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Abstract

In this paper, we present an adaptive investment strategy for environments with periodic returns on
investment. In our approach, we consider an investment model where the agent decides at every time step
the proportion of wealth to invest in a risky asset, keeping the rest of the budget in a risk-free asset. Every
investment is evaluated in the market via a stylized return on investment function (RoI), which is modeled
by a stochastic process with unknown periodicities and levels of noise. For comparison reasons, we present
two reference strategies which represent the case of agentswith zero-knowledge and complete-knowledge
of the dynamics of the returns. We consider also an investment strategy based on technical analysis to
forecast the next return by fitting a trend line to previous received returns. To account for the performance
of the different strategies, we perform some computer experiments to calculate the average budget that can
be obtained with them over a certain number of time steps. To assure for fair comparisons, we first tune
the parameters of each strategy. Afterwards, we compare theperformance of these strategies for RoIs with
different periodicities and levels of noise.

1 Introduction

Finding a proper investment strategy is a problem that has been addressed by many researchers from different
areas. In economy, this problem usually concerns the behavior that an investor should follow in order to
maximize the profits under an uncertain environment. To thisend, researchers usually investigate the relation
between methods for optimization under uncertainty, the different preferences of an investor and the amount of
information available from the environment. For this, different measures of risk aversion have been proposed
together with the classification of investors by their behavior towards risk (e.g. risk-averse, risk-neutral or
risk-seeking behaviors), see [3]. Many researchers have been also concerned in finding different manners to
control therisk-exposure. Many of the proposed methods are based on decision-making and utility theory and
are addressed to scenarios where the investor can choose between investing in a risky or a risk-free asset, see
[4, 18, 19, 20]. And other researchers have extended this to the problem of portfolio diversification, where more
than one risky asset is considered, see [26, 27, 28].

On the other hand, many researchers have used different machine learning methods to find good investment
strategies in different type of stochastic environments. For example, in [25] the authors use neural networks
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to find patterns from financial time series, where the main goal is to find changes in volatility. And in [11],
the authors propose the use of a risk-sensitive reinforcement learning algorithm to find the most proper policy
for controlling under constraints and applied it to the control of a feed tank with stochastic inflows. Other
techniques from machine learning that are frequently used for investment decision problems are those based on
evolutionary computation. For example, those usinggenetic programmingandgenetic algorithmsfor portfolio
management, inducing rules for bankruptcy prediction, andassigning credit scoring, see [6]. Some investment
strategies based on genetic programming techniques usually lead to profitable trading strategies, however, they
usually find strategies which are difficult to understand andsometimes they cannot be funded [17, 33, 36, 37].
Even though investment strategies that are based on geneticalgorithms may be also difficult to abstract and
to explain, we believe that they are more natural and understandable than those using genetic programming
techniques [7]. However, many of these approaches are applied to environments that are stationary; this means
that some of them cannot be directly applied to changing environments. In the literature, there are some
researches which have investigated the use of genetic algorithms in changing environments [5, 14]. However,
to our knowledge, they have not been applied specifically to the problem of controlling the proportion of
investment in periodic environments.

On the other hand, the typical scenario to study investment strategies is to let an agent choose between
betting in a lottery or receiving a constant amount of money [2]. This simple scenario is usually extended to
different type of investment models where investors are commonly referred to as agents and the complexity
of the investment models may differ considerably, see [8, 22, 24]. In some of these models the amount of
money that the agents invest in the market is assumed to be proportional to their budget, this assumption is also
called investment fraction or investment proportion. Researchers investigate in these models from the optimal
investment strategies to the different properties that emerge in the artificial market, see [27, 28]. Interestingly, if
the market is simply treated as a random variable and the proportion of investment is fixed to a constant value,
then it has been shown that eventually the agent looses all its money in the course of time [31, 38]. In order to
avoid bankruptcy, the agent may have an income, [21, 34, 38],or a budget-barrier may be assumed [23]. Some
researchers have investigated different strategies to control the proportion of investment in this type of models
for different scenarios [28, 32]. On the other hand, some other authors use different artificial market models to
compare the performance of agents with zero-intelligence and rational agents [9, 12].

This paper may also draw interest on the research area of pattern recognition of time series. In particular,
for the cases when there is no prior knowledge of the existance of a periodic signal or of its characteristics,
see [1, 39]. Note that with some small proper changes on the proposed adaptive algorithm, a useful algorithm
could be proposed for the detection and measurement of periodic signal in time series.

In this paper, we propose a new approach based on evolution for finding investment strategies in periodic
environments. This paper is organized as follows. Section 2describes the investment model where the agent
decides at every time step the percentage of wealth to investin a risky asset keeping the rest in cash. Section
3 presents an adaptive investment strategy based on aGenetic Algorithm(GA) for environments with periodic
time series. In Section 4 we present the results obtained fordifferent computer experiments. We decided to
perform our computer experiments in a controlled scenario where the dynamics of the environment are known.
For that reason, we assume that the risky asset is modeled by astochastic process with changing periodicity and
different levels of noise, i.e. stylized exogenous returns, presented in Section 4.1. For the sake of completeness,
we compare the performance of the adaptive strategy proposed in this paper with other investment strategies
which are discussed in Section 4.2. For our comparison, we include two reference strategies which represent
the agent with both zero-knowledge and complete-knowledgeof the dynamics of the RoI. We also include an
investment strategy based on technical analysis that basically forecasts the next return by fitting a trend line
to the previous received returns. To account for the performance of the different strategies, we perform some
computer experiments to calculate the average budget that can be obtained with them over a certain number of
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time steps. The experiments to account for the performance of the investment strategies are divided into two
sections. First, in Section 4.3 we consider a stationary environment, i.e returns with fixed periodicity, and in
Section 4.4 we consider a non-stationary environment, i.e return with changing periodicity. To assure for fair
comparisons, we first tune the parameters of each strategy and afterwards, we compare their performance for
returns with different levels of noise.

2 Investment Model

We consider an investment model [31, 32] where an agent is characterized by two individual variables: (i) its
budgetx(t), i.e. its wealth and (ii) itsinvestment proportionq(t), i.e. its attitude towards risk in a market. The
budget,x(t), changes in the course of timet by means of the following dynamic:

x(t+ 1) = x(t)
[

1 + r(t) q(t)
]

(1)

More in detail, this means that the agent at timet invests a portionq(t)x(t) of its total budget. And this
investment yields a gain or loss on the market, expressed byr(t), the return on investment,RoI.

Some authors assume that returns are obtained by means of continuous double auction mechanisms [22, 24],
however, in our approach, we rather consider that the returns are not being influenced by agent’s actions. In
other words, we assume that the agent has a small budget and its actions do not affect the evolution of the
returns. Later on, we present more in detail the dynamic for the returns with seasonal market changes, Eq. (4).

The behavior of the agent in this environment is expressed interms of its investment proportion,q(t), which
corresponds to the percentage or portion of agent’s budget that is susceptible to win or lose, i.e. the agent’s
attitude towards risk. We assume that the agent’s investment proportion may change for example, dependent
on the agent’s predictions or assumptions about the market dynamics.

Sinceq(t) always represents a portion of the total budgetx(t), it is bound to a minimum value of zero and
a maximum value of one, i.e.q(t) ∈ [0, 1]. This means that an agent withq(t) = 0 decides at time stept to
perform no investments at all, whereas an agent withq(t) = 1, is investing at time stept all its capital. For the
sake of completeness, we assume that the minimal and maximalinvestment-proportions are described byqmin

andqmax, respectively.
Thus, in this paper we present an adaptive investment strategy, expressed by a method to find the most

properq(t) and we focus on the performance of this investment strategy in periodic returns. Of course the
agent may have some bounded memory about past RoI that could be used for predictions of future RoI. And
as mentioned above, we assume a simple dynamic for the returns allowing us to focus in the feedback of these
market returns on the investment strategy (and not on the feedback of the strategies on the market).

Last but not least, we assume that the agent invests independently in the market, i.e. there is no direct
interaction with other agents.

3 Adaptive Investment Strategy

In this section, we present an adaptive investment strategybased on aGenetic Algorithmfor controlling pro-
portions of investment in periodic environments. For simplicity, we call this strategyGenetic Algorithm for
Changing Environments(GACE).

Genetic algorithms(GA) are stochastic search algorithms based on evolution that explore progressively
from a large number of possible solutions finding after some generations the best solution for the problem.
Inspired by natural selection, these powerful techniques are based on some defined evolution operators, like
selection, crossover and mutation [10, 13, 16, 29].
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In our approach, we consider that an agent uses a GA to find the most proper set of investment proportions
for every time step. For this, we show on the following the specifications for the GA.

3.1 Encoding Scheme

A population of chromosomesj = 1, ..., C, where each chromosomej has an array of genes,gjk, where
k = 0, ..., Gj − 1, andGj is the length of the chromosomej. The length of a chromosome is assumed to be in
the rangeGj ∈ (1, Gmax), whereGmax is a parameter that specifies the maximal allowed number of genes in
a chromosome. The values of the genes could be binary, but forprogramming reasons we use real values, see
[29]. Moreover, each chromosomej represents aset of possible strategiesof an agent, i.e. eachgjk corresponds
to an investment proportion.

3.2 Fitness Evaluation

Each chromosomej is evaluated after a given number of time steps by afitness function, fj(τ), which is defined
as follows:

fj(τ) =

Gj−1
∑

k=0

r(t) gjk ; k ≡ t mod Gj , (2)

whereτ is a further time scale in terms of generations. When a generation is completed, the chromosomes’
population is replaced by a new population of better fitting chromosomes with the same population sizeC.

As you can see, everygjk is multiplied by a different value ofr(t) in the course of time. Since the fitness
of a chromosome tends to be maximized, negativer(t) should lead to small values ofgjk, i.e. small investment
proportions. On the other hand positiver(t) should lead to larger values ofgjk, i.e. large investment propor-
tions. Because of this, we consider the product ofr(t)gjk as a performance measure, which is in accordance
with our investment model, Eq. (1). Noteworthy, in this approach the GA tries to find the chromosomes leading
to larger profits. Another different approach would be to implement a GA to find the chromosomes that mini-
mize the loss, in which case, we would have a different fitnessfunction. Also note that chartists usually study
the past movement of stock prices; however, this approach differs from ours in the fact that we treat directly
returns on investment and not price movements.

3.3 Selection of a New Population

If we assume that chromosomes have fixed length,Gj = Gmax,∀j, then the most proper number of time steps,
teval, that have to elapse in order to evaluate all chromosomes’ genes isteval = Gmax. In other words, the
number of time steps needed to evaluate the population is equal to the fixed length of the chromosomes.

Moreover, it can be shown that the population converges faster towards optimal investment proportions if
the length of the chromosomes is equal to the periodicity of the returns,Gmax = T .

However, this previous assumption corresponds to the idealcase where the agent knows a priori the peri-
odicity of the returns and sets the length of all chromosomesto the value of the periodicity, hence the agent
selects a new population after all genes of all chromosomes are being evaluated. Thus, if the chromosomes
have different length the question now is the following:After how many time steps,teval, a new generation of
chromosomes should be obtained?In the following, we propose different approaches to answerthis question.
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3.3.1 Time steps for evaluation

Different approaches can be proposed to determine the number of time stepsteval that should elapse to select a
new generation of chromosomes. As mentioned above, the simplest approach, calledGMaximum, is to select a
new population after a fixed number of time steps. IfGmax is equal to the maximal length of the chromosomes,
teval = Gmax, then all chromosomes’ genes in the population will be evaluated. However, such an approach
leads to slow convergence of the population. A different approach may be to choose the number of time steps for
evaluation accordingly to the length of the best chromosomein the population. This approach is calledGBest-
Selected, and it can be expressed mathematically as follows:teval = Gl with l = arg maxj=1..,C fj(t

′

eval
)).,

wheret′
eval

is the number of time steps that the population has been evaluated. This approach leads to a faster
convergence of the population than when using GMaximum; however, if the length of the best chromosome in
the previous generation happen to be very large, this would lead to a larger number of time steps using only
this strategy. This would be disadvantageous for the agent if the strategy actually leads to looses instead of
profits for the current returns. A better approach is to choose the the number of time steps needed for evaluation
according to the length of the best chromosome at every time stept. This approach is calledGBestCurrent, and
can be expressed mathematically as follows:teval = Gl with l = arg maxj=1,..,C fj(t)).

Note that the last two approaches have the disadvantage thatthey do not assure that all genes of all chro-
mosomes are being evaluated; however, from our point of view, good chromosomes would lead to larger fitness
than bad ones from the very beginning of the evaluation. It can happen that by coincidence the cycle of the
returns match exactly a small number of good genes in bad chromosomes; however, on the long run only the
good chromosomes would subsist. Unless otherwise indicated, we assume on the following that the approach
GBestCurrent is being used for the evaluation of the population.

3.3.2 Elitist and Tournament Selection

Once the time has come to select a new population, the question is: how to determine a new population?
After calculating the fitness of each chromosome according to Eq. (2), we first find the best chromosomes

from the old population by applying elitist and tournament selection of size two. Elitist selection considers the
bests percentage of the population which is found by ranking the chromosomes according to their fitness. These
best chromosomes are directly transferred to the new population. Afterwards, a tournament selection is done
by randomly choosing two pairs of two chromosomes from the old population and then selecting from each
pair the one with the higher fitness. These two chromosomes are not simply transferred to the new population,
but undergo a transformation based on the genetic operators’ crossover and mutation.

3.3.3 Crossover and Mutation Operators

Once two chromosomes have been selected by means of the tournament selection, a simple crossover operator
would be one that exchanges genetic information between thetwo chromosomes, whatever their sizes, by
finding the cross-point with respect to the size of the shortest chromosome. More in detail, this is done by
selecting randomly from the shortest chromosome the cross point or cut point,cp, and with probabilityp =
0.5 to exchange the genetic material above or beyond this cross point in the shortest chromosome with its
counterpart in the largest chromosome. However, those genes in the largest chromosome beyond the length of
the shortest chromosome would be disregarded.

The limitations of conventional crossover in GA with variable length has already been addressed by some
authors [15], where neural networks or hierarchical tree-structures are used to determine which genes should
be exchanged between the chromosomes. However, for the purpose of this paper and for the sake of simplicity,
we propose a modification of the standard GA crossover operator that better suits our demands.
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Thus, we propose the use of a crossover operator calledProportional Exchange Crossover(PEC) operator,
which basically shrinks or stretches the genetic information between the pair of chromosomes proportionally to
their length. Basically, the crossover operator PEC first randomly selects the range of genetic information to be
exchanged between two chromosomes and contracts(extends)the genetic information from the largest(shortest)
to the shortest(largest) chromosome, respectively.

More in detail, the Algorithm 1 shows the PEC algorithm for all pair of parent-chromosomes being selected
via tournament selection. Note that a chromosomej is saved in an array with indexes in the range 0 toGj − 1.

Algorithmus 1 : Proportional Exchange Crossover (PEC) operator

foreach pair of parent-chromosomesdo1

determine the sizeGs of the shortest parent-chromosomepas2

find the cross-point,cps ∈ Z, for the shortest parent-chromosome:cps ∼ U(0, Gs − 1)3

determine the sizeGl of the largest parent-chromosomepal4

find, the cross-pointcpl ∈ Z for the largest parent-chromosome:cpl =
Gl cps
Gs

5

determine the proportionR ∈ Z between the two chromosomes’ sizes:R = cpl
cps6

create two arrays,chs andchl, for the short and large children-chromosomes7

with equal probability choose the side for the crossover operation8

if crossover on the left sidethen9

extend the genetic material frompas and copy it tochl as follows:10

for m = 0 to cps − 1 do11

for n = 0 toR− 1 do12

chl[m ∗R+ n]← extend(pas,m,R)13

end14

end15

contract the genetic material frompal and copy it tochs as follows:16

foreachm = 0 to cps − 1 do17

chs[m]← contract(pal,m,R)18

end19

else20

extend as in line 1 but for the rangem = cps to Gs − 1.21

contract as in line 1 but for the rangem = cps to Gs − 1.22

end23

copy directly the rest genetic material from the parents to the children chromosomes.24

end25

Note, that different functions could be considered for the transformation of the genetic material between
chromosomes with different length. For simplicity, we consider in our computer experiments a PEC operator
based on averaging and copying the genetic material of the parent-chromosomes. This means that in Algorithm
1, we consider for our implementation of GACE: in line 13 the functionextend(pa,m,R) = pa[m], which
simple copies the genes from the short parent-chromosome tothe large child-chromosome; and in line 18 the
function contract(pa,m,R) = 1/R

∑m+R
i=m pa[i], which performs an average over the genetic material. A

more interesting option for this transformations could be based on the dynamic time warping algorithm [35]
which is usually used for the calculation of the similarity between two signals. With some modifications, this
algorithm could be used to stretch or to shrink the genetic material proportionally to the original material;
however, this is far from the scope of this paper.
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To illustrate how the PEC operator works, we show in Figure 1 apictorial representation of PEC applied
to the left side of the cross-point. In this example the cross-point of the shortest chromosome iscps = 3.
Consequently, using line 5 in Algorithm 1, we find that the cross-point for the largest chromosome corresponds
to cpl = 6. In this example the genes to the left of the shortest “parent” chromosome are generalized into
the largest “child” chromosome, whereas the genes to the right of the cross-point are directly copied into the
shortest “child” chromosome. The same occurs for the genes in the largest “parent-chromosome” with the
main difference that the value of the genes to the left are averaged and not generalized. If the right side of the
crossover is selected, we determine in the same manner the cross-points in the “parent” chromosomes and we
obtain the gene values for the “child” chromosomes.
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Figure 1: Example of theProportional-sized Exchange Crossover(PEC) operator. With probabilityp = 0.5
the left side of the cut point is selected for exchange.

Now, to make sure that a population with chromosomes of diverse lengths is present, we introduce a muta-
tion operator for the length of the chromosome,Gj . For this, a new length is drawn randomly and the genetic
information of the chromosome is proportionally scaled to the new length. In other words, this operator mutates
the length of the chromosomeGj with probabilitypl leading to a new enlarged or stretched chromosome. The
algorithm used for the mutation of the length of the chromosome is based on the same principle as the PEC
operator.

Thus, the combination of the PEC operator and the mutation inthe chromosomes’ length may help to
determine the optimal investment proportions and the periodicity (or patterns) of the returns, respectively.

After the crossover and length-mutation operators are applied, the typical gene-mutation operator is applied.
This means that with a given mutation probabilitypm ∈ U(0, 1), a gene is to be mutated by replacing its value
by a random number from a uniform distributionU(qmin, qmax).

Summing it up, given a population withC chromosomes, to obtain a new generation of chromosomes one
needs to do the following:

I apply the elitist operator to select the bests percent of the population which are directly included in the
new population.

II the tournament selection operator is applied to the current population to select two “well-fitted” parents.

III with probability pc, the PEC crossover operator is applied to the two selected parent-chromosomes yield-
ing two children-chromosomes.

IV with probability pl, we apply the length-mutation operator to the two children to ensure length diversity
in the new population.

V with probability pm, the gene-mutation operator is applied to the two children which are then included in
the new population.

VI and finally, steps II to V are repeated until the new population has the same number of chromosomes as
the original population.
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3.3.4 Strategy Selection and Initialization

Once a new population has been obtained, we need to answer thefollowing question: how does the agent
update its actual investment proportion,q(t)?

For every new generation, the agent takes the set of strategiesgjk from the chromosomej with the largest
fitness in the previous generation.

qi(t) = glk with l = arg maxj=1,...,C fj; k ≡ t mod Gl (3)

For the initialization, eachgjk is assigned a random value drawn from a Uniform distribution: gjk ∼
U(qmin, qmax). And the length of the chromosomes can be set initially to a fixed number of genes or it can be
determined randomly. For the latter, eachGj is initialized with an integer random value drawn from a Uniform
distribution, whereGmax is the maximal allowed chromosome length.

4 Experimental Results

In this section we systematically analyze the performance of the strategies presented previously. For this, we
present in Sec. 4.1 the environment for the agent, i.e. the returns, and for each environment we first investigate
the parameter tuning of the Genetic Algorithm by means of increasing systematically the complexity of the
operators and the environment and we finally compare the performance of the investment strategies presented
in this paper.

4.1 Artificial Returns

First, we consider artificially generated returns, which are driven by the following dynamics:

r(t) = (1− σ) sin

(

2π

T (t)
t

)

+ σξ, (4)

where the amplitude of the sinusoidal function depends on the amplitude noise levelσ ∈ (0, 1), andξ corre-
sponds to a random number drawn from a Uniform distribution,ξ ∈ U(−1, 1). The periodicity of the returns
depends on the current time step and would be present for a number oft′ time steps, for initialt′ = 0, we have:

if t < t′ ⇒ T (t) = T (t− 1) (5)

else ⇒

{

T (t) = T̃

t′ = t+ t̃,
(6)

where bothT̃ and t̃ are random numbers drawn from the Uniform distributionsU(0, Tmax) andU(0, tmax),
respectively.

Thus,σ accounts for the fluctuations in the market dynamics on the amplitude of the RoI;Tmax accounts
for the largest possible periodicity andtmax accounts for the maximal number of time steps a periodicity can
elapse.

Figure 2 shows an example of the RoI for different noise levelσ.
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Figure 2: Periodic RoI,r(t), Eq. (4) for different amplitude fluctuations: (left)σ = 0.1, and (right)σ = 0.5.
Further parameters:Tmax = 100 andtmax = 1000.

4.2 Reference Strategies

For comparison purposes, we present in this section different strategies which are used as a reference for the
performance of the adaptive strategy. Note that we could have considered other type of strategies which may
lead to a more complete study. However, our main goal is to show the performance of the adaptive strategy
GACE comparing it with respect to the performance of other strategies for the same investment scenario. The
reference strategies that we selected may be less complex than the adaptive strategy, however, they may have
acces to more information about the scenario.

4.2.1 Strategies with Zero/Complete knowledge

For comparison reasons, we present in this section two strategies which represent two simple behaviors for an
agent; the first one, calledConstant-Investment-Proportion(CP), assumes a simple constant minimal investment
proportion, whereas the second one, calledSquare-Wave(SW), increases/decreases the investment proportion
accordingly to the periodicity of the returns. In our approach, the CP strategy represents the agent with zero
knowledge and zero-intelligence, whereas the strategy SW represents the agent with complete knowledge of
the environment.

Constant Investment Proportion
The simplest strategy for an agent would be to take a constantinvestment proportion for every time step,

for simplicity we call this strategy CP:
q(t) = qmin = const. (7)

Since the value ofq(t) is always fixed, this is not really a “strategy”, but a fixed attitude toward risk and it
plays a role in physics inspired investment models. For thismodel, it has been shown that if a budget-barrier or
incomes are assumed, the budget of the agent reaches a stationary distribution in the course of time and the tail
of the distribution can be described with a power law function; see [23, 38].

Square Wave Strategy
The second strategy we consider as a reference is the strategy calledSquare-Wave(SW). An agent using

9



this strategy investsqmax during the positive cycle of the periodic return, i.e. wherethe return has a larger
probability to be positive than negative, and investsqmin otherwise.

It is important to notice that thisreference strategyassumes that the agentknows in advance theperiod-
icity , T , of the returns.

For the sake of completeness, we describe this strategy as follows:

q(t) =

{

qmax t mod T < T/2

qmin otherwise.
(8)

Other strategies with a similar behavior to this previous may be proposed. For example, the strategy to
increase the investment proportion only for the time steps where returns are certain to be positive and not for
the whole positive period of the returns. More in detail, this would mean that the agent is considering the worst
scenario, which analytically can be expressed as follows:

rw(t) = (1− σ) sin

(

2π

T (t)
t

)

− σ. (9)

It can be shown that by solvingrw(t) = 0 for t, the range of time steps in a cycle for which the returns are
certain to be positive is determined by:

[ǫ, (T/2) − ǫ] , (10)

where:

ǫ = −
T

2π
arcsin

(

σ

σ − 1

)

. (11)

We illustrate this in Figure 3 (left). Note that large investments should be performed only in region 2 where
returns are certain to be positive, whereas in regions 1 and 3the agent may perform only moderate investments,
and in the other regions the agent should in general avoid anyinvestment.

0 ε T/2-ε T/2 T/2+ε T-ε T
t

-1

-0.5

0

0.5

1

r(
t)

1 2 3 4 5 6
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r(
t)

0

0.2

0.4

0.6

0.8

1

q(
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9800 9850 9900 9950 1000
t

Figure 3: Return and investment strategy: (left) Differentregions for the returns based on the noise level. Large
investments are recommended in region 2 because returns arecertain to be positive, and (right) return,r(t)
and the investment proportion,q(t), using the strategy GACE aftert = 104 time steps. Both for returns with
T = 100 andσ = 0.5
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In order to elucidate the performance of these previous possibilities for the SW strategy, lets consider returns
with no noise,r(t) = sin(2πt/T ), and the agent’s wealth dynamic in Eq. (1) with initial budget x(0) = 10. For
an agent using the investment strategy SW in Eq. (8) withqmin = 0.1 andqmax = 1.0, we find that the maximum
possible budget forT = 100 after t = 100 time steps isx(100) = 6.746 × 109. Now, assuming that returns
have some noise,σ, for T = 100 we find that forσ = 0.1 and aftert = 100 time steps, the strategy SW leads
to the budgetx(100) = 1.489× 109. Note that following Eq. (10) forT = 100 andσ = 0.1, returns are certain
to be positive for time steps in the ranget mod T ∈ [2, 48]. Now, if we assume an agent with the investment
strategy to be a constant investment proportion ofq = 1.0 for time steps in this range andq = 0.1 otherwise, it
can be shown that at the end of a cycle this leads to a budget ofx(100) = 1.226 × 109, which is less than the
budget obtained using SW. Furthermore, forσ = 0.5, if (despite the noise) the agent uses again the SW strategy,
this leads aftert = 100 time steps to the budgetx(100) = 1.373× 106, whereas if the agent has an investment
proportion ofq = 1.0, for those time steps in the ranges:t mod T = {[2, 48], [10, 40], [24, 26]} andq = 0.1
otherwise. It can be shown that these previous may lead to thebudgetsx(100) = {1.23× 106, 116015, 13.41},
respectively. This means that even returns have large noise, the best strategy is to increase the investment
proportion once the returns are more probable to be positivethan negative and not only for the returns that are
certain to be positive.

4.2.2 Strategy based on Technical Analysis

We decided to include in our study a strategy based ontechnical analysismethods, which are frequently used
by traders to forecast returns.

For simplicity, we chose theMoving Least Squares(MLS) technique and we avoided strategies based on
Moving Averages(MA). When the latter is used, there is a ’lag’ in time with respect to the current return. This
causes an underestimation/overestimation for increasing/decreasing returns.

For the strategy MLS, we consider an agent with a memory sizeM to store previous received returns, and
basically this strategy fits a function to the previousM returns, to estimate the next return,r̂(t). For simplicity,
we chose this function to be a linear trend-line, which is found by minimizing the distance of this function to
the stored returns.

Noteworthy, once the next return has been estimated, the agent still needs to perform the corresponding
adjustment of the investment proportion. For this, we consider that the agent has arisk-neutralbehavior, i.e.
for small or large fluctuations of the RoI, the agent updates its investment proportion according to the expected
return only. In this approach, the value ofq(t) is updated as follows:

q(t) =











qmin r̂(t) ≤ qmin

r̂(t) qmin < r̂(t) < qmax

qmax r̂(t) ≥ qmax

(12)

whereqmin, qmax ∈ [0, 1]. In other words, the agent investqmin if the estimated return for the next time step is
negative or zero, otherwise it invests proportional to the estimated next return.

4.3 Results for RoI with fixed periodicity

To elucidate the performance of the adaptive strategy proposed in this paper and the reference strategies pre-
viously presented, we start with a simple scenario where returns have a fixed periodicity. In Section 4.4 we
consider a more challenging scenario where returns have a changing periodicity.

First, we assume that the parameters of a strategy lead to an optimal performance, if it leads to themaximum
total budgetthat can be reached with this strategy during a complete period of the returns. When evaluating the
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strategies, we have to consider that their performance is also influenced by stochastic effects and. In the case
of the strategy GACE we also have to account for the differentpossible strategies that may evolve. This means
that we have to average the simulation over a large number of trials, N , where each trial simulates an agent
acting independently with the same set of strategy parameters. More in detail, the performance of an agent in a
single trial corresponds to the average budget at the end of each RoI’s period,T ; thereafter, an average over a
number of trials is performed to diminish noise effects. Forconvenience, the total budget has been normalized
by the number of cycles or periods of the RoI,I. This is done, because if the strategy performs well, the budget
of the agent may reach very high values. This occurs because in the dynamics of eqn. (1) the budget could
possibly be doubled at each time step, if an appropriateq(t) andr(t) are provided. In the computer simulations
this would lead to numerical overflows, therefore we have chosen to reinitialize the budget after each cycle of
the RoI, which applies to all simulations, to ensure comparison.

4.3.1 GACE Parameter Tuning

In the following, we want to find the parameter values that lead to larger fitness and budget values for the
strategy GACE. It is well known that the configuration of mostmetaheuristic algorithms requires both complex
experimental designs and high computational efforts. For finding the best parameters for the GA, a software
called+CARPS (Multiagent System for Configuring Algorithms in Real Problem Solving)[30] was used. It
consists of autonomous, distributed, cooperative agents that search for solutions to a configuration problem,
thereby fine-tuning the metaheuristic’s parameters.

The GA was configured for periodic returns withT = 100 and different level of noise:σ = 0.1, and
σ = 0.5. In this process, four GA parameters were optimized: the population sizeC, the crossover probability
pc, the mutation probabilitypm, and the elitism sizes. Their intervals of definition, in which the most acceptable
GA configurations should be found, were set as follows:C ∈ {50, 100, 200, 500, 1000}, pc ∈ [0.0, 1.0],
pm ∈ [0.0, 1.0], ands ∈ [0.0, 0.5].

When configuring, agents in +CARPS apply a Random Restart Hill-Climbing approach and they exchange
best-so-far solutions during this process. Furthermore, the evaluation of the GA with a particular configuration
is repeated five times in order to cope with its stochastic nature. According to the fitness, we show in Table 1
the best obtained configuration for the GA in the periodic returns previously mentioned.

Table 1: GACE’s best parameter values for RoI with fixedT .
C pc pm s

1000 0.7 0.01 0.3

For the sake of completeness, we show in Figure 4 (left) the evolution in the course of generations of the
average fitness of the chromosomes in the population for different mutation rates.

Moreover, in Figure 4 (right) shows forC = 1000 chromosomes, the evolution of the average fitness and
the largest fitness in the course of generations. Observe that the ratepm = 0.01 used for Figure 4 (right), leads
to larger average fitness in the population than for less or more mutation rate showed in Figure 4 (left); however,
note that the fitness of the best chromosome when usingpm = 0.001 is almost as well as forpm = 0.01.

Note that in Figure 4 (right), for the first 100 generations the best chromosome performs much better than all
the chromosomes in average; however, after 100 generationswe can see that the performance of the population
converges to the performance of the best chromosome. Now, consider again Eq. (2) and replace:gjk with q(t),
andGj with T . If we consider returns fort = 100 time steps with periodicityT = 100 and no noise, it can be
shown that the strategy SW would lead to a fitness off(τ) = 28.63. Note that this is not much larger than the
fitness obtained with GACE.
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Figure 4: Performance graphs for the GACE strategy in the course of generations forC = 1000 chromosomes:
(left) average fitness for different mutation probabilities,pm; and (right) convergence of the population showing
the average fitness against the fitness of the best chromosomefor pm = 0.01. Further parametersT = 100 and
σ = 0.1.

Now, to better illustrate the set of investment strategies that are being obtained using GACE, we show
in Figure 3 (right) the RoI and the investment proportions obtained after a number of time steps for returns
with relative large noise. For the reader with background insignal processing techniques, Figure 3 may sound
familiar as it resembles to those figures obtained when usingmatched filters for signal recovery, see [40] for
more on matched filters.

4.3.2 Performance Comparison

In order to assure fair comparison between the strategies, we need to find the most proper parameter values for
the strategies. Note that for both strategies CP, Eq. (7) andSW, Eq. (8), we don’t need to tune any parameters.
However, for the strategy MLS, Eq. (12), we assume that the agent has acces to some information about the
returns, i.e. the agent knows the periodicity,T , of the returns. This means that the agent needs to determine
the most proper memory size,M , based on the known periodicity of the returns. For this, we performed some
experiments for returns with different fixed periodicities, T , and no noise,σ = 0. Figure 5 (left), shows the
results of these experiments, where the budget of an agent isshown for different memory sizes and for returns
with different T , and no noise. According to visual impression, the most proper memory size,M , and the
periodicity,T , are proportionally related byM/T ≈ 0.37.

Moreover, if we assume returns with no noise, we can find analytically the memory sizeM⋆ that maximizes
the profits. For this, we note that for a periodic return as in Eq. (4) withσ = 0, the strategy MLS estimates the
next returnr̂(t+ 1) as follows:

r̂(t+ 1) =
sin (ω t)− sin (ω (t−M))

ω t− ω (t−M)
(ω(t+ 1)− ω(t−M)) + sin (ωt− ωM)

=
M + 1

M
[sin (ω t)− sin (ωt− ωM)] , (13)
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whereω = 2π/T . Now, by calculating the average profits〈r q〉 for the positive cycle of the returns, we find:

〈r q〉 =

∫ T/2

0

r(t) q(t)dt

=
T (M + 1− cos (ωM))

4M
. (14)

Figure 5 (right) shows the resulting budgets for different memory size values when using Eq. (14). Note
that we can find the memory size that leads to maximum profits byfinding the derivative of〈r q〉 w.r.tM , which
is:

∂M 〈r(t) q(t)〉 =
−T sin

(

ω
2
M

)2
+ πM sin (ωM)

2M2
. (15)

Thus, the memory sizeM⋆ that maximizes the profits can be calculated by solving∂M 〈r(t) q(t)〉 = 0.
Using Taylor series to the sixth order for the sinusoidal functions we end with the following expression:

M⋆ =

√

3

2

π
T. (16)

Consequently, forT = 100 the theoretical optimal memory size isM⋆ = 38, which agrees with the empirical
optimal memory size shown in Figure 5 (right) for different noise levels. Relatedly, the proportionM/T ≈ 0.37
found by means of computer simulations in Figure 5 (left), approximates pretty well the proportion found

analyticallyM/T =
√

3

2
/π = 0.389.
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Figure 5: For strategyMLS, both plots show the budget obtained for different memory size M for: (left)
different periodicityT and no noise, (right) different noise levelσ and periodicityT = 100.

Comparison for fixed chromosome length

Now, we compare the performance of the adaptive investment strategy GACE, presented in Section 3,
with respect to the reference strategies presented in Section 4.2. For the sake of clarity, we assume for the
moment that the strategy GACE uses fixed chromosome length, i.e.Gj = Gmax. For all strategies we consider
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qmin = 0.1 andqmax = 1.0 in our experiments. These parameter values describe the behaviour of the strategies
CP, Eq. (7), and SW, Eq. (8). For the strategy MLS, Eq. (12), weuse Eq. (16) to determine the optimal memory
size and for the strategy GACE we use the parameters in Table 1.

As it was done previously, we generate a synthetic data set for the returns. In our experiments we assume
that the agent invests in returns with periodicityT = 100 for different noise levels. We consider here that
the length of the chromosomes is fixed toGj = 100 and a new generation of chromosomes is being obtained
after a number of time stepsteval = 100. In other words, we consider for these experiments the approach
GMaximum to determine the number of time steps needed to evaluate the population, see Section 3.3.1. Note
that we investigate the simplest case where the periodicityof the returns perfectly maps to the length of the
chromosomes and time steps for evaluation of the population. For the computer experiments, we let the agent
to use one of the strategies to invest during a number oft = 105 time steps. In order to account for the
randomness of the scenario, we perform the experiment for a number ofN = 100 trials, gathering the average
budget obtained for each strategy at every 100 time steps.

Figure 6 shows in a log-log plot the average budget,〈x〉, in the course of GACE’s generations,τ , for all
strategies and for returns with different amplitude noise levels. As you can see, except for the GACE strategy, all
other strategies have a constant budget in average over eachgeneration. This occurs because the average of the
budget was taken at everyts = 100 time step which corresponds to the periodicity of the returnsT = 100 and
to the time steps to evaluate the population of chromosomesteval = 100, as it was specified in our experiment
parameters.

More in detail, Figure 6 (left) shows that after 4, 70, and 300generations, GACE over-performs the strate-
giesq = 0.1, and MLS, respectively. And we note that GACE performs almost as well as the strategy SW after
400 generations. Moreover, the budget of the agent using GACE increases approximately according to a power
law for the first 100 generations, afterwards increases logarithmically.

Figure 6 (right) shows that for large amplitude noise it takes fewer generations for GACE to over-perform
the strategyq = 0.1, but in general more generations are needed for GACE to over-perform the other strategies.
We find that the budget also increases according to a power lawfor the first 100 generations and afterwards
increases logarithmically. We note that it would be useful to provide with a formulation to characterize the
average budget in the course of generations that is obtainedusing the strategy GACE, however, this is left for
further work.

Comparison for variable chromosome length

In this section, we investigate the case when the chromosomes do not have initially the same length as
the periodicity of the returns. For this, we let the initial length of the chromosomes to be chosen at random
from a Uniform distribution. This means that we need to definethe range of possible length values. For
our implementation of the GA to work properly, the unkown periodicity needs to be in the range of possible
length values. For simplicity, in our experiments we let therange to be larger than the periodicity of the
returns. However, we note that this parameter could be determined by the GA itself if we include extra genes
in the chromosome to track for a proper range. Another possibility could be to determine this parameter by
means of statistical properties of the returns, like the autocorrelation function or spectral density; however, both
approaches are beyond the scope of this paper and are left forfurther work.

Now, for the case that initially the length of the chromosomes is different, if population is evaluated after a
fixed number of time steps, the following question may arise:Do the chromosomes’ lengths correctly evolve to
map the periodicity of the returns?

To answer this question, we performed some computer experiments for an agent using the strategy GACE
for returns with periodicityT = 100 and different noise levels. For these experiments, we assumed for GACE
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Figure 6: Average budget,〈x〉, obtained using different investment strategies in the course of generationsτ
of the strategy GACE, for returns with periodicityT = 100 and amplitude noise: (left)σ = 0.1 and (right)
σ = 0.5.

the parameter values specified in Table 1, and of special interest, we now consider that the initial chromosomes’
length is drawn randomly from a Uniform distribution with range of values(1, Gmax), with Gmax = 500.
Furthermore, we assume that the evaluation of the population, leading to a new generation of chromosomes, is
performed everyteval = 500 time steps, i.e. we consider for these experiments the approachGmax to determine
the number of time steps needed to evaluate the population, see Section 3.3.1.

Figure 7 shows the probability distribution of the length ofthe best fitted chromosomes for different noise
levels and for different generations,τ = {5, 100}.

It is clear that after five generations most of the chromosomes’ length have properly matched the periodicity
of the returns. Interestingly, chromosomes with lengths proportional to a multiple of the periodicity are also
frequent; however, the probability decreases for larger multiples of the real periodicity, which is a consequence
of the better adaptation of smaller chromosomes which have found more quickly the most proper investment
proportions.

4.4 RoI with changing periodicity

In the previous section, we deal with a stationary environment, now in this section we tackle a non-stationary
environment. For comparison reasons, we start presenting some computer experiments for the strategy GACE
using the parameters for a stationary environment, shown inTable 1, now for returns with non-fixed periodicity.

Figure 8 (top) shows the evolution of the average budget in the course of time for an agent with the strategy
GACE investing in returns with changing periodicity and different noise levels. For the sake of clarity, we
include in Figure 8 (bottom) the corresponding periodicities of the returns for each time step.

Note that for these experiments we use the selection approach GBestCurrent, see Section 3.3.1. Also note
that in order to avoid overflows, see Section 4.3, the budget of the agent is reinitialized to the initial budget
every time the periodicity of the returns changes. From the dynamics of the returns, Eq. (4), it can be seen that
a change of periodicity is not performed exactly at the end ofa period but at any time step. This is the reason
for large increases or decreases of budget each time the periodicity of the returns changes.

16



0

0.1

0.2

0.3

0.4

0.5 τ=5

0 100 200 300 400 500
G

 

0

0.1

0.2

0.3

0.4

0.5pr
ob

ab
ili

ty

τ=100

0

0.1

0.2

0.3

0.4

0.5 τ=5

0 100 200 300 400 500
G

 
 

0

0.1

0.2

0.3

0.4

0.5pr
ob

ab
ili

ty

τ=100

Figure 7: Probability distribution of the length of the bestfitted chromosomes for generationsτ = {5, 100} for
N = 50 trials. Returns with periodicityT = 100 and amplitude noise: (left)σ = 0.1 and (right)σ = 0.5.

4.4.1 GA Parameter Tuning

As we did before, we address the problem of determining the most proper parameter values for GACE, now
for returns with changing periodicity. For this, we performed some experiments and determined empirically
the most proper parameter values for GACE when using the approach GBestCurrent, these results are shown in
Table 2.

Table 2: GACE’s best parameter values for RoI with changingT .
C pc pm s pl

1000 0.5 0.001 0.3 0.5

Note that with respect to Table 1, if the parameter values in Table 2 are used, the crossover and mutation
operators are less probable to occur when recombining two parents. However, this is covered by a surprising
large probability of mutation on the length of a chromosome.
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Figure 8: (top) Average budget in the course of time forN = 50 trials for an agent using the strategy GACE
with parameter values as in Table 1 and the parameter valuesGmax = 200 andpl = 0.1. (bottom) Periodicity
of the returns in the course of time, Eq. (4), with parameters: Tmax = 100 andtmax = 104. Both for different
amplitude noise: (left)σ = 0.1 and (right)σ = 0.5.

4.4.2 Performance Comparison

In this section we investigate the performance of the adaptive strategy with respect to the reference strategies
in a non-stationary scenario. For this, we performed some computer experiments for returns with changing
periodicity and different noise level. As we did in the previous sections we assumed for all strategies the
parameter valuesqmin = 0.1 andqmax = 1.0. Moreover, for the strategy MLS we used Eq. (16) to calculate
the memory size,M . And for the strategy GACE we used the parameter values listed in Table 2 and the length
of a chromosome in the rangeGj ∈ (1, Gmax), with Gmax = 200.

We show in Figure 9 (top) the evolution of budget, and (bottom) the corresponding periodicity of the returns,
Eq.(4), both in the course of time for the different investment strategies and different noise levels. It is clear
that the best strategy is for both cases the strategy SW, following the strategy MLS; however, note that both
strategies have total and partial knowledge about the dynamics of the returns, respectively. As we mentioned
previously, the strategy SW, Eq. (8), knows the dynamics of the stylized returns and increases the investment
proportion for the positive periods and decreases it for thenegative. On the other hand, the strategy MLS,
Eq. (12)), knows the periodicityT of the returns, which is used to calculate the most proper memory size by
means of Eq. (16). This previous knowledge gives some advantage to these strategies over the strategy GACE,
which only needs the specification ofGmax. We note that the strategy GACE evolves quite fast, yieldinga set
of investment strategies with a clear tendency to lead more gains than losses. This particularly is shown for
long-lasting periodicities, where an ever increasing growth of budget is observed. Interestingly, the strategy
GACE performs much better than the reference strategy CP andperforms on certain occasions as good as the
strategy MLS, particularly for returns with small noise.
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Figure 9: (top) Budget in the course of time for different strategies, assumingqmin = 0.1 andqmax = 1.0 for all
strategies. For MLS we used Eq. (16) to calculate the memory size,M , and for GACE the parameters shown
in Table 2. (bottom) Periodicity of the returns in the courseof time, Eq. (4), with parameters:Tmax = 100,
tmax = 104, and amplitude noise: (left)σ = 0.1 and (right)σ = 0.5.

5 Conclusions

In this paper, we presented a simple investment model and some investment strategies to control the proportion
of investment in periodic environments. The novelty of thispaper is in the adaptive investment strategy here
proposed, calledGenetic Algorithm for Changing Environments(GACE), which is a new approach based on
evolution for the correct mapping of investment proportions to patterns that may be present in the returns. We
analyzed the performance of GACE for different scenarios, and compared its performance in the course of time
with respect to other strategies that were used as a reference. We showed that after a given number of time
steps, the strategy GACE reaches a set of investment strategies that can over-perform simple strategies like
those that invest always a constant investment proportion.We showed that even though the strategy GACE has
no knowledge of the dynamics of the returns, it may lead to large gains, performing as well as other strategies
with some knowledge. This particularly is shown for long-lasting periodicities, where an ever increasing growth
of budget was observed. This means that in the presence of long-lasting periodicities, the longer the agent uses
the adaptive strategy the largest the profits per cycle.

In this study, we used artificial generated stylized returns, which are based on a sinusoidal function; how-
ever, it can be shown that for other type of periodic functions, the GA would eventually find the most proper
strategy in the same way that for the sinusoidal function. Despite the fact that the strategy GACE proposed in
this paper was mainly used to find the most proper set of investment proportions for an investment scenario, it
is important to note that this strategy can be applied to other kind of scenarios. For example, scenarios where
the agent has to control other kind of resources, like energy, time consumption, etc.

Further work includes the analysis of the performance of thestrategy GACE for real returns, and to com-
pare the performance of GACE with other similar approaches like Genetic Programming techniques, Neural
Networks, and Reinforcement Learning. Useful, would be to extend also this approach for optimal portfolio
diversification, where a large number of algorithms have been proposed, which deal with the research areas of
optimization, stochastic simulation and decision theory.
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Finally, we note that the proposed adaptive investment strategy may be interesting for the research area of
pattern recognition of time series. By making proper changes in the fitness function, a useful algorithm could
be obtained for the detection and measurement of periodic signal in time series.
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[29] Michalewiçz, Z. (1999).Genetic Algorithms + Data Structures = Evolution Programs. Berlin Heidelberg:
Springer, Third, Revised and Extended edn.

[30] Monett, D. (2004). +CARPS: Configuration of Metaheuristics Based on Cooperative Agents. In: C. Blum;
A. Roli; M. Sampels (eds.),Proceedings of the 1st International Workshop on Hybrid Metaheuristics,
HM’2004, at the 16th European Conference on Artificial Intelligence, ECAI’2004. Valencia, Spain, pp.
115–125.

[31] Navarro, J. E.; Schweitzer, F. (2003). The Investors Game: A Model for Coalition Formation. In: L. Czaja
(ed.),Proceedings of the Workshop on Concurrency, Specification &Programming, CS & P’2003. Czarna,
Poland: Warsaw University, vol. 2, pp. 369–381.

21
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