World Scientific

www.worldscientific.com

Advances in Complex Systems, Vol. 12, Nos. 4 & 5 (2009) 455-473 [
(© World Scientific Publishing Company \\

LEARNING FROM ACTIONS NOT TAKEN
IN MULTIAGENT SYSTEMS

KAGAN TUMER* and NEWSHA KHANT!

Oregon State University, 204 Rogers Hall,
Corvallis, Oregon 97331, USA
*kagan.tumer@oregonstate. edu

tkhanin@onid. orst.edu

Received 31 January 2009
Revised 11 June 2009

In large cooperative multiagent systems, coordinating the actions of the agents is crit-
ical to the overall system achieving its intended goal. Even when the agents aim to
cooperate, ensuring that the agent actions lead to good system level behavior becomes
increasingly difficult as systems become larger. One of the fundamental difficulties in
such multiagent systems is the slow learning process where an agent not only needs to
learn how to behave in a complex environment, but also needs to account for the actions
of other learning agents. In this paper, we present a multiagent learning approach that
significantly improves the learning speed in multiagent systems by allowing an agent
to update its estimate of the rewards (e.g. value function in reinforcement learning) for
all its available actions, not just the action that was taken. This approach is based on
an agent estimating the counterfactual reward it would have received had it taken a
particular action. Our results show that the rewards on such “actions not taken” are
beneficial early in training, particularly when only particular “key” actions are used. We
then present results where agent teams are leveraged to estimate those rewards. Finally,
we show that the improved learning speed is critical in dynamic environments where
fast learning is critical to tracking the underlying processes.

Keywords: Multiagent learning; counterfactual reward; difference reward.

1. Introduction

Learning in large multiagent systems is a critical area of research with applica-
tions ranging from robocup soccer [26, 27], to rover coordination [19], to trading
agents [25, 43], to air traffic management [32]. What makes this problem partic-
ularly challenging is that the agents in the system provide a constantly changing
background in which each agent needs to learn its task. As a consequence, almost
by definition, all multiagent learning occurs in complex environments, where the
agents need to extract the underlying reward signal from the noise of the other
agents acting within the same environment.

Furthermore, typically, two learning problems are coupled where the agent needs
to solve both a temporal credit assignment problem (how to assign a reward received
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at the end of sequence of actions to each action) and a structural credit assignment
problem (how to assign credit to a particular agent at the end of a multiagent
task) [1, 15, 16, 28, 38, 41, 44]. The temporal credit assignment problem has been
extensively studied [10, 16, 28, 31, 30, 39, 42], and the structural credit assignment
problem has recently been investigated as well [4, 8, 11, 20, 23, 35].

Learning sequences of actions for multiagent systems has blended these two
areas of research and led to key advances [6, 8, 12, 26, 40]. In these cases, the
learning needs of the agents are modified to account for their presence in a larger
system [2, 11, 13, 22, 35, 37]. However, though these methods have yielded tremen-
dous advances in multiagent learning, they are principally based on an agent trying
an action, receiving an evaluation of that action, and updating its own estimate on
the “value” of taking that action in that state. Though effective, such an approach
is generally slow to converge, particularly in large and dynamic environments.

In this paper, we explore the concept of agents learning from actions they do
not take by estimating the rewards they would have received had they taken those
actions. These counterfactual rewards are estimated using the theory developed for
structural credit assignment, and prove effective in the congestion games. Further-
more, a team structure can be used to provide the required information for the
agents to compute these reward estimates [24, 29]. A key benefit of this approach
is that an increase in the number of agents can be leveraged to improve the esti-
mates of actions not taken, turning a potential pitfall (e.g. how to extract useful
information from the actions of so many agents) into an asset (e.g. learn from the
experiences of other agents). Though the concept of updating rewards for actions
not taken is present in learning automata literature, where for example, the prob-
ability of taking a particular action may go up down based on similar actions’
results [21, 38, 39], in this work we explicitly aim to quantify the counterfactual
concept of “what would my reward have been, had I taken another action.”

In Sec. 2, we discuss the congestion problem that we use in the reported exper-
iments. In Sec. 3, we summarize the basic agent learning architecture. In Sec. 4, we
provide the action-not-taken (ANT) rewards and modify them using team rewards.
We also provide experimental results showing the basic behavior of the ANT reward.
In Sec. 5, we explore the application of these rewards to dynamic domains where the
rapidly changing conditions put a premium on learning quickly. Finally, in Sec. 6,
we discuss the results and provide directions for future research.

2. Congestion Problems

Congestion problems where system performance depends on the number of agents
taking a particular action provide an interesting domain to study the behavior
of cooperative multiagent systems. In congestion problems, agents need to learn
how to synchronize (or not synchronize) their actions, rather than learn to take
particular actions. This type of problem is ubiquitous in routing domains (e.g. on
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a highway, a particular lane is not preferable to any other lane, but what matters
is how many others are using a particular lane) [18, 34].

The multi-night bar problem is an abstraction of congestion games (and a
variant of the El Farol bar problem [5]) which have been extensively studied
[1,5,9, 7, 14]. In this version of the congestion problem, each agent has to determine
which day in the week to attend a bar. The problem is set up so that if either too
few agents attend (boring evening) or too many people attend (crowded evening),
the total enjoyment of the attending agents drop.

The system performance is quantified by a system reward function G. This
reward is a function of the full system state z (e.g. the joint action of all agents in
the system), and is given by:

~Tday

G(2)= ) @aaye © (1)

day=1

where n is the number of actions (for example n = 7 if actions are days); Tday: the
total attendance on a particular day; and C": a real-valued parameter that represents
the capacity of the resource (e.g. the capacity of the bar).

What is interesting about this game is that selfish behavior by the agents tends
to lead the system to undesirable states. For example, if all agents predict an empty
bar, they will all attend (poor reward) or if they all predict a crowded bar, none
will attend (poor reward). This aspect of the bar problem is what makes this a
“congestion game” and an abstract model of many real-world problems ranging
from lane selection in traffic to job scheduling across servers to data routing.

3. Basic Agent Learning

The agent actions in this problem is to select a resource (day on which to attend
the bar). The learning algorithm for each agent is a simple reinforcement learner
(action value). Each agent keeps an n-dimensional vector providing its estimates of
the reward it would receive for taking each possible action. The system dynamics
are given by:

Initialize: week 0
Repeat until week > Max week

. agents choose actions;

. agents’ joint action leads to an overall system state;

. the system state results in a system reward;

. each agent receives a reward;

. each agent updates its action selection procedure (i.e. learning);
. week «— week + 1.

DU W N

In any week, an agent estimates its expected reward for attending a specific night
based on action values it has developed in previous weeks. At the beginning of each
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training run, each agent has an equal probability of choosing each action in the first
week, resulting in a uniformly random distribution across actions. At the beginning
of each training week, each agent picks a night to attend based on sampling this
probability vector using a Gibbs distribution. Each agent has n actions and a value
V). associated with each action ayg:

e(vk'T)

Vi)’
Eagent 6( &)

where 7 is a temperature term that determines the amount of exploration (low

P, = (2)

values of 7 mean most actions have similar probabilities of being selected, whereas
high values of 7 increase the probability that the best action will be selected).
Each agent receives reward R and updates the action value vector using a value
function Vj:

Ve=(1-0a) Vi+a-R. 3)

A reasonable option is to provide each agent with the full system reward for
each week. This leads to each agent receiving the reward given in Eq. (1), and
using that reward to update its value estimates for each action. However, this
reward is not particularly sensitive to an agent’s actions and especially in large
systems, leads to particularly slow learning. As a consequence, in this work, we use
the difference reward as a starting point for the reward an agent receives after each
step. Earlier work has shown that the difference reward significantly outperforms
both agents receiving a purely local reward and all agents receiving the same system
reward [3, 2, 33, 32, 36]. The difference reward is given by:

Di(z) = G(z) — G(z — z), (4)

where z — z; specifies the state of the system without agent ¢.* In this instance z is
the full attendance profile of the agents, and z — z; is the attendance profile of all
the agents without agent i. Difference rewards are aligned with the system reward,
in that any action that improves the difference reward will also improve the system
reward. This is because the second term on the right-hand side of Eq. (4) does
not depend on agent i’s actions, meaning any impact agent ¢ has on the difference
reward is through the first term (G) [32, 35]. Furthermore, it is more sensitive to
the actions of agent 4, reflected in the second term of D, which removes the effects
of other agents (i.e. noise) from agent i’s reward function.

Intuitively, this causes the second term of the difference reward function to
evaluate the performance of the system without ¢, and therefore D measures the
agent’s contribution to the system reward directly. For the difference reward in the
congestion problem, this amounts to having each agent estimate the system reward
it would receive were it to take or not take a particular action. In this work, agents

2In this paper, we will use zero padded vector addition and subtraction to specify the state
dependence on specific components of the system.
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do not explicitly communicate with one another, and therefore, the only effect each
agent has on the system is to increase the attendance, zqay, for night £ by 1. This
leads to the following difference reward:

D'(z) = G(z) — G(z — z)
~Tday; —(#day, =1

= Taay, € ©  — (Tday, —l)e ™ © (5)

where Zqay, is the total attendance on the day selected by agent .

4. Action-Not-Taken (ANT) Rewards

Though the difference reward given in Eq. (5), provides a reward tuned to an agent’s
actions, it is still based on an agent sampling each of its actions a (potentially large)
number of times. In this work, in order to increase the learning speed, we introduce
the concept of ANT rewards.!” The goal with ANT rewards is to provide estimates
of how the system would have turned out had an agent taken a particular action.
The mathematics that allow the computation of the difference reward can be used
to compute this type of reward.

In this paper, rather than have a separate results section, we provide experimen-
tal results directly alongside the reward descriptions to motivate the improvements
to the rewards and the derivation of new rewards. All results are based on 20 inde-
pendent runs with the standard error plotted when large enough to be relevant.
Unless otherwise specified (as with the scaling runs or congestion dependent runs)
the number of agents in the system was set to 120, with C' = 6 (capacity), and
n =5 (number of actions, or days).

4.1. Basic action-not-taken reward

The direct application of this concept is to have agents update their reward esti-
mate based on the reward they would have received had they taken other actions.
Therefore, at each time step, agents perform a mathematical operation that sim-
ulates their taking a different action and compute the counterfactual reward that
would have resulted from that action. For an agent i who selected action a at this
step, the counterfactual reward for action b is given by:

D'7(2) = G(z = 2f + 27) = G(z — 27, 6)

where D~ is the reward for agent i taking action b; z¢ is the state component
where agent 7 has taken action a; zf is the state component where agent ¢ has taken
action b.

The second term of Eq. (6) (G(z—2¢)) is the same as the second term of Eq. (4).
Namely the reward for the state where agent i has not taken the particular action
that it took. The first term though is the key to the ANT reward. In this case,
we compute the reward that would have resulted had agent i taken action b rather
than action a.
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Utilizing this structure, D’ yp can then be formulated as shown in Eq. (7):
A G(z) — G(z — =9), for i — a,
Diynt = b . (7)
Gz —z28+2))—G(z—2f), fori—b#a,

where ¢ — a means that agent ¢ has taken action a. Note, the removal of the state in
which agent ¢ has taken action a in the second term represents the system state
without agent i. Because agent ¢ had taken action a, this removal results in a state
where agent 7 has taken neither action a nor action b (which it has never taken).
Hence the second term is the same for both conditions of Eq. (7).

Figure 1 shows the learning curves for D and Dant along with results where
agents directly use the system reward G and a local reward L to learn. The local
reward L is based on the agents simply receiving the reward for the action they
took, which in this instance is the component of Eq. (1) corresponding to the day

they attended the bar (L = xdaye%). This is a “selfish” reward, in that the agent
is only concerned with the day on which it decided to attend. Though yielding poor
results in this case, this is the naive decomposition of G to its components [45].

In all the experiments, the system performance is measured with respect to G,
regardless of how the agents were trained. As previously noted, these results confirm
that agents using D significantly outperform agents using G or L in this domain. G
learns little, and L learns to do the wrong thing: Because the agent rewards are not
aligned, agents aiming to maximize their own reward lead to poor system states.
We include the results for agents using G and L here for completeness, but we will
omit them in subsequent figures.
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Fig. 1. System performance versus training weeks. In comparison to D, DanT based on actions
not taken learns faster but shows a lower and noisier performance.
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The results here show that although Dantr learns faster than D, it struggles
to reach good solutions. This shows that the ANT reward has a difficult time
estimating the reward for most actions once those actions have been sampled. Even
though the agents take advantage of such rewards and learn faster in the first weeks
of training, there is a time after which these additional rewards become detrimental
to the learning process. This suggests two possible solutions, which we explore in
the next two sections:

(1) Use the ANT reward early in the process, but stop and switch to basic D after
a “stop week.”
(2) Select only a subset of the actions to receive the ANT reward.

4.2. ANT reward with early stopping

First, let us consider the early stopping concept to mitigate the noisy feedback
agents receive for their actions. This modification is based on the observation that
the ANT rewards are better than random rewards, but not as good as rewards
that have been updated by actually taking the actions. Figure 2 shows the impact
of having agents use ANT rewards for the first 6 weeks and then switch back to
using D (the impact of when to stop is discussed in Fig. 3). Results show that this
approach significantly speeds up the learning process, though does not result in
agents reaching higher performance.

Figure 3 shows the dependence of the system performance on the length of time
the ANT reward is used. The learning speed is stable for small values of the stop
week, but starts to drop slowly as the actions not taken are used more extensively.
There is a steady rightward shift as the stop week moves from 6 to 100, at which

System Reward (G)

i i i i
0 200 400 600 800 1000
Training Week

Fig. 2. System performance when actions not taken are stopped after week 6. Dant-gs (ANT
with Early Stopping) learns faster and reaches the same system rewards as D.
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Fig. 3. The impact of the stop week on system performance. The learning speed is directly related
to the length of time the action-not-taken reward is used.

point, the system learns more slowly than D alone. Providing a mechanism for
selecting the stop week based on either a preset number of ANT rewards, or given
performance criteria would provide automation, though in this work, we simply
base the stop week on trial and error based on Fig. 3.

4.3. ANT reward with teams

The second option we consider is to limit the actions that are updated based on
counterfactual rewards to reliable actions sampled by a subset of agents. To that
end, we introduce the concept of a team, and denote agent i’s team members by
T;. In this context, T; is a fixed, randomly selected subset of the agents. This
formulation gives:

G(z) — G(z — z8), for i — a,
Dinpr =4 Gz — 28+ 22) — G(z — 28), fori—beT;, (8)
0, otherwise,

where ¢ — b € T; means agent i selects actions b that are sampled by agent’s i’s
teammates T;. As previously, the removal of agent i in the second term represents
the system state without agent 7 having taken either action a (which it had taken)
or action b (which it had not taken), leading to the term being the same in both
cases.

Figure 4 shows the results when an agent has 12 randomly selected team mem-
bers (in this case there are 120 total agents, so the team sizes are 10% of the total
agents). Other than at the extremes (e.g. team size of 2 or 110), the experiments
were not particularly sensitive to this parameter. By limiting the number of actions
that are updated (Dant-1 in black/dark), the variability of the reward is reduced as
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System Reward (G)
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Fig. 4. System performance when only a subset of actions are explored by an agent (120 total

agents, team size of 12). D performs well. DanT-7, based on a limited number of actions not taken
performs similarly as DanT but shows a response with a lower noise level.

compared to the full Dant (in green/light), but there is no discernible improvement
in the quality of the solution. However, from a computational and communication
perspective, this is an interesting result, which points to a significant reduction in
the need for counterfactual reward computation without loss of convergence speed.

We now combine the two concepts and have agents use teams and early stopping.
Furthermore, instead of using the team members as information sources only, we
increase the connection among team members by providing them all with the same
reward. That is, all team members attending a particular day will receive the same
reward. The learning strategy is to use team information only during the first weeks
(three in the reported results, but the performance is similar for minor changes to
this parameter) of learning and switch to the regular difference reward [Eq. (5)] for
the rest of the training period.

The key aspect of this approach is that the team members measure the impact
of a team not taking a particular action, rather than an individual agent. As a
result, agents learn with their team in a smaller state space defined by the world
minus their team space instead of the entire world. This is conceptually similar to
the reward described in Eq. (8) but where the impact of the whole team, rather
than agent 7 is removed, leading to:

G(z) — G(z — 2%,), for T; — a,
Do = G(z—zf—i—z;?) —G(z—z% —z8), fori—beT? (9)
0, otherwise,

where 27, is the state component of team members of agent i taking action a. In
this formulation, the impact of all of agent’s i teammates are removed before the
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reward is calculated. Note in this case, unlike in Eqgs. (7) and (8), the second term
is different for the two actions. This is because this term estimates the impact of
removing all team members of ¢ that had taken a particular action. When agent ¢
changes its action, this also changes the team members taking the same action as 7.
For the action a selected by agent i, we only need to remove all its team members
who took that action. But to find the counterfactual reward for action b, we need
to remove the actual action of agent i (action a) and then remove the team mem-
bers who had taken action b. Though conceptually similar to previous rewards, the
presence of team members leads to this subtle difference in the computation of the
team ANT reward.

Now, let us explicitly compute Di.,
this paper. First, for the action taken by agent i [first line of Eq. (9)], the reward
becomes:

for the congestion problem considered in

Dot = G(z) — G(z — 2§,)

Team
—Tday ~Tday
:§ Tday€ © — § Tday€ ©

day day#day;

_ _ i
(Zday; | Tiay, D

+ (xdayi - |Téayi |)€ c ’ (10)

where z—27. is the state component in which agent i and its teammate taking action
a have no effect; day; is the day agent i selects to attend; z4ay, is the attendance on
the day agent ¢ selects to attend; and |Tjayi| is the number of agent i’s teammates
that choose day; to attend.

Second, let us focus on the actions not taken by agent ¢ [second line of Eq. (9)].
This is the reward agent ¢« would have received had it taken the actions b chosen by
some of its teammates, leading to:

DRt =Gz — 20 +20) - G(z - z%, —z)

Team

day

~Zday —(@day; ,,—V
= E Tdaye ©  + (Tday, , —1)e c
day#day; .,

- (zdayiﬂb +1)
C

+ (xdayi_'b + 1)6

—Tday ~Tday; L,
- § , Tdaye © + (Tday, ., — l)e
day#day; ,q 5

_ |7t
Tday; 1 Thay, D
[e]

+ (xdayi_.b - |Téa}’i—>b|) €

—(@day, T i
= (xday,iﬂb +1)e ¢ + (xday,iﬂb - |Tday,Hb|) €

— (3 _ 7
Cday; .y~ Tday; .,
C

(11)
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where z — z¢ + 2? is the state component in which agent 4 takes action b rather than
action a; z — Z% — 2% is the state component on which agent i (taking action a) and
its teammates taking action b are removed from the state; x;_.; is the attendance
resulting from agent i taking action b; |T§'ay“b| is the number of agent i’s teammates
that choose to attend on day resulting from action b.

In this formulation, if the agent i’s team members have taken all the possible
actions, each action that agent ¢ had not taken will still be updated. Otherwise,
only actions taken by i’s teammates will be available for reward information and
therefore updated.

Figure 5 shows the learning curves for D , DanT-gs and Drgan. Agents using
Drganm not only learn faster, but also reach higher system rewards than agents using
the baseline D or previous variants of Dant. In this instance, not only information
from team members was used, but also the reward of each team member was the
same, resulting in a larger “block” of agents receiving a reward, and removing a
significant amount of noise from the rewards.

4.4. ANT reward with weighted teams

The use of team rewards provided tangible benefits, though it treated all informa-
tion received from team members equally. Yet, one can consider that the more team
members take a particular action, the more reliable the estimate for the reward of

System Reward ()

i ] I i
200 400 600 800 1000
Training Week

Fig. 5. System performance versus training weeks. D performs well, but Dream based on updating
only actions that were taken by team members both learns faster and reaches higher system
rewards than D or DaANT-ES-
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that action would become. This becomes particularly relevant when the congestion
in the system increases.

A simple solution to this problem is to use a weighting factor for the second term
of the counterfactual reward function. In this work, we use the average number of
team members selecting particular actions, though more sophisticated methods can
also be used. This leads to modifying Eq. (9), that for agent ¢ and action b leads to
a weighted team reward Dyw:

i—b b
Dy =G(z—2'+2)) - Hirs,,. Gz —2r, — 2}), (12)
where Mg, | is the average number of team members taking action b.

Figure 6 explores this idea for 460 agents in a system with seven actions and a
capacity of 4. Because the optimal capacity in this case is 7 x 4 = 28, this creates
significant congestion. The results show that traditional D starts to suffer in this
case, and that the weighted Dwr outperforms Drgan. Figure 7 shows the impact
of congestion directly as the number of agents in the system increases from 120 to
460. Dyt handles the increased congestion better than either Drgan or D.

5. Tracking Dynamic Environments

One of the key advantages to learning rapidly is the ability to adapt to dynamic
environments where the conditions may change faster than a traditional learner can
adapt. In this section, we test the performance of the ANT rewards with weighted
team reward on two types of dynamic environments. First, we explore seemingly

System Reward (G)

0 200 400 600 800 1000
Training Week

Fig. 6. System performance for the weighted team rewards. There are 460 agents in the system
with only seven actions of capacity 4 leading to significant congestion. The performance of DwT
is significantly higher than either the base D or Dtgam-
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System Reward (G)

2 i 1 i i I i I

100 150 200 250 300 350 400 450 500
Number of Agents

Fig. 7. The impact of congestion on system performance for the weighted team rewards. The

number of agents increases, but the capacity of each day stays the same (C' = 4). The performances

of both Drgan and Dwr are significantly higher than D, and Dwr handles the congestion the
best.

random changes in agent numbers and capacities, and then we explore faster, but
periodic changes of both types.

5.1. Unpredictable changes to the environment

In this section, we explore the ability of Dwr to adjust to unexpected changes in
the system. Figure 8 shows the system response to changes in the number of agents.
In this case, the number of agents changed every 40 weeks from 280, to 140, to 180,
to 100. Dw not only recovers rapidly, but also learns to exploit the new condition,
as demonstrated at week 120: after the initial drop caused by the change, agents
using D return to their previous state, but agents using Dy reach a higher system
reward value.

Figure 9 shows the system response to the capacity changing from 3 to 7 every
70 weeks. Dy learns faster early on and reaches slightly higher performance, but
this experiment shows that D can track slow changes in the environment.

5.2. Periodic changes to the environment

In this section, we explore periodic and rapid changes to the environment. Figure 10
explores the performance of Dy versus difference reward D when the number of
agents is changing rapidly. Unlike in the results of the previous section (Fig. 8),
D has a hard time tracking these changes. DwT on the other hand converges to
a good solution despite the number of agents in the system changing the optimal
solutions for each agent. (For this experiment, we modified the value update func-
tion to account for the periodicity of the system, and allowed the value update to
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System Reward (G)

150 200

Training Week

Fig. 8. System performance when the number of agents in the system changed from 280, 140,
180, 100 each 40 time steps, for seven actions and a capacity of 4. Dy outperforms D both in
response time and final solution quality.

System Reward (G}

0 200 400 600 800 1000
Training Week

Fig. 9. System performance when the capacity of the system changes from 3 to 7 and back every
70 time steps for four actions and 120 agents.

be: Vi=(1—a) (- VI 4+ (1—1)- V') 4 a - R where t' corresponds to the last
time in which the capacity was the same. This value can be estimated in practice,
though in this instance, in order to remove the impact of such estimation on the
reward analysis, we provided it to both reward functions.)

Finally, we explore the impact of rapid changes to the system capacity. Figure 11
shows the system performance when the capacity oscillates between 2 and 5. Unlike
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Fig. 10. System performance versus training weeks. There were eight actions with a capacity of
5. The standard difference reward D is plotted Dy with variations of 60-120 in the number of
agents. D cannot converge to a good solution, but DwT not only converges to a good solution
but does so rapidly after each capacity change.
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Fig. 11. System performance when the number of agents changes periodically. There were eight
actions and 120 agents and capacity changed from 2 to 5 every 50 weeks. D performs poorly, but
Dw learns faster and reaches higher system rewards than D for both capacities.
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in Fig. 9, D cannot track this continuous change as it does not get sufficient time
to learn the system before the environment changes. Dwr, however, tracks the
changes. Even though it has difficulties with the rapid changes, it both reaches
higher system level performance for both C =2 and C = 5.

6. Discussion

In large multiagent systems, the agents face a difficult learning problem where
their actions are filtered through the “group action” before leading to a reward.
As a consequence, an agent has a lengthy learning period where the actions need
to be sampled a large number of times to extract the “signal” from the “noise.”
The use of the difference reward provides an improvement over directly using the
system reward. However, a standard difference reward function still relies on each
action being sampled before the cleaned up reward can be obtained. In this work,
we present a modification to previously used difference reward, called ANT reward
that provides agents with rewards on actions that were not taken by the agent.

We then provide modified versions of the ANT reward that through early stop-
ping and team structures provides improvements in both the learning speed and
the quality of the solution reached. The increase in speed of learning is the direct
result of an agent receiving a counterfactual reward that estimates the reward that
agent would have received had it taken a particular action. Furthermore, we show
that the performance improvements are significantly more pronounced in dynamic
environments where the conditions change either randomly or with high periodic-
ity. In both cases, the rapid learning allows the agents to track a highly dynamic
environment.

Though these results are encouraging, there are multiple areas for further inves-
tigation in this domain. First, the communication and observation requirements of
the agents can be explicitly explored and connected to the system performance.
Second, having agents adopt particular roles within a team can potentially provide
further improvements in the learning speed. Finally, modifying the way in which
agents estimate their ANT rewards can lead to substantial computational gains in
addition to the already achieved speed up in the number of iterations required for
convergence. We are currently investigating all three extensions of this work.
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