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In this work we analyse the topological and dynamical properties of a simple model of
complex food webs, namely the niche model. In order to underline competition among
species, we introduce “prey” and “predators” weighted overlap graphs derived from the
niche model and compare synthetic food webs with real data. Doing so, we find new
tests for the goodness of synthetic food web models and indicate a possible direction of
improvement for existing ones. We then exploit the weighted overlap graphs to define
a competition kernel for Lotka-Volterra population dynamics and find that for such a
model the stability of food webs decreases with its ecological complexity.
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1. Introduction

The study of food webs has attracted the interest of complex systems scientists as

one of the clearest example of a network structure whose property can be understood

only by looking at the system as a whole. A food web is the collection of the

predation relations in an environment and can therefore be naturally described as

a network, i.e. a mathematical object composed by vertices (the biological species)

and their edges (the predation relations).

Network structures are ubiquitous and can be found with similar statistical

properties in a variety of other situations from WWW [1] and the Internet [2] to

protein interactions[3] and social systems [4]. Despite this similarity, food webs rep-

resent one of the most interesting cases of study thanks to their peculiar topology.

In food webs, vertices can be divided in classes thanks to their biological meaning

(i.e. prey/predators). Also, the structure is naturally layered when considering the

minimum distance of the species from the external resources. All these properties

make these structures extremely interesting also as a test-bed for models and algo-

rithms of complex networks. In addition, the application of some ideas developed

in the area of computer science points out that biological meaning could hidden in

the topology of the food webs [5].

Fig. 1. Example of a food web. For the sake of clarity, the zeroth node on which basal species feed
has been discarded.

Traditionally, the most important quantities in a food web are the number of
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vertices N and the number of edges L. Since the maximum possible number of edges

grows as N2 (precisely N(N − 1) for a directed graph), it is custom to consider the

density of edges L/N2, a quantity also known in ecology as the directed connectance.

In food webs, edges are directed and each of them follows the convention, based

on the flux of nutrients, of directing the edge from prey to predator. In this work

we will consider only trophic webs, where all species which have exactly the same

predators and prey are merged, i.e. they are represented by a single node.

Another characterization of food webs is be obtained by considering predation

relationships. All the species that have no predators are usually indicated as the

top (T) species. Similarly, the species with no prey are called basal species (B). All

the others form the intermediate (I) class.

All the species are ultimately sustained by the transformation into biomass of

external resources like water, minerals and sunlight by means of the basal species.

It is then customary to describe this situation with the introduction of an external

node, called zero-node, which points to all basal species, i.e. to that nodes with

only out-edges. Given this structure, it is easy to define layers of species given by

the distance (i.e. the minimum path) towards the zero-node of external resources.

Hence, distance is measured as the (minimum) number of edges the biomass has to

travel. As happens in the Internet [6], some loops accounting for the stability and

resilience of these structure [7] can be present in the system.

Food webs have been modelled in many ways, and the different models have

been validated with the experimental data available. Here we focus on one recent

and successful model on which we will define a topology-determined population

dynamics.

2. Niche Model

There are many static models of food webs which reproduce the features of real

ecosystems such as fractions of top, basal and intermediate species, number of food

chains, average chain length, and connectance [8]. The simplest way one could think

of is to create suitable graphs [9, 10, 11] where (given the linkage density and the

number of nodes) directed edges are assigned to randomly chosen pairs of nodes.

The agreement between real and such simulated food webs is not very good, as

expected. In fact, such a simple model has many unrealistic features such as the

assumption that every species can in principle be the predator of every other species.

A first improvement has been the cascade model [13] that tries to capture the

layered structure of food webs. Williams and Martinez have subsequently improved

on the subject by introducing a static model, called the “niche model” [12], that

shows a remarkable agreement between real webs and the synthetic ones generated

by the model (particularly true when considering features such as cycles and species

similarities).

The external parameters of the niche model (i.e. the quantities fixed from the

beginning) are the number of species S and the directed connectance C = L/S2. To
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every node is assigned a uniformly distributed number ni into the interval [0, 1], the

niche space. A species i is characterized by its niche parameter and its list of prey.

Prey are chosen for all species according to the following rule (Fig.2): a species i

preys on all species j with niche parameters nj inside a segment of length ri centred

in a position chosen randomly inside the interval [ri/2, ni], with ri = xni and x a

random variable with probability density function

px(x) = β(x, 1, b) = b(1− x)(b−1) (1)

Choosing b = (1/2C) − 1 is possible to generate graphs with the desired size and

connectancea.

Fig. 2. Diagram of the niche model. To each of the S species (for example S = 6, each shown as
an inverted triangle) is assigned a “niche value” parameter (ni) drawn uniformly from the interval
[0, 1]. Species i consumes all species falling in a range (ri) that is placed by uniformly drawing the
center of the range (ci) from [ri/2, ni].

The niche model estimates the central tendency of empirical data remarkably

well [12]. Its topological and analytical properties have been widely studied [14, 15]

and it has been shown that the predictions of the model are robust with respect to

the specific form of the px(x) chosen[16, 17].

3. Projection Graphs

An aggregated food web with S trophic species can be represented via an [S × S]

adjacency matrix A. The elements aij is taken 1 if species j preys on species i

(directed edge) and 0 otherwise (no edge). An alternative representation of the

ecosystem can be given as a bipartite graph [20] where two classes of nodes are

present: predators (top and intermediate species) and prey (basal and intermediate

species) and each directed edge always occurs between nodes belonging to different

classes.

Bipartite graphs introduce the idea of capturing the relations among the mem-

bers of a single class due to the interaction with the members of the other class. In

fact, such a graph can be projected onto the predators overlap network, where two

predators are connected with an edge weighted proportionally to the numbers of

aIn the niche model species with no prey and predators are eliminated and species with the same
list of prey and predators, that is trophically identical species, are merged.
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prey they have in common. Correspondingly, it can be projected into the prey over-

lap network, where two prey are connected according to the number of predators

they share.

The projection graphs are two undirected, weighted graphs whose sizes are the

number of possible predators T + I and the number of possible prey B + I in the

food web respectively. The corresponding adjacency matrices Apred and Aprey are

symmetric and we define their elements in the following way:

apredij =

∑

k∈B+I akiakj

S(B + I)
with i, j ∈ T + I (2)

apreyij =

∑

k∈T+I aikajk

S(T + I)
with i, j ∈ B + I (3)

We choose to normalize the predators weights over all possible prey, and the prey

weights over all possible predators. Note that Apred and Aprey represent undirected

graphs as apredij = apredji and apredij = apredji . Without loss of generality we can

relabel the vertices in the two graphs keeping the information about the species

they represent.

Fig. 3. Example of food-webs projection graphs: prey-prey from Skipwith Pond food web (a),
predator-predator from Skipwith Pond food web (b), prey-prey from Chesapeake Bay food web
(c), predator-predator from Chesapeake Bay food web (d).

Notice that the projection operation extends the ecological concept of niche

overlap graphs [25] that connect species insisting on the same niche; their combina-

torial properties have been studied by [26]. Niche overlap graphs have been widely

used in ecological literature as a measure of both dynamical [27] and topological [23]
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properties of food webs. Niche overlap graphs are therefore the unweighted version

of projection graphs i.e., they can be obtained putting a link between each species

connected by a non-zero weight in projection graphs.

Example of projection graphs are given in Fig. 3. Looking at the empirical

graphs we find a very symmetric topology (Fig. 3(a), 3(b)). Some projections show

the formation of isolated communities both in predators and in prey graphs (Fig.

3(c), 3(d)) and sometimes we find only isolated nodes i.e., specialists, either in

predation or in being a prey. Such community detection is a novelty compared to

the classical studies of directed food webs: in fact, in both empirical and model

graphs, there are no isolated nodes or clusters while in the niche model isolated

species are removed.

3.1. Topological Properties of Projection Graphs

The weights of the projections graphs are a measure of the inter-specific competi-

tion for resources, giving information on how two species compete (or are objects

of competition) in the predation interaction. A more significant meaning of this

quantity should be derived by the analysis of an original weighted food web where

the strength of the predation is also considered. In order to compare how much

model webs reproduce inter-specific competition, we have measured and confronted

the topological properties of projections graphs for both empirical and synthetic

food webs.

The data we used have been selected to be the largest and highest-quality empir-

ical trophic food webs present in literature. They represent a wide range of ecosys-

tems, from freshwater habitat (Skipwith Pond SWP, Little Rock Lake LRL, Bridge

Brooke Lake BBL) to freshwater-marine interface (Chesapeake Bay CPB, Ythan

Estuary YE) to terrestrial habitats (Coachella Valley CDE, Saint Martin Island

SMI)

We first calculate the path-length matrix whose elements are given by

d
pred/prey
ij = min{

∑

k,l∈Pij

θ
(

a
pred/prey
kl

)

} (4)

where Pij is a path connecting node i and j and θ (x) is 1 for x > 0 and 0 otherwise.

We put dij to 0 when the nodes i and j belong to different clusters (i.e. no paths

exists among them).

A first characterization of the graph is given by the diameter D corresponding to

the maximum path length dij occurring in the graph. Another characteristic length

of the graph is the average path length, that can be computed using two different

normalizations:

lG =
1

n(n− 1)/2

∑

i>j

dij lR =
1

[n(n− 1)/2]− (l0/2)

∑

i>j

dij (5)

where l0 is the number of zeros in the matrix of path lengths. With these definitions

lG is the average path length over all possible paths and lR is the average path length
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over all occurring paths. We notice that the average path length ratio lG/lR is an

indicator of the presence of separate components in the graph; in fact, 0 ≤ lG/lR ≤ 1

which is 0 when all nodes are isolated and 1 when all nodes are in the same cluster.

We also characterize the local structure of the graphs by measuring the average

clustering coefficient Cl. Despite the name, Cl is not related to the presence of

separate clusters but is a measure of how dense (”clustered”) the graph is around a

node: in fact, it is 1 if all the neighbouring nodes are interconnected, and 0 if there

are no links between them.

A crucial quantity in many graphs is the degree of a node, i.e. the number of its

links [28]; in the case of weighted graphs, its natural extension is the weight w of a

node defined as the sum of the weights of its links. We measure for our graphs the

average weight 〈w〉.

Notice that, except for average weights, the measures of topological features

we adopt would be the same for weighted and unweighted graphs; most of our

conclusions would therefore apply also to niche overlap graphs.

For real food webs we notice the formation of communities in both projections.

Connectance varies from 0.24 of CDE to 0.92 of SWP, indicating that projections

graphs are strongly connected in comparison to the original food webs. The average

weights 〈w〉 take high values independent of the original connectance, varying from

0.04 to 0.21 for predators and from 0.05 to 0.22 for prey. Furthermore we notice

that projections of food webs present all the characteristics of small world networks

i.e. small diameter and large clustering [22].

We then repeat the same analysis for the projections of synthetic webs derived

from the niche model and the random graph model. Notice that the averaged topo-

logical properties of random projections are the same for predators’ and prey’s

graphs in other words, in and out degree distributions of random digraphs have the

same form [11]. Comparing the curves with empirical data, we find good agreement

for the clustering Cl and average path lengths ratio lG/lR (Fig. 4(a),(c)). Although

the niche model represents the formation of competitive communities in empirical

food webs better than the random graph model, it overestimates diameters and un-

derestimates average weights (Fig. 4(b),(d)). We notice that empirical D is better

described by random graphs (Fig. 4(b)).

From Fig. 4(d) we see how 〈w〉 for empirical food webs is larger than the values

predicted by niche model or random graphs. We can explain this trend considering

the feeding rule of niche model which assigns prey from a single portion of niche

space. In doing so, the niche model has a reduced probability of sharing different

resources (sharing resources is to share a single, well defined line interval): in this

way the resulting graph has fewer paths, augmenting the diameter and reducing

the weights of the projections graphs. On the other hand, empirical food webs are

not strictly intervalled and do exhibit a strong bias towards contiguity of prey [23].

This result suggests that empirically observed niches, once mapped onto a single

dimension, could be composed of multiple intervals along niche space.
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Fig. 4. Analysis of the topological features of projection graphs in function of the average degree

of the original food web (z): clustering coefficient Cl (a), diameter D (b), the average path length
ratio lG/lR indicating the presence of a single cluster (c), average weight 〈w〉 (d).

4. Population Dynamics

Given the network structure, we want to define the population dynamics for the

individuals of the species described in this food web. We therefore associate with

each node i a population, i.e. a function of time Ni(t) which represents the density

of individuals of the same trophic species per unit of area.

To describe population dynamics we use the generalized Lotka-Volterra equa-

tions :

dNi

dt
= riNi

(

Ki −
∑S

j=1 αijNj

Ki

)

(6)

where ri is the intrinsic growth rate of species i, Ki his carrying capacity and αij

represents the effect species j has on the population of species i. Pulling the carrying

capacity into the interaction term the equations became

dNi

dt
= riNi



1−

S
∑

j=1

αijNj



 (7)

This doesn’t actually change the equations, but only how the interaction αij =

αij/Ki is defined. For simplicity all self-interacting terms αii are set to 1.
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One can represent both the populations and the growth rates as rows of numbers

(vectors) and the interaction term α as a matrix, called also competition kernel. Let

us suppose that we have only one type of external resource R produced with a

constant rate y (renewability of resources) and let us also suppose that each basal

species consumes a fraction X at a rate ci. The equation for the resources is:

dR(t)

dt
= R(y −

S
∑

i=1

ciNi) (8)

where the first term represents the renewal rate and the second one gives the total

rate of consumptionb.

If we consider the equilibrium conditions for equations that is 6 and 8, dNi/dt =

0 and dR/dt = 0, we find a relationship between the ecological parameters given by

y =

S
∑

ij

ciα
−1
ij Kj (9)

This gives a fundamental constraint on all the parameters (except the ri), especially

on the competition kernel which must be invertible.

Some authors use as competition kernel a function of the distances between

species in niche space [18, 19]. The problem with such a choice is that the topology

of the food web is not included in the equations; a simple way to incorporate it is to

use a combination of projections weights. For this reason, we consider equation (6)

and propose the following competition kernel that joins in a self-organized way[21]

the topology with the dynamics:

αij = apredij − apreyij (10)

This means that the influence of population i on population j is negative if species

i and j share some prey and positive if they share some predators. The competition

between two species increases with respect to the number of prey species they share

and vice versa. Using the elements defined in eq. 10, it is possible to simulate a

population dynamics on both model and empirical food webs.

The stability of empirical and model food webs has been tested numerically

following this steps:

(1) Food web adjacency matrix. We generate it using niche model, where the input

parameters are connectance C and size S. In real cases this is done considering

empirical food webs data.

(2) Competition kernel. We derive the competition kernel αij(C) from equation 10.

(3) Ecological parameters. We fix the parameters ri, ci and Ki:

• As a first approximation the intrinsic growths ri are set equal from all

species. This means that in the ideal condition of no competition and

infinite resources, all the populations should grow at the same rate. Varying

bhere is assumed that ci 6= 0 only for basal species.
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these parameters one can simulate the different lifetimes of species and

their reproduction strategies.

• Setting the carrying capacities Ki of the species means that, in the ideal

condition of no inter-specific competition (αij = 0), the maximum number

of individuals per unit of space which are sustainable from the external

environment is fixed for every species.

• the consuming rates ci has been set to 0.1 only for basal species. This is

quite realistic because basal species are, by definition, the species which

directly feed on the external environment.

• At this point using equation 9 we fix the renewability of resources y which

depends basically on the topology of the graph. To avoid indefinite growth,

for simulated food webs, we fix the maximum renewability yM = 10 and

generate graphs with the same connectance and size until we obtain the

desired renewability (0 < y ≤ yM ).

(4) Integration of equations. Once we have the competition kernel and the desired

y we solve the equations 6 using the 4th order Runge-Kutta algorithm

(5) Stability. The results have been derived in the steady state.

4.1. Dynamical properties

We test the stability of these Lotka-Volterra systems using both empirical and model

food webs. We remark that using the coefficients 10 as the competition kernel, the

system quite always reaches the steady state for small S and C. For large values of

S and C, the system is mostly unstable and populations sizes go to infinity when

the complexity S C grows. We tested the robustness of the steady states changing

both initial conditions and ecological parameters.

When the intrinsic growth rates are augmented the steady state is reached faster.

Population sizes at the steady state should be equal to the carrying capacities,

but the presence of competition kernel changes the effective Ki of every species.

However, this parameters give the ordering of sizes of stable populations and when

Ki = KP the mean population is always Kp.

With our choice for the kernel, the only stable empirical food web is Chesapeake

Bay (CPB) which is the one with the lowest ecological complexity SC. To investigate

the effects of the complexity SC on the stability, we simulate and analyse population

dynamics on the niche model. We generate 100 realizations of synthetic graphs from

the niche models for fixed values of S and C; on such graph, we test the stability of

population dynamics starting from random and uniform initial conditions. We find

that, using expression 10 as competition kernel, the only two observed behaviours

are reaching a steady state (stability) or divergence; we count the number of times

each of these behaviours occurs. As expected from general consideration of the

dynamical stability of population dynamics [24], the probability of reaching a steady

state decreases with complexity (Fig. 5).

We find that population dynamics on graphs from the niche model is stable
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Fig. 5. Dynamical stability expressed as the fraction of non diverging models versus complexity.

only for small S and C ; the model exhibits stability for SC < 2 with stability that

decreases linearly between SC = 2 and SC = 5. These results are robust under the

change of initial conditions and ecological parameters.

5. Conclusions

We have introduced weighted projection graphs as a tool to analyse prey-prey and

predator-predator relations.

Building on the standard representation of food webs as directed networks, pro-

jection graphs extend the concept of the niche overlap graphs by adding the possibil-

ity of having weighted links. Projection graphs for ecological data reveal community

structures both among preys and predators; in general, they can be used to detect

prey-prey or predator-predator indirect effects.

We analyse the projection graphs derived both from ecological data and from

two synthetic ecological models: a simple null case (random graph) and a successful

synthetic food-web generator (the niche model). The comparison of the topological

features of projection graphs derived from synthetic data and real data indicates

some direction of improvement for the niche model; in particular, the largeness of

the diameter of projection graphs for the niche models indicates the necessity either

to extend the niche model to multiple intervals or to consider a multi-dimensional

representation of niches.

We further investigate the Lotka-Volterra population dynamics under the as-

sumption that the competition kernel can be inferred from the prey-prey and

predator-predator interactions described by the weights of the projected graphs.
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Analysing the behaviour of the dynamics for niche model food webs of increasing

complexity, we find that according to May’s classical results for the stability crite-

rion, the probability that a food web’s dynamics reaches a stable state decreases

with its complexity, measured as the number of interactions among network’s ele-

ments.
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