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ABSTRACT: Two non-integer parameters are defined for MAX statistics, which are maxima of d simpler

test statistics. The first parameter, dMAX , is the fractional number of tests, representing the equivalent

numbers of independent tests in MAX. If the d tests are dependent, dMAX < d. The second parameter is the

fractional degrees of freedom k of the chi-square distribution χ2
k that fits the MAX null distribution. These two

parameters, dMAX and k, can be independently defined, and k can be non-integer even if dMAX is an integer.

We illustrate these two parameters using the example of MAX2 and MAX3 statistics in genetic case-control

studies. We speculate that k is related to the amount of ambiguity of the model inferred by the test. In the

case-control genetic association, tests with low k (e.g. k = 1) are able to provide definitive information about

the disease model, as versus tests with high k (e.g. k = 2) that are completely uncertain about the disease

model. Similar to Heisenberg’s uncertain principle, the ability to infer disease model and the ability to detect

significant association may not be simultaneously optimized, and k seems to measure the level of their balance.
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1 Introduction

Geometric objects with non-integer dimensions such as coastal lines, random walk trajec-

tories, Koch snowflakes have been well known [1]. Besides the feature of self-similarity, an

important property of most fractals is their non-integer dimensionality. It is perhaps less

known that non-integer or fractional parameter values is also a valid concept in statistical

distributions. The best example is the fractional degrees of freedom (df). The χ2 (chi-square)

distribution concerns the sum of squares of standard normal (Gaussian) variables. IfX1 andX2

are two normally distributed variables with zero mean and unit variance, Y = X2

1
+X2

2
is then

distributed as the χ2 with two (k = 2) degrees of freedom, denoted by χ2

k=2
. The analytic ex-

pression of the probability density distribution of χ2

k is known: 0.5
k/2/Γ(k/2)·xk/2−1exp(−x/2),

where Γ is the Gamma function [2]. In this expression, there is no conceptual difficulty to ex-

tend an integer value of k to non-integers. However, since there is a specific meaning of k in

the original definition of chi-square distribution, i.e., the number of standard normal variables

to be summed, one may wonder whether non-integer degrees of freedom, though allowed, have

any applications.

The chi-square distribution plays an essential role in genetic association analysis, whose goal

is to determine whether a genetic marker on a particular chromosome location is associated

(correlated) with a human disease or presence/absence of a phenotype of interest [3, 4, 5].

The simplest genetic marker has two possible “values” (alleles), written as a and A. Because

half of the genetic material of a person is from the father (F), and another half from the

mother (M), a marker configuration can be written as F|M. The two-allele marker has four

possible configurations: a|a, a|A,A|a, and A|A. If we cannot distinguish the parental origin of

an allele easily, as in the case with most technologies current in use, A|a and a|A are grouped

into one configuration, and the resulting three configurations (after dropping the vertical bar),

aa, aA,AA, are called genotypes.

The most popular design for genetic association study right now is the case-control design [6,

7, 8, 9, 10]. In this design, a group of patients (cases) and a group of disease-free normal persons

(controls) are recruited, whose DNA molecules extracted, and their genotype throughout the

genome (e.g. 105 − 106 markers on 23 chromosomes) are determined (“genotyped”). For a
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particular marker, the number of case (and control) samples with the aa, aA,AA genotypes

are counted. These six genotype counts are stored in a 2-by-3 contingency table, rows for two

disease status and columns for three genotypes. Many null hypothesis can be tested, and a

significant violation of the null is used as evidence for genetic association between the marker

and the disease. Exploration of the protein-coding genes near the marker could provide further

insight into the mechanism for the disease.

Establishing the null hypothesis is not as easy as first thought. One obvious choice is

to assume the three genotype frequencies to be unchanged in the two (case and control)

groups. If we use the Peason’s chi-square test (goodness-of-fit test), the null distribution of

the test statistic is χ2

k=2
. The relation between the degree of freedom k and the size of the

contingency table is straightforward: k is equal to the number of rows minus 1 multiplied by

the number of columns minus 1 [11]. On the other hand, if the allele A “dominates” allele a,

there is no difference between the aa and aA genotypes; and after combining the aa and aA

columns, the original 2-by-3 table becomes a 2-by-2 table, and the test statistic follows the

χ2

k=1
null distribution. The similar collapses from 2-by-3 to 2-by-2 table could be carried out

in several other ways, corresponding to “recessive”, “multiplicative”, “over-dominant”, etc.

disease models, each has a χ2

k=1
null distribution for the corresponding test statistic.

If the disease model is known, i.e., if we know the disease risk given a genotype, one can

easily choose the null hypothesis and a test so that deviation from the null could be detected.

Unfortunately, for many complex human diseases, due to the multiple genes nature and gene-

environment interaction, the disease model for a specific risk gene is largely unknown. To

increase the chance to detect the association signal under the situation of model uncertainty,

several tests, each testing a different null hypothesis, could be applied, and the best result

among them is used. We call this procedure the “MAX test”. The MAX test that maximizes

the test statistics from two or three disease models is a compromise between using one simple

disease model and using no models. As a result, the null distribution of MAX test statistics

is neither χ2

k=1
nor χ2

k=2
, but something in between. We will show that this indeed leads to a

fractional degrees of freedom k for χ2

k, and 2 − k measures our knowledge about the disease

model. The determination of k is complicated by another issue that sometimes the two or

three test statistics being maximized are not independent. That leads to another fractional
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parameter: the number of independent tests dMAX .

Although these two fractional parameters are not the same as the fractal dimension for

fractals, a common theme is the non-integer value. We will explore the properties of these

two parameters in details in this paper, organized as follows: Section 2 introduces statistical

tests and MAX statistical test; Section 3 discusses the fractional number of tests for MAX

test, from the perspective of family-wide p-values; Section 4 discusses the fractional degrees

of freedom of chi-square distribution, from the perspective of fitting null distribution of MAX

test statistics. In the discussion section, we address the issue on whether the fractional degrees

of freedom is connected to fractal dimension in the parameter space.

2 MAX statistical test

When two different statistical tests are carried out on the same dataset [12], the more

significant result of the two (i.e., the more extreme test statistic value) can be reported as

the overall test result. This is a MAX statistical test. Clearly, MAX test statistic will always

be larger than (or at least equal to) individual tests being maximized. Although the null

distribution of a MAX test statistic may not be expressible by a simple analytic formula, we

do expect the “center of gravity” of the distribution to be shifted to the right to have a larger

mean and a thicker tail area (“inflated type I error”), as compared to that of a individual test,

for the obvious reason that the maximization procedure increases the mean value.

Here we would like to define a MAX statistic for the case-control genetic association study.

A dataset of such study consists of six numbers: number of case samples with aa, aA,AA

genotypes (N10, N11, N12), and the number of control samples with these three genotypes

(N00, N01, N02) (see Appendix). The row i in Nij indicates the case (1) or control(0) status,

and column j indicates the genotype with j copies of A allele.

We consider three different tests which are part of a test family called Cochran-Armitage

trend (CAT ) test [13, 14]. This family of tests is parameterized by a x value, and the null

hypothesis is the equality of weighted genotype frequency xPaA + PAA in case and control

group. When x = 0, we are testing PAA,case = PAA,control, which corresponds to the genetic

recessive model on the risk allele A. When x = 1, we are testing the equality of PaA + PAA
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in case and control group, which corresponds to genetic dominant model (whenever the risk

allele A is present in a genotype, the disease risk is the same regardless of the second allele).

When x = 0.5, we are testing the equality of the allele frequency, PaA/2 + PAA = PA, in the

two groups.

The expression of CAT test statistic is given in Appendix. There are other reformula-

tion of the above formula, such as using the estimated allele frequency difference and Hardy-

Weinberg disequilibrium coefficient difference [16], but the simplest calculation of CAT (x = 0)

or CAT (x = 1) is to merge the aA counts (j = 1) with the aa counts (j = 0) or AA counts

(j = 2), then calculate the Pearson’s chi-square test statistic (see Appendix).

If the underlying disease model is dominant, multiplicative, or recessive, the CAT (x = 1),

CAT (x = 0.5), or CAT (x = 0), respectively, tends to be the largest. Fig.1 shows an example

using a dominant model. The histogram determined by 100,000 replicates for CAT (x = 1) is

peaked at the higher value than the other two CAT ’s, CAT (x = 0.5) is distributed slightly

lower than CAT (x = 1), whereas the distribution of CAT (x = 0) is far towards the smaller

values.

If the disease model is unknown, it is when a MAX statistic is useful. One may consider

these MAX statistics for case-control genetic data:

MAX2 ≡ max(CAT (x = 0), CAT (x = 1)) (1)

MAX3 ≡ max(CAT (x = 0), CAT (x = 0.5), CAT (x = 1))

MAX2 was discussed in [15, 16], and MAX3 was discussed in [17, 18, 19]. Both MAX2 and

MAX3 are “smart” samplings of the disease model space without an exhaustive search.

3 The fractional number of tests in calculating test-family wide p-

values in MAX statistics

When several tests are applied to the same dataset and these tests are independent, there

is a simple formula for calculating the test-family-wide p-value, which is also the p-value for

the MAX test. We can derive the tail probabilities under the null distribution (i.e., p-value),

pMAX2 and pMAX3, with the tail starting from the observed test statistic value M by the
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following procedure (pχ2 is the tail area probability under χ2

k=1
distribution):

pMAX2 ≡ P (MAX2 > M |null)

= 1− P (MAX2 < M |null)

= 1− P (CAT (x = 0) < M and CAT (x = 1) < M |null)

≈ 1− P (CAT (x = 0) < M |null)× P (CAT (x = 1) < M |null)

= 1− (1− P (CAT (x = 0) > M |null))× (1− P (CAT (x = 1) > M |null))

= 1− (1− pχ2)2

pMAX3 ≡ P (MAX3 > M |null)

= 1− P (MAX3 < M |null) ≈ · · · = 1− (1− pχ2)3. (2)

The approximation can be replaced by the equal sign for MAX2 only if CAT (x = 0) and

CAT (x = 1) are independent, and for MAX3 only if CAT (x = 0), CAT (x = 1) and CAT (x =

0.5) are independent. The independence assumption is untrue for MAX3 [17], but close to

be true for MAX2 [16]. The two approximate formula in Eq.(2), also known as Dunn-S̆idák

formula [20, 21], can be written as 1− (1− pχ2)d for d tests being maximized in MAX.

If we force the approximation sign in Eq.(2) to be equality, d can be derived from pMAX .

This value of d (called dMAX here) represents the effective number of independent tests:

dMAX =
log(1− pMAX)

log(1− pχ2)
. (3)

Note that the tail area probabilities for both MAX and chi-square, pMAX and pχ2, are deter-

mined by the same M , the starting position of the tail area.

Besides multiple testing correction in test-family-wide p-value on the same dataset, the

Dunn-S̆idak formula can also be used with the same test on multiple datasets. In particular,

in whole genome association or linkage studies, selecting the SNP with the best association

or linkage signal among ∼ 105 SNPs belong to this application [22, 23], and the genome-wide

p-value is calculated in the same way. The severe correction on p-value in this application is

in a sharp contrast to the correction in Eq.(2), of a factor of only 2 or 3.

In order to estimate the effective number of tests for MAX2 and MAX3, we carried out the

following simulation. We generated Nr =100,000 replicates, each replicate is a 2-by-3 genotype
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counts for 1000 cases and 1000 controls. The allele frequency is randomly chosen but the same

allele frequency is used to simulate both case and control genotypes. The genotype frequency

is derived from the allele frequency by the Hardy-Weinberg equilibrium. The empirical distri-

bution of MAX2, MAX3, CAT (x = 0), CAT (x = 1), CAT (x = 0.5) can all be determined

with 100,000 realizations of test statistic values (and the minimum p-value can’t be smaller

than 1/100,000= 10−5). Using several threshold M value (controlling type I error), dMAX2 and

dMAX3 can be calculated by Eq.(3). Two more runs were also carried out with 3000 cases/3000

controls, and 5000 cases/5000 controls.

Fig.2 shows the empirical dMAX2 and dMAX3 as a function of pχ2, the tail probability for the

χ2

1
distribution. It can be seen that although there is only a slight reduction of dMAX2 from

the expected value of 2, dMAX3 is much smaller than the expected value of 3. At pχ2 = 0.05,

the value of dMAX3 is around 2.1, consistent with a similar result of dMAX3 = 2.2 in [24].

The empirical d values calculated from Eq.(3) for CAT (x = 1) and CAT (x = 0) are also

shown in Fig.2 as a check of accuracy of the simulation. Indeed, the d values do not deviate

from the expected value of 1 with the exception at smaller pχ2 values. For low pχ2 values,

a smaller number of replicates are used in the determination of the empirical p-values, thus

variance is large – Fig.2 does show that the estimated dMAX2 and dMAX3’s are not consistent

among the three runs at (e.g.) pχ2 < 0.01, an indication of large run-to-run variation.

Another source of potential bias is that we keep the allele frequency a minimum distance

away from the 0 value in order to avoid the situation of zero genotype count. The range of

allele for these 3 runs are (0.1, 0.9), (0.05, 0.95), and (0.02, 0.98) respectively. Only when

both the sample size and number of replicates go to infinity, and with unconstrained allele

frequency, can one expect the simulation-based estimation of dMAX values to be exact.

4 Chi-square distributions with fractional degrees of freedom that

fit the null distribution of Max test statistics

The second fractional parameter value related to the MAX concerns the fitting of MAX

null distribution by a non-integer-k χ2

k distribution. As mentioned in Section 1, non-integer-k

chi-square distribution χ2

k can be determined easily and is indeed implemented in statistical
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packages, such as R (http://www.r-project.org/). Here we would like to check which k value

in χ2

k leads to a better fit to the MAX null distribution.

In order to avoid confusion between k and dMAX, we made component tests to be indepen-

dent so that dMAX remains an integer. Instead of generating case and control samples with

specific genotype then calculate the MAX2, MAX3, CAT (x = 1) and CAT (x = 0), we ran-

domly sample two, or three independent chi-square values from the χ2

k=1
distribution, then the

maximization procedure is carried out. Due to the independence between chi-square values,

dMAX2 and dMAX3 should be exactly equal to 2 or 3. Here we use a different notation, Max2

and Max3, to represent this correlation-free simulation (to be compared with Eq.(1):

Max2 ≡ max(χ2

1
, χ2

1
)

Max3 ≡ max(χ2

1
, χ2

1
, χ2

1
) (4)

Fig.3 shows the result of fittings the empirical Max2 and Max3 by chi-square distribution

with non-integer degree of freedoms. Fig.3(A,B) are the quantile-quantile (QQ) plot, where

the x-axis is the ranked Max2 or Max3 value and y-axis is the ranked chi-square values with

a fractional degrees of freedom (k=1.3, 1.4, 1.45, 1.5, 1.55, 1.6 for Max2, and k=1.5, 1.6, 1.7,

1.8, 1.9, 2 for Max3). To reduce variation, the average of 100 runs is used in Fig.3. When two

distributions are identical, their QQ-plot should trace the diagonal line with slope=1 (marked

by circles). In Fig.3(A,B) chi-square distribution with a range of fractional degrees of freedom

seem to fit the Max2 and Max3 distribution well.

To examine more carefully how good fractional k chi-square distributions fit the Max2/Max3

distribution, we draw the detrended QQ-plots in Fig.3(C,D), i.e., y-axis is the difference be-

tween the sorted chi-square values with fractional k and the sorted Max2 or Max3 values.

Fig.3(C,D) show systematic deviations between the two distributions. In other words, no chi-

square distribution with one single fractional k value may fit Max2 and Max3 for the entire

range of values. For example, at Max2 ≈ 5, χ2

1.5− Max2≈ 0 (good fit), whereas when Max2

>> 5, χ2

1.5− Max2>0 (bad fit).

It is straightforward to determine which χ2

k crosses the zero horizontal line at what position

in Fig.3(C,D). First, from Eq.(2), we see a simple relationship between the “head area” of χ2

1

http://www.r-project.org/
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and that of Max2/Max3:

√

1− pMax2 = 1− pχ2

(1− pMax3)
1/3 = 1− pχ2 . (5)

The approximation in Eq.(2) becomes equality because MAX2/MAX3 is replaced by Max2/Max3.

Here is an example in determining the zero crossing point in Fig.3(C): if the tail area pMax2

for Max2 is 0.05, the “head area” is 0.95, and the corresponding head area for χ2

1
is
√
0.95 =

0.9746794. That head/tail area for χ2

1
can be used to determine the threshold value M =

5.001825, as marked in Fig.4.

Then, we choose a χ2

k with fractional k so that its tail area determined by M = 5.001825 is

also 0.05. As shown in Fig.4, the threshold value for 0.05 area for χ2

1
is 3.841459 and that for

χ2

2
is 5.991465. A fractional-k χ2

k (1 < k < 2) should have the threshold value for 0.05 tail area

at M = 5.001825. The exact k can be iteratively determined by a bisection method, resulting

in k = 1.51. In other words, at pMax2 = 0.05, χ2

k=1.51 is equivalent to the null distribution of

Max2.

Fig.5(A) shows the above-mentioned fractional k value vs. the tail area probability pMax2

or pMax3. We are mostly interested in small tail area values, e.g. pMax2, pMax3 < 0.05, in a

test. In this range, the equivalent fractional k is constrained from above, e.g. smaller than 1.5

(1.85) for Max2 (Max3). We also attempt to convert the curve in Fig.5(A) to a straight line

by variable transformation. This can be accomplished by taking the cubic root of pMax2 or

pMax3: in Fig.5(B), the fractional k vs. p
1/3
Max2 or p

1/3
Max3 exhibit a reasonably good linear trend.

Besides fitting the tail area of Max2/Max3 by a fractional-k χ2

k, one may also use a χ2

k

that has the same average/mean as Max2 or Max3. We know that the average/mean of χ2

k

distribution is simply k, so this fractional dimension is very easy to determine. For example, in

our simulation the means of Max2 and Max3 are 1.64 and 2.10 respectively. The corresponding

fractional-k χ2

k’s that have the same mean would be χ2

1.64 and χ2

2.10. Note that this fitting of

Max2/Max3 by χ2

k is to fit the mean which receives contribution from head as well as tail

areas. It is not surprising that the resulting k’s are different from those that are based on tail

areas only. Since the tail area is of major concern in most statistical inferences, we regard the

definition of fractional df from the tail area as more useful.
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Figs.3-5 all illustrate that a single fractional-k χ2

k cannot fit the Max2/Max3 distribution

perfectly. In particular, Fig.3(C,D) shows that the deviation between the two is directional:

the matching χ2

k has a fatter tail than Max2/Max3 beyond the crossing point. One method

to remove the systematic deviation in Fig.3(C,D) is to use a linear function. For example,

Fig.3(D) show the result when the−0.45+0.04χ2

k=1.7 linear trend is removed from the detrended

QQ-plot of χ2

k=1.7 against Max3. It is equivalent to an approximation of sorted Max3 by

0.45 + 0.96sort(χ2

k=1.7). Although it is not a perfect approximation, nor a unique one, the

trend removal does reduce the systematic deviation.

5 Case-control genetic data

The result from the last section cannot be applied to the case-control data directly because

the individual test statistics in Eq.1 are not independent, in particular for MAX3. There have

been attempts to derive the null distribution of MAX3 by considering the joint distribution of

CAT (x = 0), CAT (x = 0.5), and CAT (x = 1) [24, 25]. From Fig.3(B,D) and Fig.5(B), it is

seen that we should not expect a single χ2

k with a fractional k to fit the MAX3 distribution

perfectly.

The questions we asked for a real case-control data are: (1) what are the approximate values

of k if a χ2

k is forced to fit the tail area probability of MAX3? (2) how good is our approximate

distribution of Max3, 0.45+0.96 χ2

k=1.7, in fitting MAX3? For answering these questions, we

use the case-control data for type 2 diabetes provided in [26].

The tail-area probability of MAX3 can be empirically obtained by permutation: the affec-

tion status label of samples are randomly shuffled, then the genotype counts are reconstructed.

From such a genotype count table, the MAX3 value can be determined. Repeated calculation

of MAX3 in label-shuffled dataset provides a null distribution, and from which one can derive

the tail-area probability. The pMAX3 thus determined for the top SNPs in [26] is reproduced in

Table 1. From the permutation-derived pMAX3, we find the best-fit χ2

k that leads to the same

pMAX3 value, and that fractional degrees of freedom k is listed in Table 1. A range of values

of k between 1.2 and 1.7, very similar to the range used in Fig.3(D).

Next, we estimate the tail area probability of MAX3 by an approximate formula discussed
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gene/SNP MAX3 pMAX3 (permutation)(1) k(2) pMAX3 (by k = 1.7 formula)(3) pMAX (exact)(4)

TCF7L2/rs7900150 34.18437 2.1 ×10−8 1.676 1.36 ×10−8 1.29 ×10−8

CAMTA1/rs1193179 25.71149 6.3 ×10−7 1.213 1.17 ×10−6 1.00 ×10−6

CXCR4/rs932206 23.28708 2.8 ×10−6 1.336 4.19 ×10−6 3.67 ×10−6

ZNF615/rs1978717 23.11983 4.9 ×10−6 1.595 4.57 ×10−6 4.01 ×10−6

HHEX/rs1111875 22.01918 8.6 ×10−6 1.597 8.17 ×10−6 7.82 ×10−6

LOC644419/rs282705 21.93485 9.0 ×10−6 1.598 8.54 ×10−6 6.27 ×10−6

Table 1: SNPs taken from the Table S4 of supplementary material of [26] with tail area probability (obtained

from permutation) smaller than 10−5, and if more than SNPs in a gene are significant at this level, only one

SNP is chosen here. The first two columns list the gene/SNP name and the MAX3 value (based on the genotype

counts given in the supplementary material of [26]). (1) values of tail area probability provided by [26]; (2)

the best fit of k when the values in column “(1)” is used to fit a χ2
k distribution; (3) estimation of the tail area

probability of MAX3 by the distribution (for Max3) of 0.45+ 0.96χ2
k=1.7; (4) tail area probability of MAX3 by

the exact enumeration of all possible combinations.

in the last section (and Fig.3(D)) for Max3. Due to the difference of Max3 and MAX3, and the

approximation nature of the formula, we do not expect the derived tail area probabilities to

be exact. Surprisingly, from the result in Table 1, this approximation actually leads to pMAX3

that are similar to those obtained from permutation in [26].

Permutation only provides a sampling of the null distribution, and the finite number of

replicates could be a source of error. Mimicking Fisher’s exact test, which determines the

tail area probability by counting the number of states in the tail area by combinatorics, we

can also determine the exact value of pMAX3 (J. Tian, C. Xu, H. Zhang, Y. Yang, paper in

preperation). This exact tail area probability is listed in the last column of Table 1. Again,

we see that the approximation of pMAX3 based on fractional-k chi-square distribution isn’t far

off from the exact values.

6 Discussion

In this paper, we introduce two fractional parameter values for MAX test statistics: (1) the

fractional number of tests dMAX and (2) the fractional degree of freedom k for the chi-square
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distribution that fits the Max null distribution. The parameter dMAX has its counterparts in

other fields, such as the effective number of parameters for model selection [27, 28, 29, 30],

effective number of genetic markers that are in linkage equilibrium [31, 32], effective number of

grid points required to represent a climate field [33], effective sample size in genetic study for

relatives [34], etc. It was stated in [35] that between the two extreme situations of two tests

being independent and being identical, “an intermediate answer is to be anticipated”. In one

particular situation, they actually have an example of 1.5 effective number of tests (page 340

of [35]).

There are two universal themes in these diverse studies: (1) Positive correlation causes the

effective number to be smaller than the apparent number. This has several consequences, such

as dimension reduction as a technique to simplify the dataset, correct ways for comparing

statistical models by using the effective number of parameters to measure model complexity,

etc. (2) As the effective number is determined from the real data, its value is most likely to

be non-integer. Fractionality is the rule, not an exception.

The Bonferroni correlation of p-value for multiple testing is known to be conservative. The

very reason that it is conservative is because tests can be positively correlated, which is also

the cause for reduced values of effective number of tests. Various attempts were made to take

into account of correlation among tests making a correction less conservative [36, 37, 38]. Our

simulation results show that the reduction of effective number of tests for MAX2 is very small,

indicating that CAT (x = 0) and CAT (x = 1) are not strongly correlated. However, there is a

large reduction in the effective number of tests for MAX3, and the multiple factor of 3 is not

appropriate in Bonferroni correction for MAX3.

Non-integer degrees of freedom k for χ2

k is our second fractional parameter, which had been

encountered occasionally in statistical literature (e.g., [39]). The fact that df can be non-

integer is not surprising by itself, but it is more interesting to ask the question on whether it

has any geometric interpretation. Our case-control association analyses example may provide

a hint, as there is a tangible link between the k value and the size of area in the disease model

space.

A disease model can be specified by 4 parameters (see Appendix), but a projection from

the 4-dimensional space to 2-dimensional one is possible. Using a 2-by-3 genotype count table
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as a realization of a disease model, Fig.6 shows two different ways to map a 2-by-3 genotype

count table onto a two-dimensional plane. The first, as shown in Fig.6(A), uses the case-control

difference of Hardy-Weinberg disequilibrium coefficients (δǫ) and case-control difference of allele

frequency (δp) (see Appendix) [15, 16]. The second, as shown in Fig.6(B), uses the odd ratio

of the baseline and heterozygote genotype (OR1) and the odd ratio of the baseline and risk

homozygote genotype (OR2) (see Appendix) [40].

In the absence of constraints, randomly sampled disease model could scatter within a

bounded plane in Fig.6 (an outer bound for Fig.6(A) could be: −1 ≤ δp ≤ 1, −1/2 ≤ δǫ ≤ 1/2),

whereas disease models in a given class are located in a more restricted subspace, such as a

line segment. We randomly sample dominant, recessive, multiplicative models and use them

to generate dataset with 1000 case and 1000 control samples, these generated genotype count

tables are mapping to 2-dimensional space in Fig.6. In Fig.6(A), multiplicative models are

located along the y-axis as this model does not lead to Hardy-Weinberg disequilibrium; and

recessive (dominant) models are located in regions with positive (negative) δǫ values [41, 15, 16].

Similarly, in Fig.6(B), dominant models are located along the line with slope 1 (OR2 = OR1),

multiplicative models are located in the line with slope 2 (log(OR2)/ log(OR1) = 2), and

recessive models are on the vertical line (OR1 = 1 and arbitrary OR2).

If we sort different test statistics according to their corresponding degrees of freedom k in

χ2

k for the null distribution, the following order appears: test on 2-by-3 genotype count table

(k = 2), MAX3 (d ≈ 1.57), MAX2 (d ≈ 1.5), CAT (x = 0.5) or CAT (x = 0) or CAT (x = 1)

(k = 1). On the projected disease model space in Fig.6, there is also a gradual narrowing of

models for which these tests are designed to detect: genotype count test targets any models in

the 2-dimensional space, MAX3 targets three types of models represented by 3 line segments,

MAX2 targets two types of models represented by 2 line segments, and CAT (x) targets only

one line segments.

In Fig.6, the line segments for the three types of disease models are somewhat blurred into

wider areas, but it is caused by random realization of datasets, rather than a manifestation

of a fractal geometry. However, the fractional df = k moves up from the integer value 1 to

1.5 and 1.57 when the number of line segments is increased. From this observation, we do

not believe fractional k is related to a fractional dimension of the underlying disease model
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subspace.

Even without a geometric interpretation, we may propose another meaning for k: k−1 can

be used to measure the level of uncertainty in inferred disease model (mode of inheritance). For

CAT (x), k − 1 = 0, and a significant test result also provides certain information concerning

disease model. For genotype test, k − 1 = 1 and a significant test does not tell us anything

about the disease model. A significant MAX2 test result provides some information on disease

model (for example, that the true model is unlikely to be multiplicative), whereas MAX3 offers

even less information. If we consider the detection of association signal and inference of disease

model as two independent tasks of a genetic association study, then these two components are

reminiscent of those studied in the uncertainty principle in quantum physics [42], such as

measuring the position and velocity of a particle at the same time.

In conclusion, MAX test provides an interesting example where two non-integer quantities

can be defined and measured. The effective number of tests to be maximized is more straight-

forward and has appeared in other applications as well. The fractional-k χ2 distribution for a

test statistic is more intriguing, and seems to have a profound meaning concerning the test’s

ability to infer specific information. We have shown that a linear function of fractional-k χ2

distribution approximates the true distribution of MAX quite well. A hallmark of complex

systems is its intermediate state between two extremes (order and disorder): a similarly inter-

mediate state can also be described for fractional degrees of freedom in the MAX test which, in

the genetic analysis context, sit between testing genetic association under completely specified

and completely unknown disease models.
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[24] J.R. González, J.L. Carrasco, F. Dudbridge, L. Armengol, X. Estivill, V. Moreno (2008),

“Maximizing association statistics over genetic models”, Genet. Epid., 32:246-254.

[25] Q. Li, G. Zheng, Z. Li, K. Yu (2008), “Efficient approximation of p-value of the maximum

of correlated tests, with applications to genome-wide association studies”, Ann. Hum.

Genet., 72:397-406.

[26] R. Sladek, G. Rocheleau, J. Rung, C. Dina, L. Shen, D. Serre, P. Boutin, D. Vincent,

A. Belisle, S. Hadjadj, B. Balkau, B. Heude, G. Charpentier, T.J. Hudson, A. Montpetit,

A.V. Pshezhetsky, M. Prentki, B.I. Posner, D.J. Balding, D. Meyre, C. Polychronakos,

P. Froguel (2007), “A genome-wide association study identifies novel risk loci for type 2

diabetes”, Nature, 445:881-885.



Li, Yang 17

[27] J. Moody (1992), “The effective number of parameters: an analysis of generalization and

regularization in nonlinear learning systems”, in eds. Moody, Hanson, Lippmann Advances

in Neural Information Processing Systems 4, pp. 847-854 (Morgan Kaufmann, Palo Alto,

CA).

[28] J. Mao, A.K. Jain (1997), “A note on the effective number of parameters in nonlinear

learning systems”, Neural Networks, 2:1045-1050.

[29] J. Ye (1998), “On measuring and correcting the effects of data mining and model selec-

tion”, J. Am. Stat. Asso., 93:120-131.

[30] D.J. Spiegelhalter, N.G. Best, B.P. Carlin, A. Van der Linde (2002), “Bayesian measures

of model complexity and fit”, J. Roy. Stat. Soc. B, 64(4):583-616.

[31] J.M. Cheverud (2001), “A simple correction for multiple comparisons in interval mapping

genome scans”, Heredity, 87:52-58.

[32] D.R. Nyholt (2004), “A simple correction for multiple testing for single-nucleotide poly-

morphisms in linkage disequilibrium with each other”, Am. J. Hum. Genet., 74:765-769.

[33] C.S. Bretherton, M. Widmann, V.P. Dymnikov, J.M. Wallace, I. Bladé (1999), “The effec-
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Appendix: Basic notations and results for case-control genetic tests

A case-control dataset consists of N1 case samples and N0 control samples whose genotype (aa

is the baseline homozygote, aA is the heterozygote, AA is the risk homozygote) is known. The

dataset can be represented by a 2-by-3 genotype count table:

aa aA AA sample size

case(1) N10 N11 N12 N1 = N1∗

control(0) N00 N01 N02 N0 = N0∗

combined N∗0 N∗1 N∗2 N = N1 +N0

The above 2-by-3 genotype count table can be collapsed to several 2-by-2 tables. The

following collapsing corresponds to a dominant model (the risk allele A “dominates” allele

“a”):

aa aA+AA

case(1) N10 N11 + N12

control(0) N00 N01 + N02

and the following collapsing corresponds to a recessive model (only two copies of the risk allele

A present a disease risk):

aa+aA AA

case(1) N10 + N11 N12

control(0) N00 + N01 N02

From a 2-by-2 table, Pearson’s chi-square test statisticX2 is of the form of
∑

row,col(Orow,col−
Erow,col)

2/Erow,col where Orow,col is the observed (genotype) count is a table cell indexed by

“row” and ”column”, and Erow,col is the expected count. The expected count is equal to the

product of the row margin Orow,∗ =
∑

col Orow,col and the column margin O∗,col =
∑

row Orow,col.

It can be shown that X2 is the product of squared matrix determinant and total sample size

divided by the product of 4 row and column margins (e.g., [15]). For example, for the recessive

model, X2 is:

D = (N10 +N11)N02 − (N00 +N01)N12

X2

REC =
D2N

(N∗0 +N∗1)N∗2N1N0

(6)
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Under the null hypothesis (by chance alone), X2 follows the χ2

k=1
distribution (chi-square

distribution with one degree of freedom). X2

DOM can be calculated similarly.

The Cochran-Armitage trend (CAT ) test is defined after each genotype is assigned a score.

Most assignment of the genotype score could be equivalent to a score of {xi} ≡ (0, x, 1), i.e.,

the score for the baseline homozygote is fixed at 0, that for the risk homozygote is fixed at

1, and that for the heterozygote is a parameter x. The CAT test statistic at x is defined as

([43, 44, 19]:

CAT (x) =
N1∗N0∗

N

(

∑

2

j=0
xj(N1j/N1∗ −N0j/N0∗)

)2

(

∑

2

j=0
x2

jN∗j/N − (
∑

2

j=0
xjN∗j/N)2

)

It can be shown that CAT (x = 0) is equal to X2

REC and CAT (x = 1) is equal to X2

DOM . Under

the null hypothesis, CAT (x) at each fixed x value follows the χ2

k=1
distribution.

A disease model of a bi-allelic disease locus can be specified by 4 parameters. One is the

allele frequency (p ≡ pA) and the other three characterize the susceptibility of the disease under

each genotype: (f0, f1, f2) ≡ (P (disease|aa), P (disease|Aa), P (disease|AA)). The latter three
parameters can be replaced by the following three parameters: relative genotype risk for

heterozygote: λ1 ≡ f1/f0, that for the risk homozygote, λ2 ≡ f2/f0, and disease prevalence

K = f0[(1− p)2 + λ12p(1− p) + λ2p
2]. Either a (pA, f0, f1, f2) value or a (pA, λ1, λ2, K) value

uniquely determines a disease model.

There are several ideas in reducing the number of parameters of a disease model from 4 to

2 “major” parameters. One suggestion [15] is to use the allele frequency difference in case and

in control group δp ≡ pA(case) − pA(control) = p1 − p0, and Hardy-Weinberg disequilibrium

coefficient difference in the two groups δǫ ≡ ǫ(case)−ǫ(control) = ǫ1−ǫ0. The Hardy-Weinberg

disequilibrium coefficient ǫ measures the deviation from Hardy-Weinberg equilibrium [3], such

that the three genotype frequencies can be written as ((1−p)2+ ǫ, 2p(1−p)−2ǫ, p2+ ǫ). The

motivation for this parameterization is that δp is directly related to the case-control association

signal, and δǫ is strongly correlated with the disease model.

The group-specific allele frequency and Hardy-Weinberg disequilibrium coefficient can be

determined from the 4 parameters p, λ1, λ2, K [41], and their differences can be determined as
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well [16]:

δp ≡ p1 − p0 =
f0(p

2λ2 + p(1− p)λ1)

K
− p2(1− f0λ2) + p(1− p)(1− f0λ1)

1−K

δǫ ≡ ǫ1 − ǫ0 =
f 2

0
p2(1− p)2(λ2 − λ2

1
)

K2
− f0p

2(1− p)2(2λ1 − 1− λ2 − f0λ
2

1
+ f0λ2)

(1−K)2
.

Given a 2-by-3 genotype table, these two parameters can be estimated by:

δ̂p = p̂1 − p̂0 =
N12 +N11/2

N1

− N02 +N01/2

N0

δ̂ǫ = ǫ̂1 − ǫ̂0 =
N12

N1

−
(

N12 +N11/2

N1

)2

− N02

N0

+

(

N02 +N01/2

N0

)2

.

Another idea in selecting two major parameters in the disease model is to ignore p and K,

and focus only on λ1 and λ2. These two parameters can be estimated by the two odd-ratios

from subtables consisting of one baseline column and another risk column:

λ̂1 = OR1 =
N11N00

N10N01

λ̂2 = OR2 =
N12N00

N10N02

.

Fig.6(A) and (B) illustrate these two ideas of a two-dimensional disease model space.
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Figure 1: The distribution of CAT (x = 1), CAT (x = 0.5) and CAT (x = 1) from the 100,000 replicates

generated by a dominant model: population risk allele frequency p = 0.1, penetrance for baseline homozygote

is 0.005, and genotype relative risk for both heterozygote and the risk homozygote is λ1 = λ2 = 2. The

genotype frequency for the case and the control group is calculated by the formula given in [41].
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Figure 2: Fractional number of tests for MAX2 and MAX3 (dMAX2, dMAX3) determined by Eq.(3) with three

simulation runs, as a function of tail area probability under χ2
1 (pχ2

1

). Each run contains 100,000 replicates

of genotype count tables for 1000 cases and 1000 controls (3000 cases/3000 controls, 5000 cases/5000 controls

for the second and the third run). As a comparison, the effective number of tests for CAT (x = 0) and for

CAT (x = 1) as determined by simulation is also included. As expected, these effective number of tests is

essentially equal to 1.



Li, Yang 24

0 5 10 15 20

0
5

10
15

20

χ k2

Max2 vs χk
2QQ plot

k=1.6
k=1.55
k=1.5

k=1.45
k=1.4
k=1.3
k=1

(A)

0 5 10 15 20

0
5

10
15

20

Max3 vs χk
2QQ plot

k=2
k=1.9
k=1.8
k=1.7
k=1.6
k=1.5
k=1

(B)

0 5 10 15 20

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Max2

χ k2 −
M

ax
2

detrended QQ plot

k=1.6
k=1.55k=1.5k=1.45 k=1.4

k=1.3

k=1 (C)

0 5 10 15 20

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Max3

(D)

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 



xx x x

x

detrended QQ plot

k=2
k=1.9 k=1.8

k=1.7 k=1.6

k=1.5

k=1

Figure 3: Quantile-quantile (QQ) plot of Max2/Max3 against values sampled from χ2
k with fractional degrees

of freedom k. (A) QQ plot of Max2 against values sampled from χ2
k’s with k = 1, 1.3, 1.4, 1.45, 1.5, 1.55, 1.6. The

circles indicate the QQ-plot between two identical distributions. (B) QQ plot of Max3 against values sampled

from χ2
k’s with k = 1, 1.3, 1.5, 1.6, 1.7, 1.8, 1.9, 2. (C) Detrended QQ plot of Max2 against values sampled from

χ2
k’s. (D) Detrended QQ plot of Max3 against values sampled from χ2

k’s. The crosses represent the detrended

QQ-plot for 0.45 + 0.96χ2
k=1.7 against Max3.
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Figure 6: Simulation of 100 case-control datasets each for three classes of models (dominant, multiplicative,

recessive). Each point represents a genotype count table for 1000 cases and 1000 controls. The allele frequency

is randomly chosen from (0.1-0.9); disease prevalence is sampled from the normal distribution with a random

mean, and standard deviation of 1/10 of the mean; the λ2 genotype relative risk is randomly chosen between

(1.1-10); λ1 is equal to λ2,
√
λ2, and 1 for dominant, multiplicative, and recessive models. (A) The location

of simulated datasets in the δǫ-δp parameter space, where δǫ is the case-control difference of Hardy-Weinberg

disequilibrium coefficients and δp is the case-control difference of allele frequencies. The symbols “d”, “m”, “r”

represent dominant, multiplicative, and recessive models, respectively. (B) The location of the same simulated

case-control datasets in the OR1-OR2 space (both x and y-axis are in log scale), where OR1 is the odd-ratio

of heterozygote genotype vs. baseline homozygote genotype, and OR2 is the odd-ratio of risk homozygote

genotype vs. baseline homozygote genotype.
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