest of
the population, but only myopically pursues her own aims. Concerning learning
and evolution, we have a case of fictitious play where players only observe (and
perhaps memorize) the results of their own matches. (Nevertheless, we shall
also consider scenarios where players have information about the performance
of selected other players in their own population, their “friends”.) The players
then evolve after many rounds of play according to their relative fitness in their
population (as in evolutionary algorithms), in contrast for example to replica-
tor dynamics where the relative frequencies of strategies continuously change
according to their actual performance (see [9]). In fact, we shall discuss below
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the issue of generation length, i.e., after how many rounds the fitness of the
players is evaluated; the extreme case of generation length 1 could be made to
correspond to discrete time replicator type dynamics. Such an on-line evolu-
tionary adaptation, however, would prevent individual agents from improving
their performance on the basis of their own experience, that is, learning. In
other words, we are interested in a hybrid of games with learning and evolu-
tionary games, in order to assess the relative strengths and problems of the two
schemes.
Coming to evolutionary aspects, the concept of an evolutionarily stable strategy
(ESS) as introduced by Price and Maynard Smith [13] is not directly applicable
to our setting because the matches are played between members of different
populations. (Also, as emphasized for instance in [26], the concept of an ESS
takes as its base situation a monomorphic population, that is, one where all
members utilize the same strategy. In many applications, however, one is nat-
urally interested in the stability of a polymorphic population against invasions
of mutants. In our case, however, the basic equilibria that we shall take as our
default situation do consist of monomorphic populations applying pure strate-
gies.) Versions of evolutionary stability for multipopulation games have been
developed in [24, 2], for instance (see [28] for further references). In those defi-
nitions, a population with a rare mutant in one of the populations is compared
with the original population in its performance against the other unchanged
populations. By the result of [20], a strategy is evolutionarily stable iff it is a
strict Nash equilibrium. In particular, when the game is at a pure Nash equi-
librium, any mutant strategy performs less well than the dominant strategy –
provided the opposite population does not adapt to those mutants. This provision
shows that the concept of evolutionary stability is essentially a static one and
therefore not so well suited for our setting. Whether it will be advantageous for
members of a population to adapt to a rare mutant in the opposite population,
however, depends on the relations between the various parameters as the follow-
ing heuristic reasoning shows. When the generation length is short, that is, each
player plays only few rounds before her fitness is evaluated, then it will not pay
off to adapt to a possible rare mutant in the opposite camp. Namely, in that
situation, a player is unlikely to encounter such a rare mutant in her lifetime,
and there is therefore no point in playing a strategy that is most likely to be
inferior in all encounters. When the number of matches played becomes higher,
comparable to the size of the population, then there is a substantial chance to
encounter a rare mutant at least once. Let us assume that the player is a buyer,
and the rare mutant is a seller that asks a higher price, say k + 1, than the
population equilibrium k. When the buyer offers k + 1 in all m matches, her
accumulated gain is m(K − k − 1). When she offers only k and encounters the
mutant once, she will accumulate (m− 1)(K − k). So, adapting to the mutant
will be advantageous when m < K − k. As a typical evolutionary outcome of
our game is that k ∼ K/2, this means that evolutionary stability will depend on
the population size. In the preceding heuristics, we have assumed that there is
only a single mutant. If there are more of them, of course, they can destabilize
the reaction of the opposite population more easily. In any case, we arrive at
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the heuristic conclusion that in a sufficiently large population, invasions of rare
mutants should not lead to a response adaptation of the other population that
ultimately makes the performance of the mutants superior. This is, of course,
in accordance with the general idea of an evolutionarily stable strategy. – The
issue of stability of strategies in multipopulation games can, however, also be
addressed by the inherently dynamical framework of replicator dynamics. This
approach has been developed in [1, 8, 28]. In particular, in our game, mixed
Nash equilibria are no longer (Lyapunov or asymptotically) stable for the repli-
cator dynamics, as follows from the analysis of [10]. The pure Nash equilibria,
however, remain stable attractors, and it depends on the initial conditions which
one is ultimately approached. This fits, of course, with the general theory. A
strategy combination of the two populations is evolutionarily stable iff it is a
strict Nash equilibrium (which necessarily is pure) (by [20], as already men-
tioned) iff it is asymptotically stable for the standard replicator dynamics, see
[7, 8, 28]. In a similar direction, we have the regular and pay-off monotonic evo-
lutionary systems of [26], a replicator type dynamical model of multi-population
games, whose asymptotically stable states also yield Nash equilibria.
In summary, in the context of game theory, the distinctive features of our model
are the following. A-priori rational reasoning as in the standard game theoretic
paradigm does not lead to a unique solution because there exist multiple equi-
libria. Which one is achieved depends on the historical contingencies of the
evolution process. Those in turn are governed by the available strategic options
for utilizing the information obtained by repeated interactions with different
opponents. Since we have a 2-population game, we can equip the two popu-
lations with different strategy spaces, in particular different learning schemes,
and can then see which one fares better. In other words, the game theoretic
degeneracy of our model allows us the comparison of evolutionary and learning
mechanisms that can break that degeneracy favorably. In our game, players
can have full information about the pay-offs of themselves and their opponents,
but this information is not so helpful as the population dynamics are not only
shaped by their own actions and the responses of their opponents, but also by
the ones of their conspecifics with whom the compete via their fitness function.
The players, however, do not have information about the previous actions of
their current opponents, but only information about the actions of their pre-
vious opponents in their past encounters with them. We shall also investigate
the situation where a player also has information about the behavior of the
opponent’s of some other members of her own population, her “friends”, but
since in any case the opponents are randomly sampled, this will not lead to
decisive advantages in our evolutionary simulations. Thus, for instance, some of
the learning schemes analyzed in [26] are not applicable. In particular, a player
cannot distinguish between her different opponents and so there is no way how
a player could respond to her opponent individually.
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3 Economic ideas about the evolution of insti-
tutions

While we have mentioned Adam Smith in the introduction, a conceptually closer
starting point for our model is the work of Carl Menger[14], the founder of
the Austrian school of economics, with his (direct or indirect) disciples F.von
Wieser, E.von Böhm-Bawerk, L.von Mises, F.von Hayek and J.Schumpeter (see
e.g. [19]). For Menger, economic phenomena were the emergent product of
individual rational actions in situations where information is meagre and where
actions are costly. Methodological individualism kept Menger and his school
critical of techniques of aggregations as they underly neoclassical economics
(see e.g. the standard reference [17]) and of ideas of central planning or welfare
economics, and emphasis on rational actions clearly distinguished them from
philosophies like utilitarism. More recent work on the evolution of institutions
as the individually unintended collective result of individual actions that are
rationally optimizing their own target functions in the presence of limited in-
formation includes [18, 23, 16]. For a pertinent case study, see for instance [6].
This approach has been cast into the framework of game theory by P.Young[30].
Young’s setting makes the assumptions that players are randomly drawn from
large populations, that their probability of interactions depends on exogeneous
factors like spatial proximity, and that they try to act rationally on the basis of
the limited information that they have available. Whereas the second point is
not elaborated upon in our model, the other two ones constitute also a basis for
our contribution. We should point that in our model, there is no room for bar-
gaining. While this restricts its applications to certain economic situations, it
is essential for simplifying the strategy space available to the individual players
so that their rational strategy choice behavior can be investigated more easily.
Nevertheless, our scenario can be extended to include more complex forms of
social interaction, like punishment [11].
Also, Young[30] considers the effects of random perturbations caused by unpre-
dictable exogenous events or agent behaviors. Although we do not elaborate
upon all these aspects here, this can also be naturally incorporated into our
model, and of course, it also relates to the discussion of the stability concepts
in the formal analysis, see [3, 29].

4 Adapting to random distributions

Let kb(n) and ks(n) be the bids of a buyer and a seller that interact at time
n ∈ N. When the seller chooses his bid k with probability p(k), then his expected
gain at time n is

K∑
k=0

k p(k) p(k ≤ kb(n)) (1)

because he gains k when his bid is not larger than the one of the buyer he
encounters.
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When the populations are sufficiently large (compared to the generation length),
the chance that our seller encounters the same buyer repeatedly is small and can
be neglected. In particular, this implies that the buyer’s bids will not reflect
previous bids of that seller, but rather constitute a response to the action of
other sellers that are randomly sampled from the population. Assuming that
our seller is not in contact with his fellow seller, the action of the buyer will
then be random for him, that is, kb(n) can be treated as a random number.
The underlying distribution will in general not be stationary in time because
the buyers may also learn from their previous encounters and adapt their bids
correspondingly.
(1) leads to the following simple observation. When we consider kb(n) as a
random variable, the seller should find that response 0 ≤ ks ≤ K that satisfies

ks = argmax k p(k ≤ kb(n)). (2)

When that value is unique, it is the best strategy to always play that number
because (1) is a convex combination of the different k values since

∑
k p(k) = 1

as we are dealing with probabilities. When that value is not unique, he can
choose any convex combination of the maximizers.
Given the probability distribution for kb(n), we can then determine the optimal
bid ks (of course, the crucial point is that this probability distribution for the
buyer bids is not known to the seller, and so, in general, he will not be able
to identify that optimal value, but nevertheless, it is instructive to compare
possible strategies with the optimal one). When the distribution for kb(n) is a
Dirac distribution with the value k0, that is, when the buyer always selects the
same value k0, then obviously the seller’s best choice is to utilize the same value.
When the values of kb(n) are distributed uniformly, that is, p(kb(n)) = 1

K+1 for

kb(n) = 0, . . . ,K, then the expected gain for the seller’s choice k is k(K+1−k)
K+1

whence the optimal value is k = K+1
2 which leads to the expected gain K+1

4 .
This then is better than any other response. For example, if the seller also
chooses his bid k randomly with the same uniform distribution, his expected
gain is

1

K + 1

K∑
k=0

k p(k ≤ kb(n)) =
1

K + 1

∑
k
K + 1− k
K + 1

=
K(K + 2)

6(K + 1)
(3)

which is smaller than K+1
4 . This also applies when the seller chooses as his bid

at time n his opponent’s bid kb(n − 1) from the previous round. The reason
is that we are assuming here that the buyer’s bid is random, and so, when
following the buyer’s previous bid, the seller simply takes a random value for k.
When, in contrast, the seller averages the buyers’ previous bids, that is, chooses

ks(n) =
1

n− 1

n−1∑
i=1

kb(i) (4)

(where kb(i) is the value of his opponent encountered at time i), then, when
n gets large, by the central limit theorem, ks(n) approaches the mean value
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of kb(n), assuming that the underlying distribution is stationary. When that
distribution is uniform, we end up with the optimal value k = K+1

2 . So, at
least in this simple case, we can deduce that averaging over previous bids is a
better strategy than simply taking the value encountered in the last step. (This
argument generalizes to certain (but not all) more general distributions for the
buyer bids.)
We also see the following. When both seller and buyer start with the same
random distribution for their bids and adopt the strategy to copy the previ-
ously encountered opponent’s bid, then they will stay with that same random
distribution forever. Thus, no progress is made in that case. This is somewhat
analogous to persistent miscoordination in iterated two-player games, see e.g.
[4]. In fact, in our game, copying the previous opponent’s bid is the rule that fol-
lows from Cournot adjustment, that is, from always choosing the best response
to the previous round, see [5]. – When, in contrast, both players average, then
they are both expected to end up with the same value k = K+1

2 when the time
n is sufficiently long. Also, when they both try to optimize according to (2),
even though they do not know the other’s strategy, they are expected to end up
both with the same fixed value which when they both act optimally will be the
value k = K+1

2 which we had already found to be the optimal against a uniform
random strategy. But this already leads us to the issue of

5 Learning

In our setting here, learning consists in using the experience from previous
encounters to determine the bid for the present round. The problem then is
to utilize the information from those previous encounters in the most efficient
manner, without wasting too much effort with useless or disadvantageous trials.
Since both populations are adapting, we have a more subtle situation than
simply trying to learn an unknown, but fixed probability distribution as for
example in statistical learning theory [25].
In principle, the learning strategy should compute the actual bid as a function
of all previously encountered opponent bids. To learn such a function from
experience, however, takes a long time. In fact, that time will be too long if the
other population settles more quickly at some value that is advantageous for
it. Therefore, it makes sense to do some preprocessing of the experience before
trying to figure out the response. A natural such complexity reduction consists
in taking some suitable average of the encountered opponent values. We have
already seen above that in a simple model situation, this is an asymptotically
optimal strategy. Of course, when both populations adapt at the same time,
but perhaps according to different strategies, that analysis is no longer strictly
valid, and in certain cases, it might be better to use some weighted average,
with higher weights for the more recently encountered values. In fact, when
both populations employ such an averaging strategy, then giving higher weights
to the more recently encountered values can lead to a faster convergence to the
optimal value.
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Although, as already mentioned, the problem here is more difficult than the
one addressed by statistical learning theory, it is nevertheless instructive to
consider how the latter would go about it. Here, a seller would try to model
the probability distribution utilized by the buyers. The models are taken from
some model class Λ parameterized by a parameter α. Let q(k ≤ kb;α) be the
probability that for the model corresponding to α, the value k is not larger than
the buyer’s bid kb. The underlying assumption upon which the seller models
the buyer here is that the latter’s probability distribution is stationary, that is,
does not depend on n. When the seller then selects his bid k according to a
probability distribution q(k;α), his empirical risk after encountering the buyer’s
bids kb(1), . . . kb(n) then is

Remp(α) = K − 1

n

n∑
i=1

∑
k

k q(k;α) q(k ≤ kb(i);α). (5)

Here, he assumes that those bids kb(1), . . . kb(n) represent an i.i.d. sample of the
buyer’s distribution. Of course, in general, this assumption is not valid because
the buyers also adapt, but we nevertheless proceed. The seller then chooses that
parameter α(n) ∈ Λ for which the empirical risk Remp(α(n)) is minimized. By
the same convexity argument as before, instead of selecting k according to some
distribution q(k;α), he finds that it suffices to take one single value k(α(n)),
that is, to choose a single valued distribution. His empirical risk then becomes

Remp(α(n)) = K − 1

n

n∑
i=1

k(α(n)) q(k(α(n)) ≤ kb(i);α(n)). (6)

In particular, he will then play that value k(α(n)) at the next step. In principle,
as a heuristic strategy, this should also be useful in the case where his opponents
are also adapting, even though the values kb(i) then no longer represent an i.i.d.
sample.

6 Dynamics at the population level

As explained, we are less interested in the competition between individual agents
within a population than in the relative performance of populations with differ-
ent types of agents. This relative performance then is gauged by the value of
the equilibrium eventually reached via the repeated interactions of the agents
from the opposite populations. We can make the following simple observations:
When the players of one population always play the value k0, then the other
populations has no choice but to adapt to that value as well. This implies
that a population whose members converge faster than the ones from the other
camp to a value that is favorable to them will be at an advantage. According
to the above analysis, an averaging strategy dampens fluctuations and thereby
improves the convergence rate. This speed of convergence, however, does not
only depend on the own strategies, that is, need not reflect an absolute supe-
riority of those strategies, but also reflects their reactions and adaptations to
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the actions of the members of the other population. Thus, it also depends on
the state of the dynamics inside the other population. Let us consider an ex-
treme case: The opposite population plays rather randomly, say chooses offers
from the uniform distribution of integers between 0 and K. The population
under consideration, however, is subject to quick and strong selection between
its agents. That means 1) that the generation length between the evolutionary
steps is very short, perhaps even = 1. Thus, each agent has only one encounter
after which his performance is evaluated. That also means 2) that only the
very best agents, perhaps only a single best one reproduces, and his identical or
slightly mutated offspring constitutes the next generation. In that case, chances
are high (and easily computed) that in each generation there is some agent in
each generation that strikes a successful deal with a very advantageous offer,
for example a buyer offering very little may by chance encounter a seller asking
even less. Thus, because of the speed of evolution assumed, our population will
quickly settle around a very favorable value. If the other population then adapts
at all, it is forced to accept that value.
Thus, the speed of evolution in one population and the incoherent state of the
other population together lead to an equilibrium value that is very favorable to
the first population.
In contrast, for any averaging strategy, the speed of convergence will be slower
when playing against a more random opposite camp.
For more complex strategies, a more erratic state of the opposite population
may also slow down the own convergence. When a particular response needs to
be created for each previous opponent bid (as in the complex 1-round opponent
strategy described below), then an erratic opponent population forces the play-
ers to test many different options, and a player that has already created good
responses for many bids may still acquire a low fitness when by chance exposed
to bid values not yet encountered by himself or his ancestors. Conversely, when
the opposite population is rather homogeneous and constant, the players may
evolve quickly to seemingly stable states, but this may hide the fact that they
do not possess adequate responses to situations that, while possible by the rules
of the game, they and their ancestors never experienced.

7 Different strategies and simulations

Before presenting the simulation results, we need to introduce some notations
for the system parameters and the strategies that will be used in this paper:
First the parameters for the evolutionary scheme of replacing a population of
players by a new one composed of possibly mutated members of the present
one with a fitness based selection: (1) generation length (time): the number of
rounds played (time steps) between two consecutive selections (if applicable);
(2) selection percentage: the percentage of the players who will be chosen as
parents to generate the offspring during the evolutionary process;
(3) mutation rate: the rate of random mutation during the evolutionary process.
Next we list the main strategies investigated, classified on the basis of the types

11



of information they use:

1. single-number: players use no information at all; each player chooses a
fixed random offer that will be updated through the selection

2. average-previous-opponent: the average of one’s opponents’ bids in the
previous, say m (limited and usually much smaller than the generation
length), rounds

3. for m = 1, that strategy is called 1-round opponent: each player utilizes
the offer of his opponent in the most recent round

4. n-round opponent: each player can use the offers his opponents make in
the last n-rounds (and not only their average) – here, we only consider
the values n = 1 (which is the previous strategy) and 2, as otherwise, the
scheme gets computationally too complex and performs too poorly

5. average-all-previous-opponent: the average of one’s opponents’ bids in all
previous rounds (thus, there is no fixed m here)

6. average-friend-opponent: the average of one’s friends’ opponents’ bids in
the most recent round (here, each player has a certain number of friends
within his own population)

7. average-all-friend: the average of one’s friends’ bids in the most recent
round (thus, here, in contrast to the previous strategies, no information
about the other population is used)

8. friendship network (average-successful-friend): the average of one’s friends’
successful bids in the most recent round (here, information from the other
population is used indirectly, but selectively, because their offers decide
which of the friends are successful)

For the n-round opponent, for n > 1, a scheme is needed to convert the n
numbers remembered into a single response. Of course, we could simply take
their average, which then reduces this to strategy 2, but we could also employ
some other scheme. One possibility is to evolve a look-up table that lists the
responses for any pair of numbers between 0 and K. Similarly, we can also utilize
look-up tables for the other strategies, except 1, that is, instead of simply playing
the corresponding average, each agent could have a look-up table that specifies
a specific response to each number between 0 and K (formally, strategy 1 is
also a special case of this, the output of the look-up table simply being reduced
to a single number that is uniformly applied to any input). Thus, a strategy
comes in two variants, a direct one and another one with look-up table. We call
these two variants ’simple’ and ’complex’, resp. As noted, the 2-round opponent
strategy does not possess a simple version.

First of all, we would like to have a stable setting for our model. The stability
of the model may primarily depend on the values of the system parameters,i.e.,
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generation length, selection percentage and mutation rate. The effect of the
generation length is somewhat dependent on the complexity of the strategy un-
der consideration. We will enter into this issue further later on. Generally if the
selection process takes place, accompanied by evolving the look-up tables, then
an appropriate generation length will be any number ranging from 100 to 1000
time steps (rounds of the game). As one knows from evolutionary optimization
methods, an appropriate choice of the selection percentage is essential. If it is
too small, then the selection will be severe and some potentially good strategies
can get eliminated too easily. If it is too large, then the selection will be very
loose and the optimization will take much longer. According to our numerous
simulations, an effective selection percentage will be 0.5. For the random mu-
tation rate, a good choice will be 1 ∼ 5 percent and in our simulations it is set
to be 1 percent. Our population size is always 400.

7.1 The effects of generation length

The generation length, that is, the number of rounds played before an evolu-
tionary update, expresses the relation between the time allocated to learning in
the more complex strategies and the evolutionary adaptation. Short generation
length means that individual agents have little time to improve their perfor-
mance on the basis of memory and learning, but rather are evaluated according
to their short time performance. In other words, their experience is quickly
transferred to the next generation. That generation can then explore new re-
sponses not on the basis of systematic learning, but on the basis of random
mutations.
We can then simply check this issue in our simulations by letting two popula-
tions with the same strategy space, but with different generation length, play
against each other and see which one performs better.
For the single-number strategy, it then turns out that the minimal generation
length, 1, is optimal. This is rather obvious because a more quickly evolving pop-
ulation should have an advantage. This is confirmed by the simulation results.
For more complex strategies such as the 1- or 2-round opponent strategy or the
friendship network strategy, the situation is not so clear, as their is a trade-off
between individual improvement based on more experience and the speed of the
evolutionary search. The simulations results are not yet conclusive. In some
simulations, there is a small chance for the 2-round opponent strategy to gain
some slight advantage over the 1-round opponent strategy when the generation
length is as long as 20,000 steps or even longer. Note that for shorter generation
length, we have demonstrated in [10] that the 1-round is superior to the 2-round
strategy because the latter takes too long to evolve. Further simulations with
very long generation times are required.
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7.2 Efficient Information Use

A simple analysis uses the Shannon entropy [21]

S = −
K∑

k=0

p(k) log2 p(k), (7)

where p(k) is the probability (frequency) that offer k has been chosen. In fact,
in general, this will depend on the time step n, and so, we should rather write
p(k, n) (which may approach a stationary p(k) as n→∞).
S is maximal for a uniform distribution of the values of k and becomes 0 when
only a single value of k is played. In other words, the evolution of S expresses
how quickly a population reaches a unique response. One may argue that (7)
expresses uncertainty and that therefore a fast decrease of this entropy cor-
responds to a fast utilization of information. Figure 1 gives some simulation
results. In particular, populations with a fast decrease of this entropy are more
successful.

The simulations behind Fig.2 show that the complex average-all-previous-
opponent performs better than the complex 1-round opponent strategy. One
could argue that this should be so because the former utilizes more informa-
tion in each step than the latter. A simpler reason is that averaging reduces
fluctuations and therefore speeds up convergence. Further figures (Figs. 4 and
5) demonstrate that simple strategies converge faster and perform better than
complex ones. However, the simple 1-round opponent strategy performs poorly
when compared with strategies utilizing some nontrivial averaging. This is in
line with our above mathematical analysis.

7.3 Ranking Different Strategies

So far, we have investigated many different types of strategies. It is of interest to
check whether we can consistently rank their performances. The basis for such
a ranking is of course a pairwise comparison, that is, we let one population, say
the buyers, employ one type of strategy and the sellers another one. Here, we
need to fix the other parameters, like generation length, mutation rate etc, to
have a ceteris paribus comparison, even though we realize that in principle the
ranking could change with different parameter values. In the simulations pre-
sented below, generation length is 1000, selection percentage is 0.5 and random
mutation rate is 1 percent.

In [10], some of the complex strategies have been compared. The 1-round
opponent can beat the 2-round opponent strategy because the former settles
down to equilibrium more quickly. The performance of the friendship network
strategy is comparable to the one of the 1-round opponent strategy, neither of
them showing consistent superiority. The friendship network strategies do not
prefer any specific type of network topology (keeping the average degree of the
networks fixed).

For a more systematic investigation, however, we should compare different
types of averaging strategies, in particular the average-previous-opponent and
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the average-friend-opponent strategies. In the former, the average is performed
over the player’s own opponents’ offers in the previous, say 5, rounds, whereas
in the latter he averages his friends’ opponents’ bids in the last round. In the
average-friend-opponent strategy, one can include the player’s own experience,
that is, his own opponent’s bid in the last round. Because the opponents are
randomly taken from the opposite population, for sampling purposes this makes
no difference, as long as the average is computed from the same number, say
5, of bids from the opposite camp. As the network topology might affect the
speed of convergence of the averaging scheme, this might have some effect here,
however. In any case, for a valid comparison between strategies, we assume that
the numbers of offers taken for both averaging procedures are the same, say 5.

We first compare the simple average-previous-opponent to the simple average-
friend-opponent, that is, the strategies not employing look-up tables, but taking
the computed average directly as the next own bid. The first one uses a some-
what larger sample, because it takes the bid of one member of the opposite pop-
ulation at 5 different times, that is, it takes a spatio-temporal average, whereas
the second averages over 5 bids taken at the same time, that is, it takes only a
spatial average. In any case, both averaging strategies quickly converge to their
equilibrium, the population average of the opposite population, typically 25. It
also appears that the average-previous-opponent converges slightly more slowly
than the average-friend-opponent, because the latter uses a more recent sample
from the opposite camp.

When we look at the complex strategies, that is, where look-up tables are
used to convert the computed average into a response,we see from Fig. 6 that in
general the average-previous-opponent can be slightly better than the average-
friend-opponent. Thus, the larger sample space, even though it uses partly
outdated information can yield an advantage.

We now turn to the average-successful-friend strategy. Here, each player
takes the average only of those offers of his friends and himself from the last
round that have led to a successful deal. (If none of those offers is successful,
then a random offer between 0 and K is chosen.) (This average-successful-friend
strategy is the friendship network strategy examined in [10].) In the beginning
of the game, some randomness is introduced due to the low success rate. Also
apparently choosing only successful offers for averaging makes the players more
and more timid in making their offers. This is the reason why the average-
previous-opponent strategy is superior to the average-successful-friend strategy,
both in the simple and in the complex setting. In Fig. 7, the buyers who use the
simple average-previous-opponent strategy can achieve the equilibrium value 14
by adapting to the sellers who use the average-successful-friend strategy. (A
coarse estimate would in fact expect the even lower equilibrium value 12.5)
Fig. 8 presents the competition between the two strategies with look-up tables.
Now the difference in the performance between the two strategies is not that
large, compared to the case without look-up tables. This is partly due to the
fact that the players are learning. We also notice that it takes the average-
previous-opponent a little longer than the average-successful-friend to reach the
equilibrium.
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In the average-all-friend strategy, a player does not distinguish whether his
friends are successful or not, but simply averages all their bids. The simple
average-all-friend strategy matches the simple average-previous-opponent strat-
egy, with both converging to 25. This happens because both now make use of
the same trivial random distribution. Not surprisingly, the complex average-
previous-opponent strategy performs better than the complex average-all-friend
strategy, see Fig. 9. The reason, as above, is that the former is using a larger
sample space.

We have also compared the efficiency of different spatial averaging strate-
gies, namely, average-friend-opponent, average-successful-friend, and average-
all-friend. The comparison between the last two is rather straightforward with
average-all-friend prevailing over average-successful-friend. The average-friend-
opponent strategy was found to be better than the average-successful-friend
strategy, with and without look-up tables. Fig. 10 shows an example of our
simulations. It is interesting to see that the average-friend-opponent strategy is
performing nearly equivalently to the average-all-friend the performance, with-
out and with look-up tables (Fig. 11). This observation again confirms that
using less selective information can be advantageous. This is not surprising
since we have already observed that the 1-round opponent can beat the 2-round
opponent strategy.

We can now rank the different strategies. The best strategy should be simple
average-all-previous-opponent. We have found that average-previous-opponent
is nearly as good as average-all-previous-opponent when the number of rounds
for averaging is not too small. Hence the second rank consists of complex
average-all-previous-opponent and average-previous-opponent. The third posi-
tion is taken by average-all-friend and average-friend-opponent. At the fourth
position, we would put 1-round opponent and average-successful-friend. The
lowest position belongs to 2-round opponent. There is yet one strategy that
needs to be placed, the single-number strategy. This last strategy does not use
any information but can still be favored in the competition with other more
complex ones that use more information.

From the above ranking we see that whether a strategy is good or bad is
not completely decided by how much information it has used. Rather, a good
strategy should be capable of processing the information more efficiently and
thus setting an early advantage as quickly as it can. In our simulations, we find
that a weighted averaging strategy is not doing better than the normal averaging
strategy. The weighted averaging is perhaps more reasonable by assigning the
most probable offers more chances but its adaptation also takes longer. Being
simpler and more flexible is also good for a strategy. In this regard, the simple
averaging strategy that does not need to evolve the look-up tables can beat the
complex one that does. Not to mention that the single-number strategy can
beat a lot of more complex strategies.
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8 Conclusion

We have investigated an iterated game played between members of opposite
populations. The individual optimization leads to a population dynamics that
determines the final equilibrium reached. Equipping the members of the two
populations with different strategic options in general will lead to an equilib-
rium that is more favorable to one of the two populations. A set of strategies
that is good for a population when consistently employed by all its members
incorporates quick and efficient use of the available information without a long
learning phase, that is, rather forego a careful optimization when it takes too
long to converge. Also, a population with bolder players does better than one
with more timid ones.
It remains to investigate the dynamics within populations more systematically
when the individual players have different strategic options. The ones that
would cause advantageous effects at the population level might themselves be
disadvantaged inside their population and therefore get eliminated by the evo-
lutionary scheme which then also causes a disadvantage for the population.
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Figure Captions:
Fig. 1: The time evolution of distribution of offers made by the sellers

during the first 50 generations (1000 rounds per generation)(top panel). Here
both populations use the 1-round opponent strategy. As shown, the peak where
the most favorable offer appears becomes higher as the evolution continues. The
final value of the peak in this figure is 300 which shows the number of players
who have bid 25. The bottom panel shows the time evolution of the entropy
related to the distribution of sellers’ offers.

Fig. 2: The complex average-all-previous-opponent, where the player bids
according to all his previous encounters’ offers by taking an average, versus
the complex 1-round opponent strategy, where the player only recalls his most
recent interaction (’complex’ here means developing look-up tables). In both (a)
and (b), the population with the average-all-previous-opponent strategy is doing
better. Learning is quick and the equilibrium is rather stable. The standard
deviation is calculated from 100 samples with different realizations.

Fig. 3: The complex average-all-previous-opponent strategy versus the 2-
round opponent strategy. In both (a) and (b), the averaging strategy is superior.
Compared to the situation in Fig. (2), the optimization takes much longer and
there also exist some fluctuations even after the equilibrium has been reached.
This occurs mainly due to the excessive information embedded in the 2-round
opponent strategy.

Fig. 4: The simple- versus the complex average-all-previous-opponent strat-
egy. The simple averaging strategy is superior to the complex one. The median
fee, namely the gap, is still somewhat high in both (a) and (b). This happens
mainly because the players who employ the simple averaging strategy can con-
verge more quickly and set an early advantage. The players who use the complex
averaging strategy have to adapt accordingly and are forced into a disadvanta-
geous situation. Learning is quick because of the convergence due to the simple
averaging.

Fig. 5: Comparison between the simple average-all-previous-opponent and
the complex 1-round opponent strategy. The simple average-all-previous-opponent
is better than the complex 1-round opponent.

Fig. 6: The complex average-previous-opponent versus the complex average-
friend-opponent strategy. The former can do slightly better than the latter,
mainly because the former has a slight larger sample by doing spatio-temporal
averaging and the latter is only doing spatial averaging.

Fig. 7: The simple average-previous-opponent versus the simple average-
successful-friend strategy. The former is superior. Distinguishing the friends by
success makes the players too cautious.

Fig. 8: The complex average-previous-opponent versus the complex average-
successful-friend strategy, with the former defeating the latter. Here the advan-
tage is not significant as in Fig. 7, primarily due to effective learning.

Fig. 9: The complex average-previous-opponent versus the complex average-
all-friend strategy, with the former being slightly better.

Fig. 10: The comparison between the complex average-friend-opponent and
the complex average-successful-friend strategy. The former is better, which
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indicates again that selecting only successful friends makes the players too timid.
Fig. 11: The complex average-friend-opponent is almost equivalent to the

complex average-all-friend strategy. Compared to what has been shown in Fig.
11, using less selective information is not inevitably disadvantageous.
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