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Generalised network clustering and its dynamical

implications

Thomas House

Abstract

A parameterisation of generalised network clustering, in the form of

four-motif prevalences, is presented. This involves three real parameters

that are conditional on one- two- and three-motif prevalences. Interpreta-

tions of these real parameters are presented that motivate a set of rewiring

schemes to create appropriately clustered networks. Finally, the dynami-

cal implications of higher order structure, as parameterised, for a contact

process are considered.

1 Introduction

Networks have become one of the indispensible tools for the study of complex
systems with many interacting components, as demonstrated by their ubiquity
in the Proceedings of the recent European Conference on Complex Systems
with which this journal issue is concerned. In particular, the combination of
high clustering amongst nodes and short average path length, commonly known
as the small world phenomenon [13], has been observed not only in social net-
works [11], but also in technological, metabolic and citation networks [9, 10, 12].

Small connected sub-graphs of complex networks, known as motifs, have also
been observed to have significantly different prevalences from those expected in a
random case, leading to scientific insight [8, 7]. This paper is concerned with an
alternative approach to motif prevalence that conditions on standard, triangle-
level clustering, as a guide to intuition for other applications of the concept of
motifs. In particular, new wirings are presented that modify clustering without
changing node degree, along the lines of [1, 6, 4, 2].

Networks, and population structure in general, have also become central
to modern infectious disease epidemiology [5]. The impact of motif structure
for SIS epidemics was considered in [3], and we combine the dynamical system
developed in that work with the new parameterisation to gain insights into the
impact of higher-order clustering on transmission / contact process dynamics.

2 Characterisation of motif structure

We start by considering the relatively simple structure of one- two- and three-
motif prevalences. At orders one and two, there are only the number of nodes
in a network and the number of links to consider. For simplicity, we consider
networks with a single giant component of N nodes in which each individual
has exactly n links connecting it to the rest of the network. This assumption
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is not essential to the general thrust of analysis presented, but does simplify an
already complex set of manipulations. In our notation, we use a diagramatic
representation of a node and linked nodes enclosed in square brackets to denote
prevalence of that motif in the network. This means that at order one and two:

[K] = N ,
[H] = nN . (1)

So the motif structure at this level is given equivalently either by the raw motif
prevalences

[K] , [H], or by the real numbers N,n. The benefit of the latter
approach is that n tells us something about the number of links per node—i.e.
two-motif structure conditional on one-motif structure.

Less trivially, there are two connected three-motifs: triangles and unclosed
triples. Since every triple must be either closed or unclosed, the prevalences of
three-motifs, notated using square brackets and diagrams as for other motifs,
obey the identity

[J]+ [I] = Nn(n− 1) . (2)

This means that a real parameter φ ∈ [0, 1] can be introduced to partition this
identity as below:

[J] = Nn(n− 1)(1 − φ) ,
[I] = Nn(n− 1)φ . (3)

In network analysis, φ (the ratio of triangles to all triples, closed and unclosed)
is often called the clustering coefficient. In the same way that n conditions
on network size, φ conditions on network size and number of links to measure
transitivity of the network in a different manner from raw counts of triangles.

We now attempt a similar parameterisation at order four. There are six
connected graphs of size four, which can be represented pictorally using the
following set of symbols:

{B,C,D,E,F,G} .

A set of identities analagous to (2) was introduced in [3],

[D]+ 2
[F]+ [G] = (n− 2)

[I] ,
[B]+ 2

[D]+ [F] = (n− 2)
[J] ,

[C]+ [D]+ [E]+ [F] = (n− 1)
[J] . (4)

Each of these identies is derived by starting with the three-motif appearing on
the right-hand side of the identity (either a triangle or unclosed triple) and then
joining a fourth node to one of the original three; the left-hand side of each
identity can then be seen as an enumeration of the possible additional links
between the new node and the two other nodes within the original three-motif.
We now propose the main innovation of this work, a partition of these identities
in terms of three real parameters, ψ, ζ, ξ.

We start this process by writing down the four-motif prevalences that would
be expected if transitive closure of any given triple is a random event of con-
stant probability φ. In the case where no triangles at all are present in the
network, the only four-motif clustering structure possible is the closure of four-
lines into squares, and the appropriate motifs obey

[C] + [E] = Nn(n − 1)2.
This motivates the introduction of a square-level partition of these two motifs,
ψ, analagous to φ in (3), but not equivalent in the case where some triangles
are present in the network.
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Finally, we introduce parameters ζ and ξ additively to the prevalences of the
motifs F and G respectively, and then use the identities (4) to carry through
the consequences of this addition to other motif prevalences, yielding the form

[B] = Nn(n− 1)(n− 2)
(

(1 − φ)3 + 3ζ
)

,

[C] = Nn(n− 1)

(

(n− 1)(1− φ)− (n− 2)

(

φ(1 − φ)− ζ −
1

3
ξ

))

(1− ψ) ,

[D] = Nn(n− 1)(n− 2)

(

φ(1 − φ)2 − 2ζ +
1

3
ξ

)

,

[E] = Nn(n− 1)

(

(n− 1)(1− φ)− (n− 2)

(

φ(1 − φ)− ζ −
1

3
ξ

))

ψ ,

[F] = Nn(n− 1)(n− 2)

(

φ2(1− φ) + ζ −
2

3
ξ

)

,

[G] = Nn(n− 1)(n− 2)
(

φ3 + ξ
)

.
(5)

Requiring that no motif prevalence be negative, the new parameters sit in the
following ranges, provided each of the others is zero:

ψ ∈ [0, 1] ,

ζ ∈

[

max

(

−
1

3
(1− φ)3,−φ2(1 − φ)

)

,
1

2
φ(1− φ)2

]

,

ξ ∈

[

max
(

−3φ(1− φ)2,−φ3
)

,
3

2
φ2(1− φ)

]

.

(6)

A neighbourhood-based interpretation of these new parameters for certain lim-
iting cases is considered in Figure 1. This figure shows a typical neighbourhood
around an individual in a network with n = 6, and clustering parameter values
varied. Plot (a) shows a completely unclustered graph—essentially a Cayley
tree of degree 6. In (b), triangle-level clustering φ has been introduced, but in
such a way that the triangles do not form highly connected fourth-order struc-
tures. (c) shows how the ‘envelope’ shape F is more prevalent than would be
expected on the basis of the three-motif structure: this means that ζ is posi-
tive, while for under-represented envelopes ζ would be negative. (d) shows that
the ‘four-clique’ G is, in the same way, over-represented, implying positive ξ,
while its under-representation would imply negative ξ. Finally, (e) shows that
ψ represents the ratio of squares to all four-lines (closed and unclosed), and
involves connections being made further away from the central node than other
clustering parameters. In this plot, as with (b), the squares are shown maxi-
mally uncorrelated—obviously, at still higher orders of clustering, correlations
between squares may be parameterised as for triangles.

Outside of these limiting cases, however, the interpretation of the new clus-
tering parameters is more subtle, since the consistency conditions (4) are much
more structured than (2). In this sense, the parameterisation of four-motif
structure is not a straightforward extension of the methodology used at the
three-motif level.
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3 Rewiring schemes

Rewiring schemes that preserve the number of links attached to a node can play
an important role in understanding, creating and manipulating networks. We
now present a set of rewiring schemes that modify the clustering parameters
we have introduced, two from existing work (together with applications) and
three that are, to our knowledge, novel. These rewirings are an aid to intuition
and also demonstrate that explicit networks of the kind considered here can
be generated given sufficient computational resources. Nevertheless, their näıve
implementation is highly computationally intensive, and does not scale well with
network size, meaning that technical innovation beyond the scope of this paper
is necessary to produce simulations equivalent to the results obtained below
using moment closure.

3.1 Randomiser

This rewiring was used recently in epidemiological applications [4, 2] to remove
all forms of clustering without changing degree distribution.

i k

j l

−→

i k

j l

3.2 ‘Big V’

This rewiring was considered recently in [1, 6, 4] to increase φ without changing
the degree distribution.
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3.4 ‘YV’

This novel rewiring increases ζ and φ.
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4 Contact-process dynamics

We now present the model of [3], used to investigate the impact of higher order-
clustering on what epidemiologists call SIS dynamics. In these dynamics, often
called a contact process, individuals are either susceptible (S) or infectious (I)
with letters A,B,C . . . representing either of these states. Transmission of in-
fection happens between infectious individuals I and susceptible individuals S
linked on the network at a rate τ , while infectious individuals recover and be-
come susceptible, since recovery is assumed not to offer lasting immunity, at a
rate g. We use square brackets to denote the prevalence of certain structures in
the network.

4.1 Exact dynamical equations

The model in question takes as its starting point a set of differential equations
that are, in the N → ∞ limit, exact but form an infite hierarchy. We present
the first three orders of this:
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d

dt
[ S ] = −τ [ S–I ] + g[ I ] ,

d

dt
[ I ] = τ [ S–I ]− g[ I ] ,

d

dt
[ S–S ] = −2τ [ S–S–I ]. . . . . +2g[ S–I ] ,

d

dt
[ S–I ] = τ

(

[ S–S–I ]. . . . . − [ I–S–I ]. . . . −[ S–I ]
)

+ g ([ I–I ]− [ S–I ]) ,

d

dt
[ I–I ] = 2τ

(

[ I–S–I ]. . . . +[ S–I ]
)

− 2g[ I–I ] ,

d

dt
[ S–S–S ] = − τ

(

2
. . . .

[ S–S–S–I ]. . . . . . . + [ S–S–S· · · I ]. . . . . . . . .

)

+ g (2 [ S–S–I ] + [ S–I–S ]) ,

d

dt
[ S–S–I ] = τ

( . . . .
[ S–S–S–I ]. . . . . . . −

. . . . . .
[ S–S–I· · · I ]− [ S–S–I· · · I ]. . . . . . . . . − [ S–S–I ]

)

+g ([ S–I–I ]+ [ I–S–I ]− [ S–S–I ]) ,

d

dt
[ S–I–S ] = +τ

(

[ S–S–S· · · I ]. . . . . . . . . −2
. . . .

[ S–I–S–I ]. . . . . . . −2 [ S–I–S ]
)

+g (2 [ S–I–I ]− [ S–I–S ]) ,

d

dt
[ S–I–I ] = τ

( . . . .
[ S–I–S–I ]. . . . . . . + [ S–S–I· · · I ]. . . . . . . . . −

. . . . . .
[ S–I–I· · · I ]

+ [ S–I–S ] + [ S–S–I ]− [ S–I–I ]
)

+ g ([ I–I–I ]−2 [ S–I–I ]) ,

d

dt
[ I–S–I ] = τ

(

2
. . . . . .

[ S–S–I· · · I ]− [ I–S–I· · · I ]. . . . . . . . −2 [ I–S–I ]
)

+g ([ I–I–I ]−2 [ I–S–I ]) ,

d

dt
[ I–I–I ] = τ

(

2
. . . . . .

[ S–I–I· · · I ] + [ I–S–I· · · I ]. . . . . . . . +2 [ S–I–I ] +2 [ I–S–I ]
)

− 3g [ I–I–I ] ,

d

dt
[ S–S–S ] = − 3τ

. . . .
[ S–S–S–I ]

. . . . . . .
+3g [ S–S–I ] ,

d

dt
[ S–S–I ] = τ

( . . . .
[ S–S–S–I ]

. . . . . . .
−2

. . . . . .
[ S–S–I· · · I ]−2 [ S–S–I ]

)

+g
(

2 [ S–I–I ]− [ S–S–I ]
)

,

d

dt
[ S–I–I ] = τ

(

2
. . . . . .

[ S–S–I· · · I ]−
. . . . . .

[ S–I–I· · · I ] +2 [ S–S–I ]−2 [ S–I–I ]
)

+g
(

[ I–I–I ]−2 [ S–I–I ]
)

,

d

dt
[ I–I–I ] = 3τ

( . . . . . .
[ S–I–I· · · I ]+2 [ S–I–I ]

)

− 3g [ I–I–I ] . (7)

Here and throughout this paper, we use dotted lines to imply expansion as
below:

[ A–B–C ]. . . . . = [ A–B–C ] + [ A–B–C ] ,
. . . . . .

[ A–B–C–D ]. . . . . . . . = [ A–B–C–D ] + [ A–B–C–D ] + [ A–B–C–D ] + [ A–B–C–D ] ,

...
(8)

and similarly for other fourth-order terms.
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4.2 Closure schemes

To integrate the system as presented so far, we need a closure scheme, previously
introduced in [3], which is most easily expressed in terms of the raw motif
prevalences.

[ A–B–C D ] ≈

[B] [H]3
[J]3 [K] [ A–B–C ] [ A–B–D ] [ C–B–D ][B]

[ A–B ][ B–C ][ B–D ]
,

[ A–B–C–D ] ≈

[C] [H]
[J]2 [ B–C–D ] [ A–B–C ]

[ B–C ]
,

[ A–B–C–D ] ≈

[D] [H]3
[I] [J]2 [K] [ A–B–C ] [ B–C–D ] [ A–C–D ][C]

[ A–C ][ B–C ][ C–D ]
,

[ A–B–C–D ] ≈

[E] [H]4
[J]4 [ A–B–C ] [ B–C–D ] [ C–D–A ] [ D–A–B ]

[ B–C ][ C–D ][ D–A ][ A–B ]
,

[ A–B–C–D ] ≈

[F] [H]
[I]2 [ B–C–D ] [ A–B–C ]

[ B–C ]
,

[ A–B–C–D ] ≈

[G] [H]6
[I]4 [K]4 ×

[ A–B–C ] [ B–C–D ] [ C–D–A ] [ D–A–B ][A][B][C][D]

[ B–C ][ C–D ][ D–A ][ A–B ][ A–C ][ B–D ]
.(9)

Then (5), together with this closure and equations (7) create an integrable ODE
system. Provided τ is sufficiently large compared to g, this system has a steady
state with a non-trivial proportion I∗ of the network infectious. Standardly, this
equilibrium value is called the endemic state. We investigate this dynamically
in Figure 2, where φ is increased for other parameters held constant in all
plots, giving the common black line. We then modify either (a) ζ, (b) ξ or (c)
ψ. This shows that, essentially, ψ has a significant but relatively stable effect
in reducing the endemic state at each φ value, while ξ can have a significant
effect in either direction at larger φ values. ζ, on the other hand, is relatively
dynamically unimportant, except perhaps at moderate values of φ. We also note
that positive values of ζ reduce the endemic state, and negative values increase
it, while the opposite is true for ξ.

5 Discussion

This paper has presented a novel way of thinking about higher-order structure
in networks, together with intuitive explanations of this, rewiring schemes and
dynamical consequences. This opens up three main questions.

Firstly, what are reasonable parameter values for networks that are seen in
nature, and which can be explicitly constructed? The exact values of clustering
coefficients considered in the SIS model are perhaps slightly larger than are
likely to be seen or constructed, although this should be mainly of quantitative
importance since the qualitative dynamical implications found for higher order
clustering are not modified at different coefficient values, and moment closure
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(particularly in the three-motif case) has been extensively used in modelling
SIS and SIR dynamics without producing qualitatively incorrect results [5].
Nevertheless, if sufficiently efficient methods were available to generate explicit
networks to run stochastic simulations on, that would significantly increase the
confidence in the results obtained here using moment closure.

Secondly, how can this analysis be generalised to networks with heteroge-
neous numbers of links, and (perhaps more problematically) preferential as-
sortative connection between nodes of similar degree? While such analysis is
doubtless possible, the large number of interacting quantities may make an-
alytic results technically difficult. In particular, it it unlikely that arbitrary
heterogeneity and clustering statistics are compatible with each other.

Finally, under what conditions is it necessary to consider k-motifs for a
given k? Clearly, a high preponderance of triangles in a network would favour a
pairwise model, but this answer is less clearly posed for four-motifs in general.
However, the parameterisation suggested here goes some way towards answering
this question: starting with a set of four-motif prevalences, are these significantly
different from what would be predicted based on the values of three- two- and
one-motif parameters φ, n and N? If the new generalised clustering parameters
φ, ζ and ξ are significantly different from zero, then we would expect that at
least four-motifs should be considered in analysis of the network.
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(a) φ, ψ = 0 (b) φ > 0, ψ = 0, minimal ζ, ξ

(c) φ, ζ > 0, ψ = 0, minimal ξ (d) φ, ξ > 0, ψ = 0, minimal ζ

(e) φ = 0, ψ > 0

Figure 1: Interpretation of the clustering parameters φ, ψ, ζ, ξ for a typical
neighbourhood in a network with n = 6
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(c) Vary ψ
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Figure 2: Dynamical results for the endemic state of the triplewise contact
process model for n = 6, g = 1, τ = 3/5 and other parameters varied.
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