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Abstract

In this paper, we present an adaptive investment strateggrfeironments with periodic returns on
investment. In our approach, we consider an investment hvagre the agent decides at every time step
the proportion of wealth to invest in a risky asset, keephrggrest of the budget in a risk-free asset. Every
investment is evaluated in the market via a stylized returimgestment function (Rol), which is modeled
by a stochastic process with unknown periodicities andevenoise. For comparison reasons, we present
two reference strategies which represent the case of agightzero-knowledge and complete-knowledge
of the dynamics of the returns. We consider also an invedtisteategy based on technical analysis to
forecast the next return by fitting a trend line to previousereed returns. To account for the performance
of the different strategies, we perform some computer exyats to calculate the average budget that can
be obtained with them over a certain number of time steps. s§ara for fair comparisons, we first tune
the parameters of each strategy. Afterwards, we compargsitiermance of these strategies for Rols with
different periodicities and levels of noise.

1 Introduction

Finding a proper investment strategy is a problem that has bddressed by many researchers from different
areas. In economy, this problem usually concerns the beh#vat an investor should follow in order to
maximize the profits under an uncertain environment. Todghi, researchers usually investigate the relation
between methods for optimization under uncertainty, tiferdint preferences of an investor and the amount of
information available from the environment. For this, éifnt measures of risk aversion have been proposed
together with the classification of investors by their bebatowards risk (e.g. risk-averse, risk-neutral or
risk-seeking behaviors), see [3]. Many researchers haga akso concerned in finding different manners to
control therisk-exposure Many of the proposed methods are based on decision-makihgtdity theory and
are addressed to scenarios where the investor can choeseebanvesting in a risky or a risk-free asset, see
[4,118,19/ 20]. And other researchers have extended thietproblem of portfolio diversification, where more
than one risky asset is considered, $seel[26, 27, 28].

On the other hand, many researchers have used differenimadelrning methods to find good investment
strategies in different type of stochastic environmentsr éxample, inl[25] the authors use neural networks

Paper submitted to Advances in Complex Systems (Noveraba), 2


http://arxiv.org/abs/0709.4464v2

to find patterns from financial time series, where the mair ot find changes in volatility. And in_[11],
the authors propose the use of a risk-sensitive reinfornefearning algorithm to find the most proper policy
for controlling under constraints and applied it to the cohbf a feed tank with stochastic inflows. Other
techniques from machine learning that are frequently usethfestment decision problems are those based on
evolutionary computatianFor example, those usimgenetic programmingndgenetic algorithmsgor portfolio
management, inducing rules for bankruptcy prediction, asgigning credit scoring, see [6]. Some investment
strategies based on genetic programming techniques ysemdl to profitable trading strategies, however, they
usually find strategies which are difficult to understand smhetimes they cannot be funded [17,133,.36, 37].
Even though investment strategies that are based on gegtiGthms may be also difficult to abstract and
to explain, we believe that they are more natural and uraledsble than those using genetic programming
techniquesl|7]. However, many of these approaches arecgiglienvironments that are stationary; this means
that some of them cannot be directly applied to changingrenmients. In the literature, there are some
researches which have investigated the use of genetidtalgerin changing environments [5,/14]. However,
to our knowledge, they have not been applied specificallyhéogroblem of controlling the proportion of
investment in periodic environments.

On the other hand, the typical scenario to study investmieategies is to let an agent choose between
betting in a lottery or receiving a constant amount of moify This simple scenario is usually extended to
different type of investment models where investors arernonmly referred to as agents and the complexity
of the investment models may differ considerably, see [8)220. In some of these models the amount of
money that the agents invest in the market is assumed to pentianal to their budget, this assumption is also
called investment fraction or investment proportion. Reskers investigate in these models from the optimal
investment strategies to the different properties thatrgenia the artificial market, see [27,/28]. Interestingly, if
the market is simply treated as a random variable and theopiop of investment is fixed to a constant value,
then it has been shown that eventually the agent looses atiahey in the course of time [31,/38]. In order to
avoid bankruptcy, the agent may have an income,|[21, 34 0B8] budget-barrier may be assumed [23]. Some
researchers have investigated different strategies tiwatdahe proportion of investment in this type of models
for different scenarios [28, 32]. On the other hand, someradlathors use different artificial market models to
compare the performance of agents with zero-intelligemeerational agents [9, 12].

This paper may also draw interest on the research area efpaécognition of time series. In particular,
for the cases when there is no prior knowledge of the existai@ periodic signal or of its characteristics,
see|[1| 39]. Note that with some small proper changes on thygoped adaptive algorithm, a useful algorithm
could be proposed for the detection and measurement ofdiesmnal in time series.

In this paper, we propose a new approach based on evolutidinfting investment strategies in periodic
environments. This paper is organized as follows. Seélideszribes the investment model where the agent
decides at every time step the percentage of wealth to investisky asset keeping the rest in cash. Section
presents an adaptive investment strategy based3ematic Algorithm(GA) for environments with periodic
time series. In Sectidn 4 we present the results obtainediffierent computer experiments. We decided to
perform our computer experiments in a controlled scenahierathe dynamics of the environment are known.
For that reason, we assume that the risky asset is modelegtbgteastic process with changing periodicity and
different levels of noise, i.e. stylized exogenous retupnesented in Sectidn 4.1. For the sake of completeness,
we compare the performance of the adaptive strategy prddosthis paper with other investment strategies
which are discussed in Sectibnl4.2. For our comparison, alade two reference strategies which represent
the agent with both zero-knowledge and complete-knowleddbe dynamics of the Rol. We also include an
investment strategy based on technical analysis thatdigsforecasts the next return by fitting a trend line
to the previous received returns. To account for the perdoga of the different strategies, we perform some
computer experiments to calculate the average budgetdhate obtained with them over a certain number of



time steps. The experiments to account for the performahtieednvestment strategies are divided into two
sections. First, in Sectidn 4.3 we consider a stationaryr@mment, i.e returns with fixed periodicity, and in

Sectior[ 4.4 we consider a non-stationary environmentghigm with changing periodicity. To assure for fair

comparisons, we first tune the parameters of each stratejgfserwards, we compare their performance for
returns with different levels of noise.

2 Investment Model

We consider an investment modell[31}, 32] where an agent imctaized by two individual variables: (i) its
budgetz(t), i.e. its wealth and (i) itsnvestment proportion(t), i.e. its attitude towards risk in a market. The
budget,z(t), changes in the course of timéy means of the following dynamic:

a(t+1) = a(t) |1+ () a(t) (1)

More in detail, this means that the agent at titrivests a portiony(¢)x(¢) of its total budget. And this
investment yields a gain or loss on the market, expressedthythe return on investmenRol.

Some authors assume that returns are obtained by meandiofioms double auction mechanisms [22, 24],
however, in our approach, we rather consider that the retara not being influenced by agent’s actions. In
other words, we assume that the agent has a small budgetsaadtiitns do not affect the evolution of the
returns. Later on, we present more in detail the dynamichferéturns with seasonal market changes, [Eq. (4).

The behavior of the agent in this environment is exprességtims of its investment proportion(t), which
corresponds to the percentage or portion of agent’s butigetis susceptible to win or lose, i.e. the agent’s
attitude towards risk. We assume that the agent’s invedtpreportion may change for example, dependent
on the agent’s predictions or assumptions about the mayketraics.

Sinceq(t) always represents a portion of the total budg@, it is bound to a minimum value of zero and
a maximum value of one, i.g(t) € [0,1]. This means that an agent wiglit) = 0 decides at time stepto
perform no investments at all, whereas an agent w(th= 1, is investing at time stepall its capital. For the
sake of completeness, we assume that the minimal and maixiveatment-proportions are describedday,
andgmax, respectively.

Thus, in this paper we present an adaptive investment gytagpressed by a method to find the most
properq(t) and we focus on the performance of this investment strategyefiodic returns. Of course the
agent may have some bounded memory about past Rol that cewlddd for predictions of future Rol. And
as mentioned above, we assume a simple dynamic for the sedllowing us to focus in the feedback of these
market returns on the investment strategy (and not on titbéaxk of the strategies on the market).

Last but not least, we assume that the agent invests indeptydn the market, i.e. there is no direct
interaction with other agents.

3 Adaptive Investment Strategy

In this section, we present an adaptive investment strataggd on &enetic Algorithrfor controlling pro-
portions of investment in periodic environments. For sigify, we call this strategyGenetic Algorithm for
Changing Environment&GACE).

Genetic algorithmgGA) are stochastic search algorithms based on evolutiahekplore progressively
from a large number of possible solutions finding after someegations the best solution for the problem.
Inspired by natural selection, these powerful techniquesbased on some defined evolution operators, like
selection, crossover and mutation![10, 13,16, 29].



In our approach, we consider that an agent uses a GA to findalseproper set of investment proportions
for every time step. For this, we show on the following thecsipeations for the GA.

3.1 Encoding Scheme

A population of chromosomeg = 1,...,C, where each chromosomjehas an array of geneg,;, where
k=0,..,G; —1,andG; is the length of the chromosome The length of a chromosome is assumed to be in
the rangeli; € (1, Gmax), WhereGh.x is a parameter that specifies the maximal allowed number g

a chromosome. The values of the genes could be binary, bptdgramming reasons we use real values, see
[2€]. Moreover, each chromosonjgepresents aet of possible strategied an agent, i.e. eaafy;, corresponds

to an investment proportion.

3.2 Fitness Evaluation

Each chromosomgis evaluated after a given number of time steps bijnass functionf; (), which is defined

as follows:
Gj—1

fi(r) = Z r(t)gjk; Kk =tmod Gj, 2
k=0

where is a further time scale in terms of generations. When a géoerégs completed, the chromosomes’
population is replaced by a new population of better fittihgpsnosomes with the same population gize

As you can see, everyj; is multiplied by a different value of(t) in the course of time. Since the fitness
of a chromosome tends to be maximized, negat{vg¢should lead to small values 9f;, i.e. small investment
proportions. On the other hand positivg) should lead to larger values 9f;, i.e. large investment propor-
tions. Because of this, we consider the product (@jg;; as a performance measure, which is in accordance
with our investment model, Eq.J(1). Noteworthy, in this agaarh the GA tries to find the chromosomes leading
to larger profits. Another different approach would be tolienpent a GA to find the chromosomes that mini-
mize the loss, in which case, we would have a different fitfasstion. Also note that chartists usually study
the past movement of stock prices; however, this approdtdrglirom ours in the fact that we treat directly
returns on investment and not price movements.

3.3 Selection of a New Population

If we assume that chromosomes have fixed length= G .., Vj, then the most proper number of time steps,
teval, that have to elapse in order to evaluate all chromosome® st .1 = Gmax. IN other words, the
number of time steps needed to evaluate the population & &gthe fixed length of the chromosomes.

Moreover, it can be shown that the population convergegifastvards optimal investment proportions if
the length of the chromosomes is equal to the periodicithefreturnsG.x = T

However, this previous assumption corresponds to the whessd where the agent knows a priori the peri-
odicity of the returns and sets the length of all chromosotodabe value of the periodicity, hence the agent
selects a new population after all genes of all chromosome$eing evaluated. Thus, if the chromosomes
have different length the question now is the followidgter how many time steps,,.;, @ new generation of
chromosomes should be obtaindd?he following, we propose different approaches to anghisrquestion.



3.3.1 Time steps for evaluation

Different approaches can be proposed to determine the murhbme steps... that should elapse to select a
new generation of chromosomes. As mentioned above, thdestrgpproach, calle@Maximumis to select a
new population after a fixed number of time stepsZif.« is equal to the maximal length of the chromosomes,
teval = Gmax, then all chromosomes’ genes in the population will be eatald. However, such an approach
leads to slow convergence of the population. A differentrapph may be to choose the number of time steps for
evaluation accordingly to the length of the best chromosiomtiee population. This approach is call€iBest-
Selectedand it can be expressed mathematically as follotus; = G; with | = arg max;—;_ ¢ fj(t..1))-
wheret! ., is the number of time steps that the population has beenatealuThis approach leads to a faster
convergence of the population than when using GMaximumgvew if the length of the best chromosome in
the previous generation happen to be very large, this waald to a larger number of time steps using only
this strategy. This would be disadvantageous for the adeheistrategy actually leads to looses instead of
profits for the current returns. A better approach is to cedbe the number of time steps needed for evaluation
according to the length of the best chromosome at every tiege sThis approach is calle@BestCurrentand

can be expressed mathematically as follows; = G; with [ = arg max;—;,_ ¢ f;(t)).

Note that the last two approaches have the disadvantagéhthyato not assure that all genes of all chro-
mosomes are being evaluated; however, from our point of, \gead chromosomes would lead to larger fitness
than bad ones from the very beginning of the evaluation. dtleppen that by coincidence the cycle of the
returns match exactly a small number of good genes in badrmgomes; however, on the long run only the
good chromosomes would subsist. Unless otherwise indicate assume on the following that the approach
GBestCurrent is being used for the evaluation of the pojmuiat

3.3.2 Elitist and Tournament Selection

Once the time has come to select a new population, the goestibow to determine a new population?

After calculating the fitness of each chromosome accordirigt. [2), we first find the best chromosomes
from the old population by applying elitist and tournamegiestion of size two. Elitist selection considers the
bests percentage of the population which is found by ranking theriosomes according to their fitness. These
best chromosomes are directly transferred to the new pgalaAfterwards, a tournament selection is done
by randomly choosing two pairs of two chromosomes from tliepalpulation and then selecting from each
pair the one with the higher fithess. These two chromosonmeesarsimply transferred to the new population,
but undergo a transformation based on the genetic operatossover and mutation.

3.3.3 Crossover and Mutation Operators

Once two chromosomes have been selected by means of tharnmemhselection, a simple crossover operator
would be one that exchanges genetic information betweernwhechromosomes, whatever their sizes, by
finding the cross-point with respect to the size of the slsbrteromosome. More in detail, this is done by
selecting randomly from the shortest chromosome the croisg pr cut point,c,, and with probabilityp =

0.5 to exchange the genetic material above or beyond this craiss im the shortest chromosome with its
counterpart in the largest chromosome. However, thosesgartbe largest chromosome beyond the length of
the shortest chromosome would be disregarded.

The limitations of conventional crossover in GA with val@lbength has already been addressed by some
authors|[15], where neural networks or hierarchical ttegctures are used to determine which genes should
be exchanged between the chromosomes. However, for thegauqgh this paper and for the sake of simplicity,
we propose a modification of the standard GA crossover oprettzdt better suits our demands.



Thus, we propose the use of a crossover operator catliggbrtional Exchange CrossovéPEC) operator,
which basically shrinks or stretches the genetic infororabietween the pair of chromosomes proportionally to
their length. Basically, the crossover operator PEC finstloanly selects the range of genetic information to be
exchanged between two chromosomes and contracts(extbedgnetic information from the largest(shortest)
to the shortest(largest) chromosome, respectively.

More in detail, the Algorithmill shows the PEC algorithm fdpalir of parent-chromosomes being selected
via tournament selection. Note that a chromosgrigesaved in an array with indexes in the range Grto- 1.

Algorithmus 1 : Proportional Exchange Crossover (PEC) operator

1 foreach pair of parent-chromosomeso

determine the siz€', of the shortest parent-chromosome,

find the cross-pointp, € Z, for the shortest parent-chromosonag; ~ U(0,Gs — 1)
determine the siz&'; of the largest parent-chromosome,

find, the cross-pointp; € Z for the largest parent-chromosomeg; = GlGi

determine the proportioR € Z between the two chromosomes’ sizés= %

create two arrays;hs andch;, for the short and large children-chromosomes
with equal probability choose the side for the crossoveratjmn
if crossover on the left sidben
extend the genetic material fropa; and copy it tach; as follows:
for m =0tocps — 1do

forn=0to R —1do

‘ chi[m x R + n| < extend(pas, m, R)

end
end
contract the genetic material fropa; and copy it toch, as follows:
foreachm = 0tocps — 1 do

| chs[m] « contract(pa;, m, R)

end
else
extend as in lin€l1 but for the range = cp, to G, — 1.
contract as in lin€l1 but for the range = cps to G5 — 1.
end
copy directly the rest genetic material from the parentdi¢ochildren chromosomes.
end
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Note, that different functions could be considered for lamdformation of the genetic material between
chromosomes with different length. For simplicity, we ddes in our computer experiments a PEC operator
based on averaging and copying the genetic material of tempahromosomes. This means that in Algorithm
[, we consider for our implementation of GACE: in line 13 thedtion extend(pa, m, R) = pa[m], which
simple copies the genes from the short parent-chromosortie targe child-chromosome; and in line 18 the
function contract(pa, m,R) = 1/R Zi@fana[z’], which performs an average over the genetic material. A
more interesting option for this transformations could bsdud on the dynamic time warping algorithm/[35]
which is usually used for the calculation of the similarigtiveen two signals. With some modifications, this
algorithm could be used to stretch or to shrink the genetiteria proportionally to the original material;

however, this is far from the scope of this paper.



To illustrate how the PEC operator works, we show in Figurepictorial representation of PEC applied
to the left side of the cross-point. In this example the cqmsist of the shortest chromosomeds, = 3.
Consequently, using line 5 in Algorithinh 1, we find that thessrpoint for the largest chromosome corresponds
to ecp; = 6. In this example the genes to the left of the shortest “pargmomosome are generalized into
the largest “child” chromosome, whereas the genes to tl ofjthe cross-point are directly copied into the
shortest “child” chromosome. The same occurs for the geméke largest “parent-chromosome” with the
main difference that the value of the genes to the left areagesl and not generalized. If the right side of the
crossover is selected, we determine in the same mannerdbg-points in the “parent” chromosomes and we
obtain the gene values for the “child” chromosomes.
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Figure 1: Example of th@roportional-sized Exchange Crosso@&EC) operator. With probability = 0.5
the left side of the cut point is selected for exchange.

Now, to make sure that a population with chromosomes of sé/tngths is present, we introduce a muta-
tion operator for the length of the chromosonig, For this, a new length is drawn randomly and the genetic
information of the chromosome is proportionally scalechmiew length. In other words, this operator mutates
the length of the chromoson&; with probability p; leading to a new enlarged or stretched chromosome. The
algorithm used for the mutation of the length of the chrommesas based on the same principle as the PEC
operator.

Thus, the combination of the PEC operator and the mutatiathénchromosomes’ length may help to
determine the optimal investment proportions and the damity (or patterns) of the returns, respectively.

After the crossover and length-mutation operators aréeghthe typical gene-mutation operator is applied.
This means that with a given mutation probability € U (0, 1), a gene is to be mutated by replacing its value
by a random number from a uniform distributi®f gin , Gmax)-

Summing it up, given a population witti chromosomes, to obtain a new generation of chromosomes one
needs to do the following:

| apply the elitist operator to select the begiercent of the population which are directly included in the
new population.

Il the tournament selection operator is applied to the ciipepulation to select two “well-fitted” parents.

[l with probability p., the PEC crossover operator is applied to the two selectethpahromosomes yield-
ing two children-chromosomes.

IV with probability p;, we apply the length-mutation operator to the two childeersure length diversity
in the new population.

V with probability p,,, the gene-mutation operator is applied to the two childrbitivare then included in
the new population.

VI and finally, steps Il to V are repeated until the new popaltahas the same number of chromosomes as
the original population.



3.3.4 Strategy Selection and Initialization

Once a new population has been obtained, we need to answéllhwing question: how does the agent
update its actual investment proportiay(y)?

For every new generation, the agent takes the set of steaiggifrom the chromosomg with the largest
fitness in the previous generation.

¢i(t) = gqu.  with | = arg max;—1 ¢ f;; k =t mod G, (3)

For the initialization, eacly;;, is assigned a random value drawn from a Uniform distributigp, ~
U (gmin, 9max)- And the length of the chromosomes can be set initially to edfixumber of genes or it can be
determined randomly. For the latter, eaghis initialized with an integer random value drawn from a @nif
distribution, where7 ... is the maximal allowed chromosome length.

4 Experimental Results

In this section we systematically analyze the performardeestrategies presented previously. For this, we
present in Se¢. 4.1 the environment for the agent, i.e. theng and for each environment we first investigate
the parameter tuning of the Genetic Algorithm by means ofeiasing systematically the complexity of the
operators and the environment and we finally compare theqmeahce of the investment strategies presented
in this paper.

4.1 Artificial Returns

First, we consider artificially generated returns, whioh diven by the following dynamics:

r(t) = (1 — o) sin <% t) + o€, 4)

where the amplitude of the sinusoidal function depends erathplitude noise levet € (0,1), and¢ corre-
sponds to a random number drawn from a Uniform distributfos, U (—1,1). The periodicity of the returns
depends on the current time step and would be present for benwft’ time steps, for initiat’ = 0, we have:

ift<t = TH=T(t-1) (5)
else = {Z:(t) =T (6)
t'=t+t,

where bothT” and# are random numbers drawn from the Uniform distributiéh®), T1,ax) and U (0, tmax),
respectively.

Thus, o accounts for the fluctuations in the market dynamics on thelitude of the Rol1},.x accounts
for the largest possible periodicity amgl.. accounts for the maximal number of time steps a periodicty c
elapse.

Figure[2 shows an example of the Rol for different noise level
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Figure 2: Periodic Roly(t), Eq. [4) for different amplitude fluctuations: (left) = 0.1, and (right)o = 0.5.
Further parametersf,,,.x = 100 andt . = 1000.

4.2 Reference Strategies

For comparison purposes, we present in this section diffeseategies which are used as a reference for the
performance of the adaptive strategy. Note that we coul@ leansidered other type of strategies which may
lead to a more complete study. However, our main goal is tavghe performance of the adaptive strategy
GACE comparing it with respect to the performance of otheatsgies for the same investment scenario. The
reference strategies that we selected may be less complextib adaptive strategy, however, they may have
acces to more information about the scenario.

4.2.1 Strategies with Zero/Complete knowledge

For comparison reasons, we present in this section twaegtest which represent two simple behaviors for an
agent; the first one, callgdonstant-Investment-Proportid@P), assumes a simple constant minimal investment
proportion, whereas the second one, caleglare-Wav€SW), increases/decreases the investment proportion
accordingly to the periodicity of the returns. In our apmtoathe CP strategy represents the agent with zero
knowledge and zero-intelligence, whereas the strategy §Wésents the agent with complete knowledge of
the environment.

Constant Investment Proportion

The simplest strategy for an agent would be to take a constaestment proportion for every time step,
for simplicity we call this strategy CP:

q(t) = gmin = const. (7)

Since the value of(t) is always fixed, this is not really a “strategy”, but a fixedtatte toward risk and it
plays a role in physics inspired investment models. Fortiogel, it has been shown that if a budget-barrier or
incomes are assumed, the budget of the agent reaches aatatilistribution in the course of time and the tail
of the distribution can be described with a power law funtteeel[23, 38].

Square Wave Strategy

The second strategy we consider as a reference is the gtibegd Square-WavéSW). An agent using



this strategy invests,,., during the positive cycle of the periodic return, i.e. whére return has a larger
probability to be positive than negative, and invegts, otherwise.

It is important to notice that thiseference strategyassumes that the agdaiows in advance theeriod-
icity, T, of the returns.

For the sake of completeness, we describe this strategylasgo

(8)

Qmin Otherwise.

Qmax tmodT <T/2
q(t) = ‘{ /

Other strategies with a similar behavior to this previous/rha proposed. For example, the strategy to
increase the investment proportion only for the time stepere returns are certain to be positive and not for
the whole positive period of the returns. More in detailstwould mean that the agent is considering the worst
scenario, which analytically can be expressed as follows:

m@%:ﬂ—aﬂm<%%ﬁ>—a. (9)

It can be shown that by solving,(¢) = 0 for ¢, the range of time steps in a cycle for which the returns are
certain to be positive is determined by:
[e,(T/2) — €], (10)

where:

T
€ = —— arcsin 7 . (12)
27 o—1

We illustrate this in Figurkl3 (left). Note that large invesints should be performed only in region 2 where
returns are certain to be positive, whereas in regions 1 d@he 8gent may perform only moderate investments,
and in the other regions the agent should in general avoidnaegtment.
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Figure 3: Return and investment strategy: (left) Diffenagions for the returns based on the noise level. Large
investments are recommended in region 2 because returrcerdaén to be positive, and (right) return(t)

and the investment proportion(t), using the strategy GACE after= 10* time steps. Both for returns with
T =100 ando = 0.5
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In order to elucidate the performance of these previousipitigss for the SW strategy, lets consider returns
with no noisey(t) = sin(27t/T), and the agent’s wealth dynamic in Eg. (1) with initial butge) = 10. For
an agent using the investment strategy SWin[Hq. (8) with = 0.1 andgmax = 1.0, we find that the maximum
possible budget fol’ = 100 aftert = 100 time steps is¢(100) = 6.746 x 10°. Now, assuming that returns
have some noise;, for T = 100 we find that fore = 0.1 and aftert = 100 time steps, the strategy SW leads
to the budget:(100) = 1.489 x 10°. Note that following Eq.[(1I0) fof” = 100 ando = 0.1, returns are certain
to be positive for time steps in the rangenod T' € [2,48]. Now, if we assume an agent with the investment
strategy to be a constant investment proportion ef 1.0 for time steps in this range amd= 0.1 otherwise, it
can be shown that at the end of a cycle this leads to a budggti06) = 1.226 x 10%, which is less than the
budget obtained using SW. Furthermore,do& 0.5, if (despite the noise) the agent uses again the SW strategy,
this leads aftet = 100 time steps to the budge{100) = 1.373 x 105, whereas if the agent has an investment
proportion ofg = 1.0, for those time steps in the rangesmod 7' = {[2, 48], [10, 40], [24, 26]} andg = 0.1
otherwise. It can be shown that these previous may lead toutigetsr(100) = {1.23 x 10°,116015, 13.41},
respectively. This means that even returns have large ,nthisebest strategy is to increase the investment
proportion once the returns are more probable to be positase negative and not only for the returns that are
certain to be positive.

4.2.2 Strategy based on Technical Analysis

We decided to include in our study a strategy baseteohnical analysisnethods, which are frequently used
by traders to forecast returns.

For simplicity, we chose th#oving Least Square@viLS) technique and we avoided strategies based on
Moving Average$MA). When the latter is used, there is a ’lag’ in time withpest to the current return. This
causes an underestimation/overestimation for incre&i®@ogeasing returns.

For the strategy MLS, we consider an agent with a memory&fz® store previous received returns, and
basically this strategy fits a function to the previadsreturns, to estimate the next retufiit). For simplicity,
we chose this function to be a linear trend-line, which igiibloy minimizing the distance of this function to
the stored returns.

Noteworthy, once the next return has been estimated, tha atjit needs to perform the corresponding
adjustment of the investment proportion. For this, we abersthat the agent hasrisk-neutral behavior, i.e.
for small or large fluctuations of the Rol, the agent updagemgvestment proportion according to the expected
return only. In this approach, the valuegt) is updated as follows:

Gmin f(t) S Gmin
q(t) = ¢ 7(t)  Gmin < 7(t) < gmax (12)
Qmax f'(t) Z Qmax

wheregmin, gmax € [0, 1]. In other words, the agent invegt,, if the estimated return for the next time step is
negative or zero, otherwise it invests proportional to titéxeated next return.

4.3 Results for Rol with fixed periodicity

To elucidate the performance of the adaptive strategy [@&ghin this paper and the reference strategies pre-
viously presented, we start with a simple scenario whergnsthave a fixed periodicity. In Sectibn 4.4 we
consider a more challenging scenario where returns havarayofy periodicity.

First, we assume that the parameters of a strategy lead fatiamadb performance, if it leads to thmaximum
total budgethat can be reached with this strategy during a completegefithe returns. When evaluating the
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strategies, we have to consider that their performancesdsiafluenced by stochastic effects and. In the case
of the strategy GACE we also have to account for the diffepassible strategies that may evolve. This means
that we have to average the simulation over a large numbetiadd,t/V, where each trial simulates an agent
acting independently with the same set of strategy paraméttore in detail, the performance of an agentin a
single trial corresponds to the average budget at the endabf Bol’'s period’; thereafter, an average over a
number of trials is performed to diminish noise effects. &amvenience, the total budget has been normalized
by the number of cycles or periods of the Rbl,This is done, because if the strategy performs well, thgéud

of the agent may reach very high values. This occurs becaute idynamics of eqn[](1) the budget could
possibly be doubled at each time step, if an appropgéteandr(t) are provided. In the computer simulations
this would lead to numerical overflows, therefore we havesehdo reinitialize the budget after each cycle of
the Rol, which applies to all simulations, to ensure conguari

4.3.1 GACE Parameter Tuning

In the following, we want to find the parameter values thadlealarger fithess and budget values for the
strategy GACE. It is well known that the configuration of mastaheuristic algorithms requires both complex
experimental designs and high computational efforts. Fualirfig the best parameters for the GA, a software
called+CARPS (Multiagent System for Configuring Algorithms in IRRrmblem Solving)30] was used. It
consists of autonomous, distributed, cooperative agéatssearch for solutions to a configuration problem,
thereby fine-tuning the metaheuristic’s parameters.

The GA was configured for periodic returns witi = 100 and different level of noises = 0.1, and
o = 0.5. In this process, four GA parameters were optimized: thailadion sizeC, the crossover probability
pe, the mutation probability,,,, and the elitism size. Their intervals of definition, in which the most acceptable
GA configurations should be found, were set as follows: € {50, 100, 200, 500, 1000}, p. € [0.0,1.0],
pm € [0.0,1.0], ands € [0.0,0.5].

When configuring, agents in +CARPS apply a Random RestdrOHihbing approach and they exchange
best-so-far solutions during this process. Furthermbetaluation of the GA with a particular configuration
is repeated five times in order to cope with its stochastianeatAccording to the fitness, we show in Table 1
the best obtained configuration for the GA in the periodianmet previously mentioned.

Table 1: GACE's best parameter values for Rol with fiZed

C DPc Pm S
1000| 0.7 0.01| 0.3

For the sake of completeness, we show in Fiduire 4 (left) tidugan in the course of generations of the
average fitness of the chromosomes in the population faerdift mutation rates.

Moreover, in Figuré¥ (right) shows f@r = 1000 chromosomes, the evolution of the average fithess and
the largest fitness in the course of generations. Observéhthaatep,, = 0.01 used for Figurél4 (right), leads
to larger average fitness in the population than for less semmuitation rate showed in Figlrke 4 (left); however,
note that the fithess of the best chromosome when ysjng 0.001 is almost as well as fgs,, = 0.01.

Note that in Figurél4 (right), for the first 100 generatiorsiest chromosome performs much better than all
the chromosomes in average; however, after 100 generatiecan see that the performance of the population
converges to the performance of the best chromosome. Nowsid® again EqL{2) and replaag;, with ¢(¢),
andG; with T'. If we consider returns far = 100 time steps with periodicity” = 100 and no noise, it can be
shown that the strategy SW would lead to a fitnesg (af) = 28.63. Note that this is not much larger than the
fithess obtained with GACE.
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Figure 4: Performance graphs for the GACE strategy in theseoof generations far' = 1000 chromosomes:
(left) average fitness for different mutation probabititig,,,; and (right) convergence of the population showing
the average fitness against the fitness of the best chromdsomg = 0.01. Further parameterg = 100 and

o =0.1.

Now, to better illustrate the set of investment strategies are being obtained using GACE, we show
in Figure[3 (right) the Rol and the investment proportionsaoted after a number of time steps for returns
with relative large noise. For the reader with backgrounsigmal processing techniques, Figlire 3 may sound
familiar as it resembles to those figures obtained when usiatghed filters for signal recovery, see![40] for
more on matched filters.

4.3.2 Performance Comparison

In order to assure fair comparison between the strategiesiesd to find the most proper parameter values for
the strategies. Note that for both strategies CP,[Eq. (7)5AMdE(. [8), we don’t need to tune any parameters.
However, for the strategy MLS, Ed. (12), we assume that tlemtalgas acces to some information about the
returns, i.e. the agent knows the periodicify, of the returns. This means that the agent needs to determine
the most proper memory siz&/, based on the known periodicity of the returns. For this, eifqgumed some
experiments for returns with different fixed periodiciti@s and no noiseg = 0. Figure[5 (left), shows the
results of these experiments, where the budget of an agshoven for different memory sizes and for returns
with different T", and no noise. According to visual impression, the most grapemory size M, and the
periodicity, T, are proportionally related by//T ~ 0.37.

Moreover, if we assume returns with no noise, we can find @cally the memory sizé/* that maximizes
the profits. For this, we note that for a periodic return asqn@) witho = 0, the strategy MLS estimates the
next return/(¢ + 1) as follows:

Pl = 2 (”wti = Zl(lt(f(&) M) (@t + 1) = w(t — M) + sin (wt — wM)

= M]\}_ ! [sin (wt) — sin (wt — wM)], (13)
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wherew = 27/T. Now, by calculating the average profitsq) for the positive cycle of the returns, we find:

T/2
rg) = /0 () q(t)de

~ T(M+1—cos(wM))
= 0 . (14)

Figure[® (right) shows the resulting budgets for differennory size values when using EQ.J(14). Note
that we can find the memory size that leads to maximum profifsding the derivative ofr ¢) w.r.t M, which
is:
—T'sin (%M) +71M sm(wM)
Onr (r(t) q(t)) = BT (15)
Thus, the memory siz8/* that maximizes the profits can be calculated by sol\iag(r(t) ¢(t)) = 0.
Using Taylor series to the sixth order for the sinusoidakfions we end with the following expression:

3

Mr=Y2p (16)
T
Consequently, fol’ = 100 the theoretical optimal memory sizeig* = 38, which agrees with the empirical
optimal memory size shown in Figurk 5 (right) for differewnise levels. Relatedly, the proportidd/T" ~ 0.37
found by means of computer simulations in Figlite 5 (leftpragimates pretty well the proportion found

analytically M/T = /3 /x = 0.380.
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Figure 5: For strategMLS both plots show the budget obtained for different memorg dif for: (left)
different periodicityZ” and no noise, (right) different noise leveland periodicity” = 100.
Comparison for fixed chromosome length

Now, we compare the performance of the adaptive investntesegy GACE, presented in Sectibh 3,
with respect to the reference strategies presented inoBé€i2. For the sake of clarity, we assume for the
moment that the strategy GACE uses fixed chromosome lengtli; j = G,ax. For all strategies we consider
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gmin = 0.1 andgmax = 1.0 in our experiments. These parameter values describe tla@ibeh of the strategies
CP, Eq.[(Y), and SW, Ed.](8). For the strategy MLS, Edl (12)useEq.[(16) to determine the optimal memory
size and for the strategy GACE we use the parameters in Table 1

As it was done previously, we generate a synthetic data sétéareturns. In our experiments we assume
that the agent invests in returns with periodicity= 100 for different noise levels. We consider here that
the length of the chromosomes is fixeddg = 100 and a new generation of chromosomes is being obtained
after a number of time stefs,.; = 100. In other words, we consider for these experiments the agpro
GMaximum to determine the number of time steps needed toai@eathe population, see Section 3.3.1. Note
that we investigate the simplest case where the periodidithe returns perfectly maps to the length of the
chromosomes and time steps for evaluation of the populaBonthe computer experiments, we let the agent
to use one of the strategies to invest during a number ef 10° time steps. In order to account for the
randomness of the scenario, we perform the experiment fanmbar of N = 100 trials, gathering the average
budget obtained for each strategy at every 100 time steps.

Figure[6 shows in a log-log plot the average budge}, in the course of GACE's generations, for all
strategies and for returns with different amplitude nogsels. As you can see, except for the GACE strategy, all
other strategies have a constant budget in average ovegeaehation. This occurs because the average of the
budget was taken at evety = 100 time step which corresponds to the periodicity of the rez(ifn= 100 and
to the time steps to evaluate the population of chromosamgs= 100, as it was specified in our experiment
parameters.

More in detall, Figurél6 (left) shows that after 4, 70, and 8@@erations, GACE over-performs the strate-
giesq = 0.1, and MLS, respectively. And we note that GACE performs almagsvell as the strategy SW after
400 generations. Moreover, the budget of the agent usingESiACreases approximately according to a power
law for the first 100 generations, afterwards increasegilipaically.

Figure[® (right) shows that for large amplitude noise it taf@ver generations for GACE to over-perform
the strategy; = 0.1, but in general more generations are needed for GACE toedorm the other strategies.
We find that the budget also increases according to a powefdiathe first 100 generations and afterwards
increases logarithmically. We note that it would be usefuptovide with a formulation to characterize the
average budget in the course of generations that is obtaisied the strategy GACE, however, this is left for
further work.

Comparison for variable chromosome length

In this section, we investigate the case when the chromosatoenot have initially the same length as
the periodicity of the returns. For this, we let the initiahfth of the chromosomes to be chosen at random
from a Uniform distribution. This means that we need to deflme range of possible length values. For
our implementation of the GA to work properly, the unkownipdicity needs to be in the range of possible
length values. For simplicity, in our experiments we let taage to be larger than the periodicity of the
returns. However, we note that this parameter could beméted by the GA itself if we include extra genes
in the chromosome to track for a proper range. Another pibiggibould be to determine this parameter by
means of statistical properties of the returns, like the@urtrelation function or spectral density; however, both
approaches are beyond the scope of this paper and are lafttfoer work.

Now, for the case that initially the length of the chromoserisedifferent, if population is evaluated after a
fixed number of time steps, the following question may ari3ethe chromosomes’ lengths correctly evolve to
map the periodicity of the returns?

To answer this question, we performed some computer expatifor an agent using the strategy GACE
for returns with periodicityl’ = 100 and different noise levels. For these experiments, we asdidion GACE
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Figure 6: Average budgetx), obtained using different investment strategies in thesmwof generations
of the strategy GACE, for returns with periodicity = 100 and amplitude noise: (lefy = 0.1 and (right)
o =0.5.

the parameter values specified in Table 1, and of speciakstieve now consider that the initial chromosomes’
length is drawn randomly from a Uniform distribution withnge of valueg(1, Gyax), With Giax = 500.
Furthermore, we assume that the evaluation of the popuoldBading to a new generation of chromosomes, is
performed every.,.; = 500 time steps, i.e. we consider for these experiments the app(@,,., to determine
the number of time steps needed to evaluate the populager§ection 3.3]1.

Figure[T shows the probability distribution of the lengthttoé best fitted chromosomes for different noise
levels and for different generations= {5, 100}.

Itis clear that after five generations most of the chromosdteagth have properly matched the periodicity
of the returns. Interestingly, chromosomes with lengthepprtional to a multiple of the periodicity are also
frequent; however, the probability decreases for largdtiphess of the real periodicity, which is a consequence
of the better adaptation of smaller chromosomes which hawed more quickly the most proper investment
proportions.

4.4 Rol with changing periodicity

In the previous section, we deal with a stationary enviromimeow in this section we tackle a non-stationary
environment. For comparison reasons, we start presertimg somputer experiments for the strategy GACE
using the parameters for a stationary environment, showalie 1, now for returns with non-fixed periodicity.

Figure[8 (top) shows the evolution of the average budgetarttturse of time for an agent with the strategy
GACE investing in returns with changing periodicity andfeliént noise levels. For the sake of clarity, we
include in Figuré B (bottom) the corresponding periodisitof the returns for each time step.

Note that for these experiments we use the selection agp®@BestCurrent, see Section 3]3.1. Also note
that in order to avoid overflows, see Section] 4.3, the budfjgteoagent is reinitialized to the initial budget
every time the periodicity of the returns changes. From theadhics of the returns, Ed.l(4), it can be seen that
a change of periodicity is not performed exactly at the end périod but at any time step. This is the reason
for large increases or decreases of budget each time thadjpity of the returns changes.
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Figure 7: Probability distribution of the length of the béded chromosomes for generations= {5, 100} for
N = 50 trials. Returns with periodicit{f” = 100 and amplitude noise: (lefy = 0.1 and (right)o = 0.5.

4.4.1 GA Parameter Tuning

As we did before, we address the problem of determining thst mper parameter values for GACE, now
for returns with changing periodicity. For this, we perf@msome experiments and determined empirically
the most proper parameter values for GACE when using theapprGBestCurrent, these results are shown in
Table 2.

Table 2: GACE's best parameter values for Rol with chanding

C DPc Pm S Di
1000| 0.5 0.001| 0.3| 0.5

Note that with respect to Table 1, if the parameter valuesalnl2 are used, the crossover and mutation
operators are less probable to occur when recombining tnenggm However, this is covered by a surprising
large probability of mutation on the length of a chromosome.
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Figure 8: (top) Average budget in the course of time for= 50 trials for an agent using the strategy GACE
with parameter values as in Table 1 and the parameter valpgs = 200 andp; = 0.1. (bottom) Periodicity
of the returns in the course of time, EQl (4), with paramet&fs,. = 100 andt,., = 10*. Both for different
amplitude noise: (lefty = 0.1 and (right)o = 0.5.

4.4.2 Performance Comparison

In this section we investigate the performance of the adatirategy with respect to the reference strategies
in a non-stationary scenario. For this, we performed sommepcter experiments for returns with changing
periodicity and different noise level. As we did in the pmys sections we assumed for all strategies the
parameter valueg,;, = 0.1 andq,.x = 1.0. Moreover, for the strategy MLS we used Hq.l(16) to calculate
the memory size)!. And for the strategy GACE we used the parameter valuesllint&able 2 and the length

of a chromosome in the range; € (1, Gimax), With Gax = 200.

We show in Figurgl9 (top) the evolution of budget, and (bojttima corresponding periodicity of the returns,
Eq.(4), both in the course of time for the different investinstrategies and different noise levels. It is clear
that the best strategy is for both cases the strategy SVawioiy the strategy MLS; however, note that both
strategies have total and partial knowledge about the digsanf the returns, respectively. As we mentioned
previously, the strategy SW, Ed] (8), knows the dynamichefdtylized returns and increases the investment
proportion for the positive periods and decreases it fornbgative. On the other hand, the strategy MLS,
Eqg. (12)), knows the periodicity” of the returns, which is used to calculate the most proper ongsize by
means of EqL(16). This previous knowledge gives some adgarib these strategies over the strategy GACE,
which only needs the specification Gf,,... We note that the strategy GACE evolves quite fast, yieldirsgt
of investment strategies with a clear tendency to lead mamsghan losses. This particularly is shown for
long-lasting periodicities, where an ever increasing dghoof budget is observed. Interestingly, the strategy
GACE performs much better than the reference strategy CParfidrms on certain occasions as good as the
strategy MLS, particularly for returns with small noise.
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Figure 9: (top) Budget in the course of time for differenagtgies, assuming,;, = 0.1 andgu.x = 1.0 for all
strategies. For MLS we used Ef.116) to calculate the memipey &/, and for GACE the parameters shown
in Table 2. (bottom) Periodicity of the returns in the couo$d¢ime, Eq. [4), with parametersty, .. = 100,
tmax = 10%, and amplitude noise: (left) = 0.1 and (right)o = 0.5.

5 Conclusions

In this paper, we presented a simple investment model and sar@stment strategies to control the proportion
of investment in periodic environments. The novelty of {héper is in the adaptive investment strategy here
proposed, calle@enetic Algorithm for Changing EnvironmernSACE), which is a new approach based on
evolution for the correct mapping of investment proporido patterns that may be present in the returns. We
analyzed the performance of GACE for different scenarind,@mpared its performance in the course of time
with respect to other strategies that were used as a referaffe showed that after a given number of time
steps, the strategy GACE reaches a set of investment sesitébgit can over-perform simple strategies like
those that invest always a constant investment proportdmshowed that even though the strategy GACE has
no knowledge of the dynamics of the returns, it may lead dayains, performing as well as other strategies
with some knowledge. This particularly is shown for longtiag periodicities, where an ever increasing growth
of budget was observed. This means that in the presencegfdsting periodicities, the longer the agent uses
the adaptive strategy the largest the profits per cycle.

In this study, we used artificial generated stylized retuwtsich are based on a sinusoidal function; how-
ever, it can be shown that for other type of periodic functjathe GA would eventually find the most proper
strategy in the same way that for the sinusoidal functionsfdite the fact that the strategy GACE proposed in
this paper was mainly used to find the most proper set of imexst proportions for an investment scenario, it
is important to note that this strategy can be applied tordthmel of scenarios. For example, scenarios where
the agent has to control other kind of resources, like endirgg consumption, etc.

Further work includes the analysis of the performance ofstrategy GACE for real returns, and to com-
pare the performance of GACE with other similar approachesGenetic Programming techniques, Neural
Networks, and Reinforcement Learning. Useful, would bextered also this approach for optimal portfolio
diversification, where a large number of algorithms havenleposed, which deal with the research areas of
optimization, stochastic simulation and decision theory.
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Finally, we note that the proposed adaptive investmentegfyamay be interesting for the research area of
pattern recognition of time series. By making proper charigghe fitness function, a useful algorithm could
be obtained for the detection and measurement of periogli@akin time series.
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