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Social conventions are useful self-sustaining protocols for groups to coordinate behavior
without a centralized entity enforcing coordination. The emergence of such conventions
in different multi agent network topologies has been investigated by several researchers,
although exploring only specific cases of the convention emergence process. In this work

we will provide multi-dimensional analysis of several factors that we believe determines
the process of convention emergence, such as: the size of agents memory, the population
size and structure, the learning approach taken by agents, the amount of players in the
interactions, or the convention search space dimension. Although we will perform an
exhaustive study of different network structures, we are concerned that different topolo-
gies will affect the emergence in different ways. Therefore, the main research question
in this work is comparing and studying effects of different topologies on the emergence
of social conventions. While others have investigated memory for learning algorithms,
the effects of memory on the reward have not been investigated thoroughly. We pro-
pose a reward metric that is derived directly from the history of the interacting agents.
Another research question to be answered is what effect does the history based reward
function and the learning approach have on convergence time in different topologies.
Experimental results show that all the factors analyzed affect differently the convention
emergence process, being such information very useful for policy-makers when designing
self-regulated systems.
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1. Introduction

As stated in [8], “A normative multiagent system is a multiagent system organized
by means of mechanisms to represent, communicate, distribute, detect, create, mod-
ify, and enforce norms, and mechanisms to deliberate about norms and detect norm
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violation and fulfillment.” This definition, even though is very general, points out
every aspect that still needs to be treated in the research of normative systems.
In the same work, authors differentiate between two types of normative points of
view:

(1) The legalistic view of normative multiagent systems is a top-down view which
considers the normative system as a regulatory instrument to regulate emerging
behavior of open systems without enforcing the desired behavior. Agents are
often motivated by sanctions to stick to norms, rather than by their sharing
of the norms. Even if agents are allowed some freedom to create norms, this
freedom is mostly restricted to the possibility for agents to create contracts to
regulate the interaction among them. The legalistic view of a multiagent system
has merited in depth-study in the literature. We can relate this legalistic point
of view with systems where norms are predefined by an authority on the system
prior to runtime [7, 14, 25].

(2) The interactionist view on normative multiagent systems represents a bottom-
up view. In this autonomous, individual-centric view, norms can be seen as
regularities of behavior which emerge without any enforcement system as agents
conform to them either because their goals happen to be aligned, or because
they feel themselves as part of the group or because they share the values
of other agents. Sanctions, or formal measures towards norm violating agents
carried out by agents whose task is to sanction norm violations, are not always
necessary because social blame and spontaneous exclusion of non-conforming
agents are often sufficient to incentivize conformity to norms.

For our understanding, the research on the interactionist view of norms is
divided into two different stages: (a) how norms appear in the mind of one or
several individuals and (b) how these new norms are spread over the society until
they become accepted social norms. Both processes are complex and have to be
carefully analyzed. We are interested in studying the second stage: the spreading
and acceptance of social norms, defined as norm support [5]. Our understanding of
norm support deals with the problem of which norm is established as the dominant
when more than one norm exists for the same situation. Specifically, this is the case
of study in the convention emergence literature [10, 16, 19, 24, 26–29]. Conven-
tions are a special type of norms, used as a mechanism for sustaining social order,
increasing the predictability of behavior in the society and specify the details of
those unwritten laws. Following Coleman’s theory [11], conventions emerge to solve
coordination problems, where there exist no conflict between the individual and the
collective interests, as what is desired is that everyone behaves in the same way,
without any major difference on which action agents are coordinated. Therefore, the
selection of the focal action in such norms is arbitrary. One clear example of these
kind of norms is the selection of which side of the road to drive on, both options
are equally good as long as all drivers agree. Examples of conventions pertinent to



April 8, 2011 11:42 WSPC/S0219-5259 169-ACS S0219525911003013

Exploring the Dimensions of Convention Emergence in Multiagent Systems 203

MAS would be the selection of a coordination protocol, communication language,
or (in a multitask scenario) the selection of the problem to be solved.

Such norms are conflict resolution strategies that develop from the population
interactions instead of a centralized entity dictating agent protocol. Moreover, his-
tory of interaction is then instrumental for norm evolution. Learning algorithms
incorporate the history of interaction into their decisions, but reward metrics are
typically static and independent of the agent histories. Norm evolution is depen-
dent upon the exertion of social pressure by the group on aberrant individuals.
It is through learning via repeated interactions that social pressure is applied to
individuals in the group. However, a reward metric based on the current interaction
does not necessarily model the full context or capture the persistent nature of social
pressure in human societies. In particular, society often uses past history to judge
individuals and hence actions have future consequences in addition to immediate
effects. Accordingly, we propose a reward structure based upon the agent’s inter-
action history as a more appropriate alternative to the single interaction reward
metric normally used in the literature. In our model agents are rewarded based
upon the conformity of action between two agents, such that the agent who has the
larger of the majority action choice in the stored interaction history of the agents
receives higher reward. Hence, both interaction agents’ history of actions are used
to calculate each individuals’ payoff from an interaction. We investigate how this
history, and in particular, its size (memory size) affects different types of society
structure.

We are also keenly interested in understanding how agent relationships and
social connections affect the success and rate of adoption of social norms. As
confirmed in the literature [16], the social topology that restricts agent interac-
tions plays a crucial role on any emergent phenomena resulting from the inter-
actions amongst agents. In this paper, we will experiment on different types of
topologies in order to observe, compare and analyze their effects and dynam-
ics of reaching social conventions, proposing a new type of topological struc-
ture named Fully Connected Stars Network. Concerning the topological effects of
the network of agents on the process of convention emergence, this work high-
lights the formation and stability of metastable subconventions. Our approach to
studying norm emergence in agent societies assumes the social learning [19, 24]
framework, where agents learn their action preferences from repeated chance inter-
actions, based on the topology of the agent network, with different members in the
population. We observe that agent groups in such societies can develop subcon-
ventions depending on their position in the interaction topology. Subconventions
are conventions adopted by a subset of agents in a social network who have con-
verged to a different convention than the majority of the population. Metastable
subconventions may adversely affect the speed of the emergence of more general
conventions. We identify factors that promote the emergence and maintenance of
subconventions.
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Additionally, we explore scale-up properties of the convention emergence process
for the following features:

• Action space: We also explore the effects of scale up with different numbers of
actions in the conventions search space,
• Multiplayer interactions: We analyze the effect of the number of players involved

in an interaction.

The structure of this article is as follows: we review the previous and related
work in the area of emergence of social conventions in multiagent systems in Sec. 2;
in Sec. 3 we introduce the agent interaction and reward model that we have used;
experimental results are presented in Sec. 4; conclusions from the analysis of the
results are presented in Sec. 6, and finally we present the future work plans in Sec. 7.

2. Previous Work

One of the most influencing authors in the research area of social norms would
be Axelrod. In his seminal work [5] Axelrod analyzes the factor that influence the
emergence and spread of norms within societies. Other than an important theo-
retical and philosophical contribution, the author present an experimental section
where it analyses with an evolutionary model the effects of the metanorm mecha-
nism in the establishment of norms. However, neither topological effects or online
social learning was considered in its simulation framework.

The precursors on the research of convention emergence in MAS were Shoham
and Tennenholtz. In their seminal work [26], they introduce the computational def-
inition of social convention in a game-theoretical framework (not far from the one
given by Coleman), accompanied with a formal specification of it. As an applica-
tion of their theoretical framework they approach the Coordination Game, and the
emergence of the social convention of agreement by using the Highest Cumulative
Reward (HCR) rule. Agents using this reward rule will choose the action that has
provided them with the highest reward in the last t timesteps. They perform exper-
iments to check the right value of t to ensure efficient emergence. Despite their
important contribution on the settlement of this research area on multiagent sys-
tems, neither these authors (like Axelrod) leave unexplored the relationship of the
topological conditions on the social learning of conventions.

Up to our knowledge, Kittock’s research [16] is the first one considering the
restrictive topology of interaction on the diffusion of social conventions. This
research is continued by Delgado et al. [13]. Interesting results where obtained
by these authors when using strategy update rules like Highest Cumulative Reward.

Social network analysis has been an important topic of research in the problems
related with social learning and information diffusion. Even though the problem we
study in this work (emergence of social conventions) might seem simpler than other
applications [1, 15, 17], it models the dynamics of a number of pertinent problems
in MAS.
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Sen and Airiau [20, 24] explored norm emergence where interaction rewards
were not dependent on previous interactions. That work is focused on the prob-
lem of coordination of two cars arriving at an intersection. Each agent can choose
to “go” or “yield” to the other agent. The reward metric is designed so that if
each agent chooses the same action, they receive small payoff but if agents choose
opposite actions, they receive a large payoff. So if the row and the column agents
both “go” they both receive a poor payoff, but only one player choosing to go will
yield a relatively high payoff for both. Depending on which player chooses to yield,
two possible effective social norms can be established. The history of interaction
does not directly affect the reward agents receive. Reward is only affected by the
agents’ action choice in the current interaction. However, learning takes place via
social pressure from repeated interaction, thus the history of interaction indirectly
influences agent’s action choice.

Most of these research [12, 13, 16, 26] have studied rather simplified versions of
the emergence of conventions, e.g. using a convergence threshold of 90%, restricted
case of only two possible conventions. For our understanding, these two factors need
to be relaxed and observe the different effects of reaching total convergence (100%)
and with larger sets of possible conventions than 2 (as done in [23]), as well as a
more exhaustive study on the different topologies.

Moreover, other authors in MAS have studied different aspects of normative
systems and architectures for self-organization ([3, 9, 16, 18, 22]), however, for the
scope of this work we will not need such elegant but complex agent architectures.

3. Model

The social learning situation for norm emergence that we are interested in is that of
learning to reach a social convention. We adopt the following definition of a social
convention from the definition of a social law [26]: A social law is a restriction on
the set of actions available to agents. A social law that restricts agents’ behavior to
one particular action is called a social convention.

For the sake of generalization, our framework is built with the most accepted
convention emergence model (used by [13, 16, 19, 24, 26, 29]). We represent the
interaction between two agents as an n-person m-action game. At each time step,
each agent is paired with another agent from the population (society) and chooses
from one of several alternatives (the choice can either be that of an action to execute,
which we use in this paper, or a particular state to be in). In our case, as in the case
in [13], a social convention will be reached if all the n agents are in the same state
or choose the same action, i.e. the actual state or action chosen as a convention is
not important. For our purpose, an agent choosing a particular action is equivalent
to it being in a corresponding state.

We model agent environments by networks, where each agent is represented
by a node and the links in the network represent the possibility of interaction
between nodes (or agents). We consider the following three different agent network
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(a) (b)

(c) (d)

Fig. 1. Underlying topologies. (a) Fully connected network. (b) Ring network or one-dimensional
lattice with neighborhood size 2. (c) Scale-free network. (d) Fully-connected stars network.

topologies or environment types: (i) a one-dimensional lattice with different neigh-
borhood sizes, where an agent is connected to all neighbors (examples can be seen
in Figs. 1(a) and (b)); (ii) a scale-free network, whose node degree distribution
asymptotically follows a power law (an example can be seen in Fig. 1(c)), repre-
senting the topology of social networks [6, 21]; (iii) to further our understanding of
the norm emergence process, and to capture some typical real-world scenarios, e.g.
a community of closely knit researchers and their students, we use a rather novel
network topology, namely the fully connected stars network : such a network has a
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relatively small number of hubs or core nodes which are fully connected forming a
clique, and each of these core nodes is also connected with a number of leaf nodes
(an example can be seen in Fig. 1(d)).

The one-dimensional lattice provides a structure in which agents are connected
with their n nearest neighbors. Different values of the neighborhood size (n) produce
different network structures. For example, when n = 2 the network will have a ring
structure (as in Fig. 1(b)) and agents will only be connected with their immediate
neighbors on either side, corresponding to a ring topology. On the other hand,
when n = PopulationSize , the connections result in a fully connected network (as
in Fig. 1(a)) where each agent is connected with all other agents. The motivation
for the usage of this type of networks is to simulate the ordered structure that many
computational systems (memory clusters, sensor networks, etc.) are organized.

On the other hand, in the scale-free network there are many vertices with small
degrees and only few vertices with large degrees. This makes the network diameter
(average minimum distance between pairs of nodes) significantly smaller than one-
dimensional lattices with small neighborhood sizes. Scale-free networks do represent
the topology of real networks [2], and we find valuable to have results at least in
synthetic scale-free networks.

As in [16], we use agents with a memory Mk of size M (same memory size for
all the agents). For agent k, the memory Mk will record information on the history
of its decisions: The value of the position i of the memory Mk will be a tuple 〈ai

k, ti〉
where ti is the time the ith memory event took place, and ai

k is the decision taken
by agent k at time ti (1 ≤ i ≤ M). Thus, the memory of each agent will work as
a record of the history for the last memory size actions taken by the agent. Note,
that the memory is quite rudimentary and does not even record the identity of the
other agent(s) in an interaction. This is a necessary ingredient for social learning,
where agents learn policies to play against arbitrary member(s) of the population,
and not targeted towards particular individual(s).

Agents cannot observe the other agent’s memory, current decision, or imme-
diate reward, and hence cannot calculate the payoff for any action before actually
interacting with the opponent. When two agents interact, the instantaneous reward
that an agent receives is calculated based on the action it selected and the action
history of both agents as shown in Algorithm 1 (the algorithm calculates reward
for agent 1 and assumes only two actions available per agent, but can be readily
extended to an arbitrary number of actions). Here Ax and Bx are the number of A
and B actions in memory that agent x has taken, Actionx is the last action taken by
agent x, and for which it is rewarded, MajorityAction is selected to be whichever
action is selected more frequently by the two players combined, MajorityActionsx

is the number of actions equal to the majority action that agent x has previously
taken, and TotalMajorityActions is the number of times the majority action was
chosen by both players in their finite histories.

Agents use a learning algorithm to estimate the worth of each action. Agents
will choose their action in each interaction in a semi-deterministic fashion. A certain
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percentage of the decisions will be chosen randomly, representing the exploration
of the agent, and for the rest of the decisions, the agents deterministically choose
the action estimated to be of higher utility. In all the experiments presented in this
article, the exploration rate has been fixed at 25%, i.e. one-fourth of the actions are
chosen randomly.

The learning algorithm used here is a simplified version of the Q-Learning algo-
rithm [30]. The Q-update function for estimating the utility of an action is:

Qt(a)← (1− α)×Qt−1(a) + α× reward , (1)

where reward is the payoff received from the current interaction and Qt(a) is the
utility estimate of action a after selecting it t times. When agents decide not to
explore, they will choose the action with the highest Q value. The reward used in
the learning process is a proportional reward of that calculated by Algorithm 1.

The simulation process for repeated interactions in the agent society is presented
in Algorithm 2.

We have used two different learning modalities: (a) in the Multi learning
approach both interacting agents use the payoff to update their memory and action
estimate, (b) in the Mono learning approach, however, only the first agent selected,

// First, we select the majority action

TotalAActions = A1 + A2;
TotalBActions = B1 + B2;
if TotalAActions < TotalBActions then

MajorityAction = B;
if TotalBActions < TotalAActions then

MajorityAction = A;
if TotalAActions == TotalBActions then

MajorityAction = RandomlyselectedbetweenAorB;
// Then, we calculate the reward depending on the agents action selection and

on the majority action

if Action1 == MajorityAction then

reward1 = MajorityActions1
TotalMajorityActions

else
reward1 = 0

end

Algorithm 1: Memory based reward function.

for timesteps do
forall agents do

Select another partner agent from population;
Selected agents choose an action;
The joint action from the selected agents and their history determines payoffs;
Selected agent(s) use payoff received to update action estimates;

end

end

Algorithm 2: Simulation process.
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and not the second one, updates its memory and action estimate after an interac-
tion. Each agent interacts exactly once per time step in mono-learning, whereas in
the multi-learning mode, different agents interact different times in the same time
step because of random partner selection.

4. Experiments

To evaluate the rate and success of norm emergence we ran experiments with
different societal configurations by varying the following system and agent
properties:

Memory Size: To be able to analyze the effects of memory sizes, we vary the
number of past interactions stored by an agent.

Population Size: We study the effects of scale-up by varying population size.
Neighborhood Size: We study how different neighborhood sizes in a one-

dimensional lattice affect the process of emergence of conventions.
Underlying Topology: We observe the dynamics of the process of emergence of

conventions depending on the underlying network topology.
Learning Modalities: We compare how conventions are reached with different

learning modalities, namely, one or both agents learning from an interaction.
Number of Players: We analyze the effect of different number of players partic-

ipating in each interaction on the speed of convention emergence.
Actions Set: We study the effect of the search space, namely the number of

options available to agents, on the convention emergence process.

Results reported here have been averaged over 25 runs. Agents are initialized
with uniformly random memories, and initially are unbiased in their action choice.
We conclude that a social convention has been reached when 100% of the population
choose the same action. Other researchers have used a convergence threshold of
90% [13, 16]. However we have observed that with certain reward functions and
on certain topologies, even after 90% of the society has converged to a convention,
it can still switch back to a different convention. Hence, a threshold of 90% can
produce misleading or inaccurate results.

4.1. Effect of neighborhood size

To observe the effect of neighborhood size, we use a one-dimensional lattice (as
scale-free networks and fully connected stars predetermine the neighbors for each
node). In these experiments, we have used a memory size of 5. Figure 2(a) shows
a comparison of convergence times for different neighborhood sizes, measured as
percentages of the population size, in a multi-learning approach.

We can see that when increasing the neighborhood size, the convergence time is
steadily reduced until it stabilizes after a certain neighborhood size. This effect is
due to the topology of the network. When the one-dimensional lattice has a small
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(a)

(b)

Fig. 2. Convergence rates with different neighborhood sizes in a one-dimensional lattice. (a) Multi
learning. (b) Mono learning.

neighborhood size, on average, the diameter of the grapha is high and therefore
agents have a relatively higher amount of local interactions. These local interactions
might promote different conventions in different parts of the network due to the
inherent structure of the convention emergence problem: one convention from the

aThe diameter of a graph is the largest number of vertices which must be traversed in order to
travel from one vertex to another.
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possible ones has to be adopted by interacting with your neighbors, and as the
topology restricts agents to more immediate neighbors (promoting endogamy), they
can develop a different convention than agents in another part of the network. These
subconventions need to be broken within a certain number of timesteps to achieve
the global convention. In the case of larger neighborhood sizes, these endogamy has
a softer effect, and therefore the topology does not promote such strong metastable
subconventions. It is also interesting to note that for smaller neighborhoods, larger
populations exhibits much faster convergence.

Similar convergence results are also obtained with the mono learning approach
shown in Fig. 2(b). When the neighborhood size crosses about 30% of the population
size, the convergence time does not significantly decrease anymore. The relation of
the neighborhood size and the diameter follows a geometric distribution and is
shown in Fig. 3. We see that when neighborhood sizes cross 30% of the population
size the diameter of the network is no longer significantly reduced, and hence the
convergence times are also not significantly reduced any further.

4.2. Effect of memory size

In this set of experiments, we want to observe the effect of different memory sizes on
convention emergence for different network topologies. We fix the population size
at 100 agents. For the one-dimensional lattice, we use a fully connected network.
We present the convergence times for different memory sizes in Fig. 4.

The results show that larger memory sizes increase convergence times for the
scale-free and fully connected networks. This phenomenon is due to the configura-
tion of the reward function and the learning algorithm. Each action in memory gets

Fig. 3. Diameter relation with neighborhood size in a one-dimensional lattice with
population = 100.
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Fig. 4. Effect of memory size in convergence time on a fully connected network (100 agents).

a relatively high reward for smaller compared to larger memory sizes (refer to the
reward function defined in Algorithm 1). The learning algorithm, therefore, receives
larger reinforcements for the actions performed for smaller memory sizes, resulting
in faster convergence. Convergence is accelerated in this situation because higher
rewards have a larger impact on the Q value updated by the learning Algorithm 1.
On the other hand, when dealing with higher memory windows, the proportional
reward is much smaller, and therefore, the reinforcement will be smaller. Due to
this smaller reinforcement, a higher number of interactions, and hence higher num-
ber of timesteps, will be needed to reinforce that action to same degree, thereby
increasing convergence time.

We also note from Fig. 4, that the mono-learning approach takes longer to
converge than the multi-learning approach. A part of this difference is explained
by the fact that the average number of learning interactions in a multi-learning
approach is twice that of the mono-learning approach for the same number of time
steps. There is, however, an additional clear trend of accelerated learning when
both agents are learning from the same interaction.

In Fig. 5 (note that the y-axis is in a logarithmic scale), we can observe the
relative performance of different topologies for different memory sizes with the
mono-learning approach. During this experiment, we limited the execution of
the simulations to one million timesteps. We observe that the Fully Connected
Stars network takes the most time to converge, followed by the Scale-Free network.
For both the Scale Free and the Fully Connected Networks we can observe that
the convergence time increases with increasing memory size. These inefficiencies
are largely due to more time taken to break or resolve conflicting subconventions
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Fig. 5. Topologies comparison with different memory sizes with mono learning approach
(100 agents).

that form with scale-free and fully connected stars networks but not for fully con-
nected networks (see following sections for an explanation). Accordingly, the fully
connected network, scales up much better with increasing memory size.

4.3. Effect of learning modalities

In this set of experiments, we want to observe the difference in convergence times
with the two learning modalities for different topologies. We first compare results of
the two learning modalities in a one-dimensional lattice with 100 agents (see Fig. 6,
where the y-axis is drawn on a logarithmic scale). For smaller neighborhood sizes,
i.e. when the network diameter is high, multi-learning takes longer to converge than
mono-learning. After reaching the point where the diameter is no longer affected by
the neighborhood size (as discussed before, this happens when the neighborhood
size is about 30% of the population size), the multi-learning performs better. The
reason for this interesting phenomenon is the creation of local subconventions with
multi-learning when the neighborhood size is small.

When agents have a small neighborhood size, they will interact often with their
neighbors, resulting in diverse subconventions forming at different regions of the net-
work. With the multi-learning approach, agents reinforce each other in each interac-
tion. Such divergent subconventions conflict in overlapping regions. To resolve these
conflicts, relatively more interactions between the agents in the overlap area between
regions adopting conflicting subconventions is necessary. Unfortunately, agents in
the overlapping regions may have more connections in their own subconvention
region and hence will be reinforced more often by their subconventions, which makes
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Fig. 6. Different learning approaches in one-dimensional lattices with different neighborhood
sizes.

it harder to break subconventions and arrive at a consistent, uniform convention
over the entire society. In the case of the mono-learning approach, the agents in
the overlapping region will not be disproportionately reinforced by the other agents
sharing its subconvention, making it easier to break those subconventions.

On the other hand, when neighborhood sizes are large, and hence network diam-
eters are small, agents interact with a larger portion of the population. This makes
it more difficult to create or sustain subconventions. In addition, this large neighbor-
hood size is more effectively utilized by the multi-learning as agents will be learning
from all the interactions they are involved in, and not only from the interactions
initiated by them.

For the scale-free and fully-connected stars, systematic variation of neighbor-
hood size is not possible in general. We do observe an interesting phenomenon
for these kind of networks. When the multi-learning approach is used in scale-free
networks and fully connected stars, subconventions are persistent and the entire
population does not converge to a single convention! This is the first time in all
of our research on norm emergence that we observed the coexistence of stable
subconventions.

The explanation of this rather interesting phenomena can be found in the com-
bination of the memory-based reward function and the inherent topologies of such
networks. We present, in Fig. 7, a portion of a representative Scale Free or Fully
Connected Stars network where subconventions have formed. We see that agent 1
(hub node 1) and its connected leave nodes (nodes 10, 11, and 12) have converged
to one subconvention (represented by the color of the nodes) that is different from
the subconvention reached by agent 2 (hub node 2) and its connected leave nodes
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Fig. 7. Subnetwork topology resistent to subconventions in a multi-learning approach.

(nodes 21, 22, and 23). As an agent has equal probability of interaction with any
of its neighbors, both agents 1 and 2 interact more frequently with their associated
leave nodes that share their subconvention.

Also note that when two agents interact and both actions have been used equally
often in their combined memories, as will be the case when agents 1 and 2 inter-
act, the majority action will be selected randomly, giving advantage to one of the
agents. For the subconventions to be broken in this scenario, it is needed that for
one of the hub nodes the following holds true: (1) the agent’s q-value for its pre-
ferred action decreases, and (2) the q-value for the action preferred by the other
agent increases. In order for the agent’s q-value for its preferred action to decrease,
a number of repeated interactions (proportional to the memory size) between the
hub nodes (in our examples 1 and 2) have to occur, and as there will be no clear
majority action, the preference has to be given to the same action, e.g. that pre-
ferred by agent 2, in all those interactions. As the reward for the agent 1’s action
will then be 0, its q-value will start decreasing. In order for the agent 1’s q-value
for its non-preferred action to increase, a number of interactions (also proportional
to the memory size) between it and agent 2 has to occur and agent 1 has to explore
in that interaction and try agent 2’s preferred action. This will result in agent 1’s
estimate of agent 2’s preferred action to increase, albeit slowly. Only when both
these fortuitous events follow each other, and without the intervention of another
interaction with the leaves associated with agent 1 (which would reinforce the sub-
convention), can the subconvention be ultimately broken. The likelihood of these
sequence of events happening is exceedingly small and hence subconventions rou-
tinely arise with the multi-learning approach. Viewed another way, the leaf nodes
can only interact with their hubs and each of them will reinforce the subconvention
action for their associated hub node in every time step, making it very unlikely that
conflicting subconventions will be resolved in situations such as in Fig. 7.

On the other hand, as an agent is reinforced only once each time-step in the
mono-learning approach, the processes required to break the subconventions are
more likely, even though it sill has a relatively small probability. This probabil-
ity decreases with larger memory sizes, and hence subconventions are more likely
to emerge with larger memory sizes when using mono-learning. Therefore, with
larger memory sizes, subconventions will be harder to break and this phenomenon
caused the significant increase in convergence time for scale-free networks and full-
connected star networks (we discussed this in the previous section with reference
to results displayed in Fig. 5).
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4.4. Weighted reward

To facilitate the reconciliation of subconventions produced by the topological struc-
ture, we decide to investigate a reasonable modification of the reward function.
The current reward function only takes into account the previous actions chosen by
both agents. In particular, the identity, or more specifically, the social position of
the interacting agents did not influence the rewards calculated. We can, however,
easily imagine scenarios where the position or social status of an agent can influence
the payoff calculation. A straightforward way to incorporate social status in reward
calculation would be to use a multiplicative weight, depending on the degree of the
interacting node,b in Algorithm 1 presented in Sec. 3. As a result, interactions with
central, better connected nodes will produce higher rewards than those with rela-
tively isolated nodes on the fringe of the network. By using this weighted reward
we are allowing the hub agents to have a larger influence on other agents. The new
reward function is shown in Algorithm 3. Here Ax and Bx are the number of A
and B actions in memory that agent x has taken, Actionx is the last action taken by
agent x, MajorityActionsx is the number of actions equal to the majority action
that agent x has previously taken, TotalMajorityActions is the number of actions
of the majority action, and Degreex is the degree of agent x in the network. Note
that this modified reward function will not produce different results for the one-
dimensional lattice networks, as all nodes in such networks have the same degree
and hence will have the same multiplicative factor in the reward function.

The results for the Scale Free network using the new Weighted Reward function
and for the two learning modalities are shown in Fig. 8. When we compare the
results with this new Weighted reward function with those with the unweighted
(uniform) reward function for Scale-Free networks with multi-learning (see Fig. 9),
we observe that the weighted reward function results in faster convergence.

// First, we select the majority action
TotalAActions = A1 + A2;
TotalBActions = B1 + B2;
Weight = Degree2 ;
if TotalAActions < TotalBActions then

MajorityAction = B;
if TotalBActions < TotalAActions then

MajorityAction = A;
if TotalAActions == TotalBActions then

MajorityAction = RandomlyselectedbetweenAorB;
// Then, we calculate the reward depending on the agents action selection and on the

majority action
if Action1 == MajorityAction then

reward1 = Weight × MajorityActions1
T otalMajorityActions ;

else
reward1 = 0;

end

Algorithm 3: Memory and social position based reward function.

bThe degree of a vertex in a graph is number of edges connected to that vertex.
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Fig. 8. Learning approached comparison in scale free network with weighted reward function.

Fig. 9. Reward functions comparison in scale free network with multi-learning.

The main reason for this is that the weighted reward function allow the hub nodes
with more connections to have a larger influence on other nodes and allows them
to resolve subconventions, and thereby producing faster convergence.

For the Fully Connected Stars networks, we observe that the Weighted Reward
function produces faster convergence when using the mono-learning approach
(see Fig. 10). However, subconventions continue to persist with multi-learning
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Fig. 10. Reward functions comparison in fully connected stars network with mono-learning.

approaches. The reason for this effect is due to the uniform degree distribution
of the hub nodes in the network and the design of the reward function. The Fully
Connected Stars networks engender a three phase convention emergence process:
(1) first the leaf nodes drive the hubs, then (2) the hubs have to coordinate, and
(3) finally the leaf nodes will have to coordinate with their hub. The second of these
phases still takes significant time and is fragile, as explained in Sec. 4.3.

5. Effect of Number of Players

To investigate the effect of the number of players per interaction on the convention
emergence process we designed the following experiment set. Agents were situated
in a fully connected network. As the actual design of the does not consider situations
with more than two players. Also, we modify the simple Memory Based Reward
Function (shown in Algorithm 1) to produce a new reward function (shown in
Algorithm 4) that reinforces the convention taken by the majority of the players.

// First, we select the majority action
Choose MajorityAction as the most frequent action over memories of all interacting players;
In case of tie, select randomly amongst the possible ones;
// Then, we calculate the reward depending on the agents action selection and on the

majority action
if Action1 == MajorityAction then

reward1 = 1
else

reward1 = 0
end

Algorithm 4: MultiPlayer reward function.
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Fig. 11. Different players in fully connected networks with different learning approaches.

Results from this experiment are presented in Fig. 11. We observe that the
convergence time seems to decrease when the number of players in each interac-
tion increases. The reason of this phenomena is found on the design of the reward
function: agents will reinforce the action played by the majority. In situations with
smaller number of players, fewer agents are consulted while deciding the major-
ity action. This leads to the emergence of more subconventions, and these agents
reinforce each other. On the other hand, in scenarios with larger number of players
per interaction, the majority action will be calculated by consulting the history of
more agents, and therefore, these subconventions will be less likely to appear. In
essence, more consistent rewards are provided to a larger number of agents, hence
promoting convergence of choices and enabling the emergence of a global conven-
tion. Information sharing between a larger number of individuals then have a similar
effect on global convention emergence as the likelihood of interacting with a larger
proportion of the society. Both facilitate uniform action adoption.

In Fig. 12 we can observe how the neighborhood size affects (as identified in
Sec. 4.1) the emergence of multiplayer conventions. We previously observed that the
emergence of conventions in one-dimensional lattices was strongly affected by the
neighborhood size: the convergence times are drastically reduced when the diameter
of the network (inversely proportional to the neighborhood size) is reduced. We
can now observe similar effects in multiplayer situations. We also observe that
the convergence time also increases when increasing the number of players. This
phenomena occurs due to the learning modality used by the agents (a multi-learning
approach) and the relation between the number of players and the neighborhood
size. When a small number of players interact (relative to the neighborhood size),
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Fig. 12. Neighborhood sizes comparison with different players with multi-learning approach.

subconventions are less likely to be created. However, when the number of players
per interaction is larger (and closer to the neighborhood size), agents will always
interact with the same agents, creating and reinforcing subconventions.

The neighborhood size also plays an important role when dealing with multi-
player interactions. Assuming that all the players in an interaction must be neigh-
bors, we can infer that the amount of neighbors an agent has directly affects to the
convergence time. We have accordingly designed two methods that will adapt the
neighborhood size of the network, depending on the number of players per inter-
action: the reduced and the super-reduced. The super-reduced scheme assigns the
minimum amount of neighbors needed for the number of players specified. Recall
that the neighborhood size should be an even number N , representing N/2 of neigh-
boring agents on each side of the agent. Therefore, in the super-reduced method,
for either a 2 or 3 players games, the neighborhood size will be N = 2. We have
observed that using the super-reduced method, in the case of the upper limit of play-
ers (3 players with a neighborhood size N = 2), makes agents interact repeatedly
with the same agents every timestep. Depending on the type of reward function,
this repeated interaction with the same players would lead to metastable subconven-
tions. Therefore, we relaxed this method creating the reduced method. The reduced
method assigns the minimum amount of neighbors needed for the amount of players
specified plus 2. This addition of two extra neighbors introduces variety into the
games (reducing the endogamy), allowing agents to play with different agents in
different interactions.

From the results presented in Fig. 13 we can observe the convergence times
of both methods (reduced and super-reduced) with different number of players
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Fig. 13. Reduced and super reduced neighborhood sizes with different players using the multi-
learning modality.

per interaction. We can observe how the super-reduced method produced larger
convergence times and more pronounced changes between the even and odd value of
each neighborhood size.c The reason why the super-reduced takes longer to converge
is because of the interacting topology. When agents are not allowed to interact
with other agents than their direct neighbors, no variance is introduced (complete
endogamy), promoting the appearance of a “frontier effect”. This frontier effect
affects the agent located in the middle of two regions of clear preference: this agent
in the “frontier” will be doubtful about its preference (one example of this situation
can be seen in Fig. 14). If the agents that the frontier agent interact with are
always the same, it will be harder to break the frontier effect this agent is under
the influence of. Until one of the involved agents explores a different action, this
frontier effect will not be broken.

Moreover, in Fig. 13 we observed another phenomenon that has not been
explained yet. We observe that the scenarios with an odd number of players games
take longer to converge than those with an even number of players. We can find an
explanation for this phenomenon in the design of the reward function and the fron-
tier effect: the majority action is chosen by observing the actions of the interacting
agents, and, if those are even, there might be a tie. In case of a tie, the majority
action is chosen randomly, giving a clear advantage to one of the actions in the
“frontier” region. In the case of an odd amount of players, the frontier agent will
be affected by the same amount of non-frontier agents. We can observe an example

cFor N = 2, 2 and 3 players games can be played. For N = 4, 4 and 5 players games can be
played. For N = m, m (even) and m + 1 (odd) players games can be played.
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(a)

(b)

(c)

Fig. 14. Frontier effect in 3-players game with two competing conventions. (a) Agent 3 doubtful.
(b) Agent 2 interacts and affects agent 3. (c) Agent 4 interacts and affects agent 3.

scenario in Fig. 14. Initially, in Fig. 14(a), Agent 3 is doubtful about its preference.
When Agent 2 interacts, in Fig. 14(b), it affects (together with agent 1) agent 3,
biasing their action preference to one convention. On the other hand, when agent 4
interacts, it will affect (together with agent 5) agent 3, making it change its prefer-
ence to the other convention. The random selection of the majority action in case
of a tie, possible only for even number of players, speeds up the process of con-
vergence, although producing a larger number of preference change per agent. On
the other hand, when having an odd number of players, we obtain the previously
explained “frontier” effect. This effect ensures a longer convergence time (because
the frontier agent needs to explore in order to break the frontier) with a smaller
number of preference changes. Experimental results are shown in Fig. 15 confirming
our hypotheses.

5.1. Effect of action set

This last experiment was designed to evaluate how the topology plays an important
role in the emergence of conventions in environments where there are more than two
conventions to choose from. We can observe in Fig. 15, that the larger the search
space in the number of possible conventions, the longer it takes for the conventions
to emerge. Specially pronounced is the effect with smaller neighborhood sizes. The
explanation for this phenomena is again the creation of metastable subconventions
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(a) (b)

(c) (d)

Fig. 15. Multi player and multi action games. (a) Convergence time for 2 player games. (b)
Convergence time for 3 player games. (c) Average number of preference change for 2 player games.
(d) Average number of preference change for 3 player games.

promoted by the endogamy produced by the topological structure as explained in
Sec. 4.1. However in the previous experiments, agent only had two options where
to choose from. Having a larger set of options generate a larger number of different
subconventions that need to be broken.
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6. Conclusion

Our primary goal in this paper was to study how norm emergence in real environ-
ments are likely to be influenced by both physical neighborhood effects imposed by
mobility restrictions and biases as well as diverse learning, memory and reasoning
capabilities of members of the society. We have presented a set of experiments to
study the emergence of social conventions based not only on direct interactions
but also on the memory (and previous history) of each of the agents under dif-
ferent interconnection topologies between agents. In this social learning framework
requires that each agent learns from repeated interaction with anonymous mem-
bers of the society. In particular, agents learn to adopt conventions that are good
for interaction with arbitrary population members rather than learning policies
targeted for interacting with particular individuals.

Our initial hypotheses were that different characteristics of the topology in which
agents are located would produce different convergence times for reaching a social
convention. Experimental results confirm this hypotheses. We have shown that the
emergence of transitory subconventions are the cause of the delay of the emergence
of conventions, as identified also by other authors [4]. Specific topology structures
promote endogamy between a certain subgroup of agent that might produce a
different subconvention than the rest. We also observe that memory size have a
pronounced affect on the emergence of conventions in all topologies studied with
agents having larger memory sizes taking longer to reach conventions. This is due to
the fact that the reward amount for a given action is inversely proportional to the
memory size. As a result, reward sizes are smaller for larger memory sizes, requiring
a higher number of interactions for a convention to be reached.

Moreover, we have observed how the learning modality does directly affect in
the performance of the convention emergence process. We observe that subcon-
ventions are more likely to appear and are more resistant when using the multi-
learning approach, and might not be resolved for scale-free and fully-connected
star networks. To aid in breaking such stalemates, we introduced a new, plausible
reward function which allows socially important nodes (those with more connec-
tions to other agents) to have more influence in the reward function. This new
reward function accelerates the emergence of conventions in scale-free networks but
subconventions persist in fully-connected star networks.

Finally, we have observed how, in games with more than two players, conver-
gence times are affected differently by the structure of the topology: more clustered
societies converge faster with larger player games; on the other hand, less clustered
societies take longer to converge when the number of players increase.

7. Future Work

One question that we plan to answer in future work is under what circumstances
and configuration of parameters the one-dimensional lattice behaves similarly to
the scale-free network for large population sizes. We have observed that when
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the population size increases, the convergence times in the one-dimensional lat-
tice increases at a much faster rate compared to scale-free networks. We believe
that a dynamic adjustment of the neighborhood size on a one-dimensional lattice,
and hence the network diameter, will produce similar dynamics to those obtained
with scale-free networks.

We also want to experiment with heterogeneous populations, as done by
Mukherjee et al. [20]. In the current paper, all the agents are initialized with the
same parameters and with the same distribution of initial memory. We want to
observe the resulting dynamics of different types of populations. For example, in a
scale-free network, we can initialize the hubs with a specific bias towards a certain
action, and observe the speed of convergence of the rest of the population. Another
interesting experiment to be carried out is when agents in the same population are
initialized with different memory sizes.

Finally, we want to analyze, more formally and in a more detailed manner, the
effect of subconventions. This work has provides us with a basic understanding that
subconventions are facilitated by the topological configuration of the environment
(isolated areas of the graph which promote endogamy) or by the agent reward func-
tion (concordance with previous history, promoting cultural maintenance). Conse-
quently, we need to develop and test mechanisms for agents to proactively discover
and dissolve these subconventions in real-life scenarios.
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[4] Araújo, T. and Aubyn, M. S., Education, neighborhood effects and growth: An agent-
based model approach, Adv. Complex Syst. 11 (2008) 99–117.

[5] Axelrod, R., An evolutionary approach to norms, Am. Polit. Sci. Rev. 80 (1986)
1095–1111.

[6] Barabasi, A. and Bonabeau, E., Scale-free networks, Sci. Am. 288 (2003) 60–69.



April 8, 2011 11:42 WSPC/S0219-5259 169-ACS S0219525911003013

226 D. Villatoro, S. Sen and J. Sabater-Mir

[7] Boella, G., Norm governed multiagent systems: The delegation of control to
autonomous agents, in Proc. of IEEE/WIC Intelligent Agent Technology Conference
(IEEE Press, 2003), pp. 329–335.

[8] Boella, G., Torre, L. and Verhagen, H., Introduction to the special issue on normative
multiagent systems, Auton. Agent. Multi-Ag. 17 (2008) 1–10.

[9] Boissier, O. and Gâteau, B., Normative multi-agent organizations: Modeling, sup-
port and control, draft version, in Normative Multi-agent Systems, eds. Boella,
G., van der Torre, L. and Verhagen, H., number 07122 in Dagstuhl Seminar Pro-
ceedings (2007), Internationales Begegnungs — und Forschungszentrum fuer Infor-
matik (IBFI), Schloss Dagstuhl, Germany, http://drops.dagstuhl.de/opus/volltexte/
2007/902/pdf/07122.BoissierOlivier.Paper.902.pdf.

[10] Castelfranchi, C. and Tummolini, L., Positive and negative expectations and the
deontic nature of social conventions, in ICAIL’03: Proceedings of the 9th International
Conference on Artificial Intelligence and Law (ACM, New York, NY, USA, 2003),
ISBN 1-58113-747-8, pp. 119–125, http://doi.acm.org/10.1145/1047788.1047819.

[11] Coleman, J., Foundations of social theory (1998).
[12] Delgado, J., Emergence of social conventions in complex networks, Artif. Intel. 141

(2002) 171–185.
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