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Abstract

Physics and economics are two disciplines that share the common chal-
lenge of linking microscopic and macroscopic behaviors. However, while
physics is based on collective dynamics, economics is based on individual
choices. This conceptual difference is one of the main obstacles one has
to overcome in order to characterize analytically economic models. In
this paper, we build both on statistical mechanics and the game theory
notion of Potential Function to introduce a rigorous generalization of the
physicist’s free energy, which includes individual dynamics. Our approach
paves the way to analytical treatments of a wide range of socio-economic
models and might bring new insights into them. As first examples, we de-
rive solutions for a congestion model and a residential segregation model.

Keywords: statistical physics; dynamics; potential function; stochastic
models; free energy

1 Introduction

The intricate relations between the individual and collective levels are at the
heart of many natural and social sciences [1]. Physics looks at the collective
level, selecting the configurations that minimize the global free energy [2]. In
contrast, economic agents behave in a selfish way, and equilibrium is attained
when no agent can increase its own satisfaction [3].

Recently, physicists have tried to use statistical physics approaches to under-
stand social phenomena such as the segregation transition [4,5]. The idea seems
promising because statistical physics has successfully bridged the gap between
the micro and macroscopic levels for physical systems governed by collective
dynamics. However, progress remained slow due to the lack of an appropriate
framework allowing to take into account the selfish dynamics typical of socio-
economic agents. On the other hand, game theorists have developed in the last
decades the notion of Potential Games, in which each player’s gain resulting
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from a change of state is equal to the variation of a potential function [6–9].
This potential function hence provides what physicists need: a link between
individual and collective levels.

In this paper, we propose a generic analytical framework that builds on con-
cepts originating both from statistical physics and game theory. We introduce a
rigorous generalization of the physicist’s free energy, which encompasses individ-
ual dynamics. By introducing a “link” state function that is maximized in the
stationary state, we pave the way to analytical treatments of a much wider class
of systems, where dynamics is governed by individual strategies. Quantitative
solutions of two models are also provided as examples.

2 The Model

2.1 Generic model

Our model represents in a schematic way the dynamics of agents making in-
dividual choices. Throughout this paper, N = {1, . . . , N} denotes a finite set
of agents, qi ∈ {1, . . . , Q} the choice of agent i ∈ N , the vector ~q = (qi)i∈N
describing the state of the system and Nq (resp. nq) the set (resp. number)
of agents following choice q ∈ {1, . . . , Q}. Each agent i ∈ N can moreover be
characterized by his utility function, which describes the degree of satisfaction
concerning his choice. An agent’s utility function is supposed to depend only
on his own choice and on the set Nqi of agents making the same choice, namely
ui(~q) = ui(qi, Nqi). We also introduce the collective utility, defined as the total
utility of all the agents: U(~q) =

∑
i ui(~q).

The dynamical rule allowing the agents to change their choice is the fol-
lowing. At each time step, one picks up at random an agent and a choice
q∗ ∈ {1, . . . , Q}. Then the agent goes from choice qi to choice q′i = q∗ with
probability:

Pqi→q′i =
1

1 + e−∆ui/T
, (1)

where ∆ui = ui(~q′) − ui(~q) is the variation of the agent’s own utility upon his
change of choice. The parameter T > 0 is a “temperature” that introduces in
a standard way some noise on the decision process [6]. It can be interpreted as
the effect of features that are not explicitly included in the utility function but
still affect the decision.

We wish to find the stationary probability distribution Π(~q) of the micro-

scopic configurations ~q. If ∆ui can be written as ∆ui = ∆L ≡ L(~q′) − L(~q),
where L(~q) is a state function of the configuration ~q, then the dynamics satisfies
detailed balance [10] and the distribution Π(~q) is given by

Π(~q) =
1

Z
eL(~q)/T , (2)

with Z a normalization constant.
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It can be shown [1,9] that a sufficient and necessary condition1 for a “linking”
function L to exist is

ui(qi, Nqi \ {j})− ui(qi, Nqi) = uj(qj , Nqj \ {i})− uj(qj , Nqj ) (3)

for any i ∈ N and j ∈ N . Note that this relation is automatically satisfied in
the case qi 6= qj . Eq. (3) expresses a symmetric condition on the utility variation
(or externality) an agent produces on another one when he changes his choice.
Condition Eq. (3) is also rather easy to satisfy in case of homogeneous agents
sharing the same utility function (see examples in section 3). In contrast, this
condition imposes more restriction to models with heterogeneous agents and
explicit examples are then more difficult to build.

Interestingly, the linking function L appears as (the opposite of) an effective
energy in terms of physical systems (Eq. (2) being the analogue of a Gibbs
distribution), but also corresponds to the notion of potential function in game
theory [8, 9].

2.2 Homogeneous agents

In the following, we restrict our study to models where the agents’ utility func-
tions can be written as ui(~q) = u(qi, nqi/H), where H is a parameter charac-
terizing the typical number of agents making a given choice (for instance the
natural capacity of an infrastructure). This parameter is assumed to scale lin-
early with N , the ratio h = H/N being fixed. This particular form of utility
function implies that the agents share homogeneous properties and that they are
sensitive to the relative proportion of agents making the same choice as them.
It also implies that Eq (3) is verified, meaning that a linking function L always
exists. It is straightforward to check that it can be written as :

L(~q) =

Q∑
q=1

nq(~q)∑
m=0

u(q,m/H) (4)

In the limit N →∞ with ρq = nq/H fixed, one finds

L(~q)/N → h

Q∑
q=1

∫ ρq

0

u(q, ρ) dρ. (5)

This particular form of the potential function L allows us to interpret it as the
sum of the individual marginal utilities gained by agents as they progressively
enter the system after leaving a reservoir of zero utility (a similar interpretation
can be found in [11]).

Since the agents are supposed to be identical (but still distinguishable), it
seems natural to keep track of “mesoscopic” observables such as the coarse-
grained states x ≡ {ρq} rather than the “microscopic” states ~q. The number

1If the state function L exists, the relation ∆ui = ∆L requires only that it be defined up
to a constant.
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of states ~q corresponding to a given coarse-grained state x is quantified by its
logarithm S(x), where:

S(x)/N =
1

N
ln

N !∏
q nq!

h, {ρq} fixed−−−−−−−−−→
N→∞

− lnh− h
Q∑
q=1

ρq ln ρq. (6)

The stationary distribution of the coarse-grained configurations hence takes the
form:

ΠN,T (x) =
1

ZN,T
eF (x)/T =

1

Z
′
N,T

e(hN/T )
∑

q fN,T (q,ρq) (7)

where F (x) ≡ L(x) + TS(x) can be seen as (the opposite of) an effective free
energy of the system, Z

′

N,T = ZN,Th
−N and where

fN,T (q, ρ) =

ρH∑
m=0

u(q,m/H)− Tρ ln ρ (8)

In the limit N →∞ with ρq = nq/H fixed, one finds

fN,T (q, ρ) → f∞,T (q, ρ) ≡
∫ ρ

0

u(q, ρ′) dρ′ − Tρ ln ρ (9)

According to the form of the distribution ΠN,T given by Eq (7), in the
limit of large N the stationary configurations are those that maximize the sum∑
q f∞,T (q, ρq) under the constraint h

∑
q ρq = 1. We explore different maxi-

mization procedures in examples of applications presented in next section.

3 Applications

3.1 Road congestion

We apply here our generic model framework to a simplified version of Chu’s [13]
congestion model. In this model, a number N of identical commuters travel
every morning from home to work. All agents travel on the same road and
wish to arrive at time t∗. Since congestion is a collective phenomenon that no
single agent can master to arrive at her preferred arrival time t∗, agents have
to choose a less optimal arrival time t ∈ Z (time is supposed to be discrete)
in order to minimize the private trip cost, c(t), which includes two parts. The
first part is the travel time cost αTT (t) where α is the unit cost of travel time
and TT (t) is the travel time. The second part is the schedule delay cost, which
is β(t∗ − t) if one arrives early and ν(t − t∗) if one arrives late, β and ν being
unit costs of schedule delay. To make analytical calculations possible, the travel
time is supposed to depend on the number nt of commuters arriving at time t
through the function TT (t) = (nt/H)γ where H and γ are fixed parameters.
The parameter H can be interpreted as a standard road capacity (the linearity
between H and N can thus reflect that bigger roads are built when the traffic
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Figure 1: Stationary values derived by a maximization of L for N = 5000
(in red) and N → ∞ (in black) commuters. (a) Normalized proportion of
arriving agents ρt = nt/H. (b) Normalized proportion of agents on
the road Qt/H, where Qt is the number of agent queueing on the road at a
given time t. It is computed as the difference between the number of departed
and arrived agents Qt =

∑t
t′=0

(
dt′ − nt′

)
, where the distribution of departure

time {dt} is deduced from the distribution of arrival time {nt} and travel time
{TT (t)}. See [13] for more details on this procedure. The computations have
been realized in the limit T → 0, with the parameters values t∗ = 900, α = 2,
β = 1, ν = 4, γ = 4, h = 4. 10−4.

is more important) and the parameter γ measures the elasticity of travel time
with respect to nt.

This congestion model fits our framework model, the utility of an agent
arriving at time t being

u(nt) = −c(t) = −
{
α(nt/H)γ + β|t∗ − t| if t < t∗

α(nt/H)γ + ν|t∗ − t| if t ≥ t∗ (10)

The stationary coarse-grained configurations in the limit of large N are thus
those that maximize the sum

∑
t f∞,T (t, ρt), where:

f∞,T (t, ρ) =

{ α
γ+1ρ

γ+1 + βρ|t∗ − t| − Tρ ln ρ if t < t∗

α
γ+1ρ

γ+1 + νρ|t∗ − t| − Tρ ln ρ if t ≥ t∗ (11)

under the constraint h
∑
t ρt = 1. Since the sum

∑
t f∞,T (t, ρt) is maximized

by the stationary configuration, the stationary values of {ρt} verify (for any t
such that ρt 6= 0) the relation:

∂f∞,T
∂ρ

(t, ρt) =
∂f∞,T
∂ρ

(t∗, ρt∗) (12)

which can be easily derived using Lagrange multipliers. Eq (12) provides for
each time step t an implicit relation between ρt and ρt∗ (resp. the normal-
ized densities at time t and t∗). All these implicit relations along with the
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conservation of the number of agents expressed by the condition h
∑
t ρt = 1

allow one to compute numerically the distribution {ρt}. Fig. 1 presents results
that have been computed with this method, for N → ∞ and for a finite value
(N = 5000) of the number of agents obtained by solving numerically an equiv-
alent of Eq. (12). These results suggest that finite size effects remain small
as soon as N reaches values of a few thousands, and that the main properties
of the model can be studied in the limit N → ∞. Notice that our analysis
of the congestion model in terms of a potential games allows us to determine
(numerically) the stationary state of the systems even for finite size, which is
rarely possible with usual economics analysis since, quoting [14], the common
practice in transportation science and economics is to use continuous models for
analyzing phenomena that are essentially discrete.

3.2 Residential choice

As a second example, we apply our generic framework to a Schelling-like model
describing the dynamics of residential moves in a city [1,15]. The virtual city is
divided into Q blocks (Q � 1), each block containing H cells or flats (Fig 2).
We assume that each cell can contain at most one agent, so that the number nq
of agents in a given block satisfies nq ≤ H. An agent’s utility depends only on
the density ρq = nq/H of the block he is living in, ie ui(~q) = u(ρq), with the
convention that u(ρ) = −∞ for ρ > 1.

Figure 2: (a). Asymmetrically peaked individual utility as a function of block
density. The utility is defined as u(ρ) = 2ρ if ρ ≤ 1/2 and u(ρ) = 3/2 − ρ
if ρ > 1/2. Agents strictly prefer half-filled neighborhoods (ρ = 1/2). They
also prefer overcrowded (ρ = 1) neighborhoods to empty ones (ρ = 0). (b)
Stationary configurations of a virtual city for T → 0. Blocks are separated in
two phases with different densities of agents. (c) Stationary configurations of
a virtual city for T � 1. Agents are distributed homogeneously between the
blocks. The city is composed of Q = 36 blocks containing each H = 100 cells,
with a mean density 〈ρq〉 = N/HQ = 1/2.

Once again, this residential model can be solved thanks to our framework.
With the particular choice of the asymmetrically peaked utility function given
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Fig 2(a), the stationary coarse-grained configurations in the limit of large N are
thus those which maximize the sum

∑
q f∞,T (q, ρq), where2 :

f∞,T (q, ρ) =

{
ρ2 − Tρ ln ρ if ρ < 1/2

−ρ2/2 + 3ρ/2− 3/8− Tρ ln ρ if ρ ≥ 1/2
(13)

To perform the maximization procedure, one can follow standard physics
methods used in the study of phase transitions (like liquid-vapor coexistence
[12]). In this case, it is a simple exercise to determine that for N � 1 and in
the limit T → 0, a phase separation occurs. A fraction min

(
2
√

3/3hQ, 1
)

of

the blocks have a density min
(√

3/2, 1/hQ
)

while the others are empty. This
result is illustrated on Fig. 2. For more details on the maximization procedure,
the interested reader is referred to [1].

4 Discussion

We derived in this paper an effective free energy F = L + TS in a generic
framework model. The main property of this function is to intimately connect
the individual and global points of view. Our simple model raises a number
of interesting questions: in the limit T → 0, the stationary configurations are
those maximizing the potential L and not the collective utility U . Hence, they
may differ from the simple collection of individual optima [16], illustrating the
unexpected links between micromotives and macrobehavior.

More specifically, we derived a simple expression of this effective free energy
in the thermodynamic limit N →∞ for homogeneous agents. We showed that
this simple form allows us to derive in an easy and flexible way quantitative
solutions to economics models based on individual dynamics. This approach
can be extended to some models with heterogeneous agents. Possible examples
range from a two-population residential segregation model [1], Ising-like model
with heterogeneous pairs interactions [17], or the Hopfield model [9].
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