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Abstract

This contribution proposes a method to make agents in a microscopic simulation of pedestrian traffic
walk approximately along a path of estimated minimal remaining travel time to their destination. Usually
models of pedestrian dynamics are (implicitly) built on the assumption that pedestrians walk along the
shortest path. Model elements formulated to make pedestrians locally avoid collisions and intrusion into
personal space do not produce motion on quickest paths. Therefore a special model element is needed,
if one wants to model and simulate pedestrians for whom travel time matters most (e.g. travelers in a
station hall who are late for a train). Here such a model element is proposed, discussed and used within
the Social Force Model.

1 Introduction

1.1 Motivation: Travel Time matters for Pedestrians

In traffic planning for vehicular traffic it is common sense for more than half a century that — provided
origin-destination matrices are known — traffic demand on the links of the network cannot be predicted
based on the assumption that drivers follow the shortest path between their origin and their destination, but
that one has to calculate an equilibrium where “no driver could reduce his or her travel time by selecting a
different route” [1]. This statement has been modified by shifting from travel time to “generalized costs” as
decisive quantity for the equilibrium calculation, but nevertheless travel time in general has a heavy weight
within the generalized costs. It is probably needless to say that the travel time is heavily influenced by the
distribution of all the other participants of traffic, be it vehicular or pedestrian traffic.

There has been much less awareness for this issue on the side of pedestrians. This might be because
pedestrians move not on a network as vehicles do, but freely in two spatial dimensions. As an effect micro
simulation models of pedestrians are computationally more costly than simulations of vehicular dynamics
and macro models of pedestrian dynamics are more difficult to be formulated. In result the iterative approach
to finding an equilibrium (be it macro or micro) appears to be a tough case.

There are however situations in which travel time matters a lot for pedestrians, which is why they must
base their movement decisions on the criterion which direction at some given point in time appears to
promise the smallest remaining travel time. Pedestrians hustling through a station hall as they are late for a



train have already been mentioned. Another situation would be an infrastructure providing two differently
long paths through two distinct bottlenecks separated by at least a few meters. If the demand exceeds the
capacity of the shorter path, but is below the capacity of both paths, after some time the jam on the shorter
path will be large enough to produce delays that will or at least could make pedestrians familiar with the
place detour on the longer path. As the geometry of the longer path can be arbitrarily complicated, this
example makes it immediately clear that a model of pedestrian dynamics, which is based on movement along
the shortest path plus elements that make pedestrians evade each other can never — no matter what the
basic approach and construction principle of the model is — in general produce the desired behavior.

Following this line of motivation, we explicitly note here that the proposed method is not seen as a
general improvement of the Social Force Model for all movement situations. It is rather an alternative way
to calculate the direction of the desired velocity. Depending on the situation this can yield more realistic
results, in others less realistic results, and in many cases similar results as a calculation based on the
assumption of movement on the shortest path. In the latter case (comparable results) it is better to not
apply it, as it is computationally more costly.

1.2 The Social Force Model

For a general overview on simulation of pedestrian dynamics and its history, as well as other modeling
approaches apart from force based see [2]. In this subsection we focus on a short introduction of the Social
Force Model itself.

The Social Force Model is one of the most discussed models of pedestrian dynamics. Since it was
introduced originally by Helbing et al. [3, 4] Helbing and members of his group have proposed a number
of extensions [5-8], but also other authors have developed their own ideas based on the Social Force Model
[9-16]!

It is a bit of a surprise that discussions of the Social Force Model more often deal with the forces between
the agents than with the driving force term, although it is the driving force that sets the basic dynamics
and although without the driving force one would be faced only with a diffusion process. Especially one
particular issue has received only few attention in introducing as well as improving publications: how is the
direction of the desired velocity calculated? With vy as desired speed, 0 as direction (unit vector) of the
desired velocity, ¢ as current velocity, and 7 as inertia time parameter, the basic equation is
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The reason for this is probably that in (geometric) models built to investigate the properties of the
(dynamic) model, the desired direction usually is obvious. Typical geometries to test these properties — like
straight corridors — do not need an elaborate method to calculate the direction of the desired velocity, as
different methods of calculation would yield very similar directions. Studies in which this question has been
addressed deal with panic situations and the question, if pedestrians follow others or their individual plan
to reach the destination (on the shortest path) [4, 10, 15], something which lies entirely outside the scope
of this work?. There are exceptions from this focus on panic in dealing with the direction of the desired
velocity as for example [17, 18], and very recently [19].

An obvious first idea for the direction of the desired velocity in arbitrary geometries is that it points into
the direction of the shortest path to the destination. This can be achieved either by calculating a navigation
graph — probably the best of which is the visibility graph [20] — or by calculating a distance map (a.k.a. “look
up table of distances”, “static potential” or “static floor field”) [21] and receive the direction by calculating
the gradient of the potential. We will make use of the distance map approach in the following and generalize
the “distance” to an estimated remaining travel time.

The desired direction continuously can take any value between 0° and 360°. The proposed numerical
procedure implies some discreteness in the choices. However, the direction choice method proposed in this
paper is still continuous in the sense that no geometric analysis is undertaken that creates a navigation

1Here the list of references inevitably has to be incomplete.

2 Actually these “panic mechanisms” trigger an opposite effect of what is intended in this paper: if all of a group of pedestrians
desire to walk on the quickest path, the group typically spreads out and space is efficiently utilized. The panic modifications at
the direction of the desired speed on the contrary typically make everyone head in a more similar direction than without these
elements. This discrepancy is one source for the “faster is slower” and “freezing by heating” effects.



graph on which discrete choices (e.g. “pass an obstacle to the left or right?”) are made [22-24]; no spatial
semantics with rooms and doors or links and nodes is produced.

1.3 Distance Maps

A distance map can be calculated in a number of ways, often trading precision for computation time [25].
Very fast naive flood fill methods can only result in metrics with norm p =1 or p — oc.

|Wb=?<2}%ﬂ (2)

If one wants a nearly exact method — i.e. distance in Euclidean metric (vector norm p = 2) under
consideration of obstacles — the distance map can be computed by solving the Eikonal Equation [26, 27]
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S(Z) is the distance map (shortest distance to the destination area under consideration of obstacles). For a
distance calculation f is a constant to receive the distance with the desired units. Here we are only concerned
with the direction of the gradient of the resulting field, which does not depend on units or a global factor of
the field and may choose f =1 for walkable areas and f — 0 for areas obstructed by obstacles.

Equation (3) alone is not sufficient but one needs to add a boundary condition which fixes the values
of S on the edge of the destination area (calling the edge of the destination area 0 Ay, it is usually defined
S(6A;) = 0). Inside obstacles S is initialized with oo — implemented in a computer program by using a
numerical value with equivalent effect.

“Solving the Eikonal Equation numerically” can be imagined as placing a discrete lattice in the back-
ground, begin at the grid points of §A; and drive outward a front which sets the values of S on all other
grid points by summing up the distances between the grid points over which it is “flowing”. Simple flood
fill methods result in Manhattan metric (vector norm p = 1) or Chessboard metric (vector norm p — o).
Desired and to be called “error free” is the Euclidean metric (vector norm p = 2). Numerical methods to
solve the Eikonal Equation efficiently, which result in a Euclidean metric, are for example the Fast Marching
Method [28] and the Fast Iterative Method[29].

In our simulations we use a lattice point spacing between 15 and 20 cm, i.e. the lower range of human
body diameters. Larger lattice point spacings lead to unrealistic artifacts and produce problems at narrow
building infrastructure, smaller lattice point spacings do not yield advantages, but occupy more computer
memory.

No matter if a naive flood fill method or an Eikonal Equation Solver is used, once S has been calculated,
the direction of the desired velocity is obtained from the gradient of S(Z):
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where the desired speed vy is an external parameter to be set by the scenario modeler and technically
“gradient” is to be understood as discrete gradient, as the field S is not continuous but only defined on the
points of a grid.

With the motivation of this paper, it is clear that a “distance map” cannot be the end of the story. What
we need is a “map of estimated remaining travel times” or at least a map which is different from such a
map just by a global factor. Mathematically it is only a small step from the computation of the shortest to
the quickest path: in equation (3) f is not to be taken constant, but proportional to the speed expected at
that spot. If the travel speed is expected to be the same everywhere then the estimated remaining travel
time is different from the distance to destination only by a global factor (which is the speed). However, if
at different spots different travel speeds are expected, the value of f at the spots needs to take this into
account: f is no longer a global constant, but it is a grid (a field) itself, a grid of expected travel speeds.

Recently it has been shown that the field of gradients of the distance map can be calculated without
explicitly calculating the distance map [30]. The method might even be faster than the fastest Eikonal
Equation Solver, yet it is not suited to compute the gradient field of a map of travel times.



Normally this would be the place to have a discussion of preceding work, but as with some of these an
in-depth discussion of the details is done, it appears that it makes more sense if first the model extension is
introduced.

2 Calculating the Direction of the Quickest Path

To calculate the current direction of estimated least travel time (shorter: “dynamic potential”) comprises of
three steps:

First a map of expected or estimated walking speeds for small areas must be calculated which takes
account for the distribution of obstacles, agents and other properties like walking surface quality that may
influence speed. If — as in this work — the small areas are tiles of a regular grid, the inverse of the estimated
walking speeds is proportional to the travel times over the tiles. This is the traffic science part of the method.

Second: Beginning at the destination area all the travel times of the tiles are numerically integrated using
a numerical Eikonal equation solver. The result is the desired field of estimated remaining travel times to the
destination area. For each grid point there is now such a value available for further usage in the pedestrian
dynamics model. This is the mathematical part of the method. It also presents the major challenge for the
implementation of the method, as for most models of pedestrian dynamics this new method will imply a
relevant additional amount of computation time. It is therefore advisable to think well about an efficient
implementation.

The third step is to calculate the gradients in the dynamic potential for at least all grid points which are
occupied by an agent which is heading for the destination of that particular dynamic potential.

2.1 Step One: Estimating Walking Speeds

As noted above, this contribution will only deal with the effect of the distribution of the agents on the
estimated walking speed. As the relevant result — the field of gradients — is invariant to a global factor on
the dynamic potential, for any unoccupied grid point at walkable space the value of f for that grid point is
set unit-less to f = 1. If on the contrary a grid point at walkable space is occupied by an agent, f is set to

a value f <1 according to:
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S is the distance map of the corresponding destination, the gradient is taken at the corresponding grid
point. ¥ is the current velocity of the agent that occupies the grid point and ¢ and h are free parameters
of the method: g sets the general impact strength of the method (¢ = 0 means 1/f = 1, i.e. the dynamic
potential becomes a static map of distances) and h sets the impact of the moving direction of an agent. For
further considerations on the role and numerical values of g and h see subsection 5.3.

It would be desirable to calculate a dynamic potential for each agent individually. Then vy would be the
desired speed of the agent for which the dynamic potential is calculated. However, for simulation scenarios
of reasonable size this would imply unacceptable computation times and memory demand on computers as
they are available off-the-shell today. Until this has changed the simplest compromise is to calculate one
dynamic potential for all agents heading to the same destination and use as value for vy the average of desired
speeds of all these agents. The implications of this compromise and possible more elaborate compromises
are discussed in subsection 5.1.

At this point there might be some confusion: one might think that using the Eikonal Equation to
calculate temporal distances can easiest be achieved, f in the right hand side of equation (3) is set to be the
current speed of a pedestrian for all locations which are occupied by pedestrians heading for this destination.
However, this simple approach cannot work out, as the example of an agent at rest shows: this would result
in 1/f = 1/0. In principle that could be handled in the algorithm by handling agents at rest exactly as if
they were solid, static obstacles. Then, however, it could happen that agents at rest block the numerical
integration before all grid points have been assigned a value for the estimated remaining travel time. A line
of agents at rest from one wall of a corridor to the opposing one would result in an infinitely large travel
time through this corridor, which is an unrealistic estimation. Therefore the speed of the agent at the grid
point cannot be used directly, but an equation as (5) is needed, which prevents 1/f from diverging. A second



Figure 1: 3D view (upper figure): Example scenario to demonstrate the method and its effect. The blue
and red agents are heading for the remote green area. This is the destination area for which the dynamic
potential is calculated. There are two openings in the wall that separates the two rooms. It is not defined
which opening the red agents are to use. The center of the exit of the room where the red agents have their
origin is about 80 c¢m closer to the door to the right (which is used by the blue agents) than to the door to
the left. The number of red agents being inserted into the simulation is much smaller than the number of
blue agents. The yellow agents are just added to demonstrate the effect of opposing agents on the dynamic
potential and are walking not through one of the doors of the wall, but just to the small green area. 2D view
(lower figure): Additionally origin (dark red) and destination (dark green) for each color of agents are
linked with an arrow of corresponding color. Agents are set into the simulation somewhere on the starting
area randomly and with equal probability; it is taken care, though, that, no collision at input occurs. The
edge of the green destination areas in all cases and at all times is of equal value for the corresponding agents
of a simulation run. Figures 2 and 3 show the agents’ impact on the field of f.



reason against directly using the current speed of the agent as value for f is that the agent occupying the spot
might head for an entirely different direction, even opposing all the agents that are longing for the destination
for which the dynamic potential is calculated. Then, even if their speed is desirable, they are counted to
probably cause a specially large delay for agents that might have to pass that spot on their way to the
destination of the dynamic potential. Finally a third reason why a measured speed cannot be used as value
for f — even in uni-directional movement to one single destination — is the experience in macroscopic traffic
planning: high demand implies jams, jams imply vehicles which are at rest at certain times, nevertheless do
the common capacity restraint functions not have a pole, i.e. travel time grows fast but infinitely large only
with infinitely large demand (i.e. there is no singularity in the function) [31], which for the matter of space
requirement of a single vehicle is not possible.

Figure 2: A situation during the simulation. Figure 3 shows what this implies for the field of 1/f.

To develop an intuition of equation (5) assume that agent j is influenced by a dynamic potential and
j is somehow behind (upstream) another agent ¢ and both are heading into the same direction toward the
destination along the shortest path, i.e. ¥; and V.S point into opposite directions (the gradient always points
upstream, away from the destination). Further set h = 1 for this example. Then equation (5) simplifies to

om0

for the value for 1/f at the position of agent i.

If 7 is faster than j wants to walk (v; > vo; vg is the desired speed of the agent who is influenced by the
dynamic potential, i.e. agent j) then there is no need for j to deviate from the shortest path and consequently
equation (6) gives f = 1, as if the spot, where agent 4 is located was unoccupied. But if j wants to walk
faster than i, at some point j needs to start an overtaking maneuver, i.e. evade from the shortest path and
indeed in this case (6) gives f < 1. If agent ¢ would even oppose agent j and walk exactly upstream in the
static potential S heading for some different destination, then (5) would read

1 |3
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for the value for 1/f at the position of agent i.

For a speed of v; this is the largest value 1/f can take, i.e. agent ¢ with its presence and movement exerts
the maximum possible effect on the value of f.

Figure 3 illustrates this velocity dependent impact of the agents on 1/f.

As stated above for reasons of computational effort we only calculate one dynamic potential per desti-
nation. Therefore vy is the average desired speed of all agents being affected by that particular dynamic
potential. This is discussed further below.



Figure 3: This figure shows the field 1/f for the agents (blue and red ones) heading to the right destination
area (large green area in figure 2). The gray value of a spot reflects the impact of the agents as shown in
figure 2 on the field of f. In entirely black areas we have f = 1 and the gray value scales with 1/f, i.e. the
brighter a spot is, the larger is the expected travel time delay: it can clearly be seen that opposing agents
have the strongest impact (brightest spots). This figure shows that the area affected by an agent exceeds
the area which is actually occupied. The radius of the affected area is increased by 50% compared to the
radius of an agent to achieve approximately that the center of another agent is on an affected area as soon
as the two agents would touch each other. The resulting dynamic potential is shown in figure 4.

2.2 Step Two: Numerical Integration for the Travel Time Map

In mathematical terms one receives the map T of estimated travel times to the destination by solving the
Eikonal Equation with the estimated speed f(&) of an agent on a spot & on the right side:

1
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Numerical methods to solve the Eikonal Equation efficiently and resulting in a Euclidean metric are the
well-established Fast Marching Method (FMM) [28, 32], which is widely used for various applications, and
the less known and more recent Fast Iterative Method (FIM) [29, 33-35]. The major difference between
both is, that the FMM has a better worst case computation time behavior, while the FIM algorithm is much
more easy calculated in a multi-threaded way and therefore often has smaller computation times.

Once the dynamic potential T" has been calculated, the direction of the desired velocity follows from it
as the gradient:

VT(@)? =
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The mathematical process sketched in this subsection is illustrated in figures 4 to 6.

Vo =

3 Examples
3.1 A U-Turn

Figure 7 shows a crowd of agents walking around a u-turn. The demand increases over time from 1 to 7
agents per second.

The u-turn example shows why a sequence of destination lines as it has been investigated in [17] along
the radii of the turn does not help to achieve the desired agent behavior: a sequence of destination lines
would also make agents walk on larger radii around the corner when there is only a very low agent demand
and density. If, however, only for example each ten seconds one agents walks around the corner, it should
walk closely to the globally shortest path. Figure 9 compares the arrival flows without and with dynamic
potential.



Figure 4: Comparison of static potential / map of distances to destination (upper figure) and dynamic
potential / map of estimated remaining travel times (lower figure) for the example scenario as shown in
figure 2. In principle in this figure a brighter spot means that the value there is larger, but for better
visibility the gray-scale is moduloéd. Lines of constant gray-value are lines of constant potential value. The
gradients are always oriented orthogonal to these lines of constant value. The dynamic potential results
when the field of f as shown in figure 3 is numerically integrated. Note the impact of individual agents on
the dynamic potential and how the dynamic potential appears to be “compressed” at the opening that is
used by the blue agents. Figure 5 shows the field of gradients following from the dynamic potential.
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Figure 5: A detailed view of the field of (negative) gradients as it follows from the dynamic potential of
figure 4.

Figure 6: Resulting behavior: while in the figure on the left the red agents walk to the (closer) right opening
if there are only few blue agents, in the figure on the right side they prefer the left opening, if there is a jam
in front of the right opening.



Figure 7: Comparison of a crowd of agents walking around a 180 degree corner without (left column) and
with (right column) dynamic potential. For this scenario g = 2.5 has been set (a relatively large value).
Scaling down to g = 0.0 the behavior of the agents can continuously be transformed to the one of the static
potential. The static and dynamic potential for the last two screenshots are shown in figure 8.
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Figure 8: The static potential (left) and dynamic potential (right) for the last row of figure 7.
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Figure 9: Number of agents that have a arrived at a given time. The input is on average 4 pedestrians per
second, without dynamic potential the average arrival flow is about 2.35 agents per second, with dynamic
potential it is 3.85 agents per second.
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3.2 Station Hall

This example demonstrates the efficiency of the method and — compared to other situations where the
method can be helpful — it is a forgiving example as the results are stable over a wide range of parameters
and a number of model variants. The basic idea is that of a station hall, where some people need to hurry
to catch their train (travel time is the single-most important movement factor) and others have plenty of
time lingering around in groups in the hall. Figure 10 shows an example with only one waiting group (blue
agents) that grows over time. The red agents are heading directly to the red area on the right side.

If the dynamic potential is not activated the red agents get stuck in the group of blue ones as the repulsive
forces between agents are not sufficient to make them evade the large group early enough, and those agents
that do make it around the group of blue agents are subject to considerable delay. With the dynamic
potential the red agents make a detour around the blue group — no matter how large it grows — and by
avoiding to get stuck in the jam manage to reach the destination in reasonable time, which should be close
to the minimal realistic travel time under given circumstances. Figure 11 shows the dynamic potential after
600 seconds.

The station hall example also shows why the improved behavior cannot be achieved with an increased
strength of the repulsive inter-agent forces while keeping the direction of the shortest path as desired direction:
the bunch of blue agents is about symmetric where the red agents enter the hall. Therefore the deviating
forces from the left and right side would cancel at least partially. Realistically there will never be an exact
cancellation along the whole central line toward the group of blue agents, thus the red agents will deviate to
one side. Nevertheless, there where they have to deviate (at the entrance) the forces would cancel mutually,
while when a red pedestrian is exactly to the side of the blue group and no additional deviation would be
needed, the forces from the blue ones would add for further deviation of the red one.

3.3 Movement around a 90 Degree Corner

This example is modeled after the geometry of the walking path between the station “Messe Siid (Eichkamp)”
and the southern entrance of Berlin’s International Congress Center (ICC). This was chosen so that for many
readers there is a chance to have been there themselves. It is not exactly a laboratory example, as the corner
is rounded and has a bit less than 90 degree. However, the trains set a pulsed demand and with the stairs
upper end one can assume that there is a line that by most people is experienced to have equal utility
everywhere which means that probably no one on the stairs is thinking of the upcoming corner and moving
to either side to improve the position with respect to the corner.

In the simulation it has been assumed that two trains with 800 passengers each arrive at about the
same time. On the platform level in both cases (with dynamic potential and with static potential only) the
population of agents is identical and the pattern how they leave the trains is identical as well. This means
that the initial conditions are identical. The two scenarios start to diverge when the first agents have climbed
the stairs. See figure 12.

For this and the next example compare [36].

4 Computation Times

To give an impression of the computational effort we regard an example where pedestrians walk uni-
directional from one edge of a 50 m X 50 m square to the other one (parallel to the other two edges).
This has been done with various demands from 0.1 to 40 pedestrians per second. Pedestrians are set into
the simulation statistically equally distributed over time. The simulation starts with an empty scenario and
it is measured how long it takes to simulate from simulation second ¢y = 100 to ¢; = 200. The dynamic
potential is recalculated each 0.1 seconds. Figure 13 shows the results.
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Figure 10: Agents are set into the simulation on the green area. The blue agents head for the dark gray
area in the middle to dwell there, the red ones want to reach the dark red area. The left column shows
the development, if the dynamic potential is not activated, the right column shows what happens, if it is
activated. The screen shots were taken after 60, 300, 600, and 1200 simulation seconds.
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Figure 11: The dynamic potential after 600 simulation seconds. The estimated travel time for red agents
increases from dark to bright. To increase the contrast the values are once more shown by a modulo.

5 Discussion

5.1 Open Issues

With the examples of the last section it has been demonstrated that the method proposed in this contribution
brings improvements for the simulation of pedestrians in various situations. However, there can be objections
from basic theoretical considerations as well as possible variants for elements of the method. These are now
discussed which makes this subsection a combination of “Limitations” and “Future Work”.

First and foremost — if the method is seen as one to approximate the equilibrium of travel times — it is a
non-iterative approach. With regard to an equilibrium it can for fundamental reasons not yield a “correct”
solution. This is a correct objection, it can only be countered by noticing that a method needs to bring an
improvement not perfection to justify its application. A second reply is that it is not yet clarified how close
real pedestrian traffic comes to a user-equilibrium. In principle it might be that the agents’ behavior as
produced by this method has a higher degree of realism than an exact equilibrium. Nevertheless would it be
interesting to have a method that is able to produce a user-equilibrium and a system optimum for pedestrian
traffic to lay out for example an optimal emergency egress plan. A theoretically profound solution for this
issue is not available. A pragmatic approach would be to find parameters g and h or even a different
functional form for equation (5) — maybe using a genetic optimization approach — that demonstrate in a
number of cases that the travel times they estimate are close to the actual travel times (compared after the
simulation).

Second, the impact of an agent’s presence and velocity at some spot can have an instantaneous effect on
all positions with higher value of the dynamic potential (upstream positions). In this way strictly speaking
it is modeled that an agent that is still far away from that spot, but whose path might come close to it,
assumes that the situation there will stay like this until it is there. This objection is correct, however in
many situations it is not relevant. The impact of a single agent quickly diminishes with distance. The impact
on any position more than a few meters aways is marginal and negligible. Only the impact of groups of
(jammed) agents is propagated further. However, if there is a jam somewhere it will need some time until
it dissolves. It might even be that the system is in a steady-state and the size of the jam remains about
constant. Therefore it is justified that a whole group of agents has a longer reaching effect, also affecting
agents that would pass by there only later.

Another issue that calls for an iterative approach is that in equation (5) the scalar product of the agent’s
velocity with the static potential is calculated. The idea of this scalar product is to get a numerical value if
an agent walks along the main direction of the dynamic potential or if it comes across. For this, however,
the scalar product would have to be calculated of the velocity with the dynamic potential. Yet at this point
of the method this is not possible as it is a step in the calculation of the dynamic potential, which therefore
is not available yet. The solution would be to calculate the dynamic potential iteratively for a single time
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Figure 12: Comparison of simulations without (left column) and with (right column) usage of dynamic
potential in a scenario modeled after the pathway from Berlin’s “Messe Siid (Eichkamp)” station to the
southern entrance of the ICC. Between the screenshots there are always 40 seconds except for the last
interval, which is 280 seconds.
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Figure 13: Computation time to simulate 100 seconds versus demand in a simple scenario with and without
dynamic potential. The demands were 0.1, 1, 5, 10, 20, and 40 pedestrians per second input to the simulation.

step and use the gradient of the dynamic potential of the preceding iteration for the calculation of the next
iteration. At the current stage of the implementation of the method this is not done, as it would imply even
longer computation times and as the method as it is already has shown to be helpful. If the iterative process
will converge to a stable solution for the dynamic potential is another story.

A problem that has shortly been mentioned in the description of the method is that in the current
implementation there is only one dynamic potential per destination instead of one per agent. This blurs the
effect that equation (5) should depend on the desired speed of the agent on which the dynamic potential is to
act. A solution to avoid to have a dynamic potential for each agent is to have dynamic potentials for ranges
of desired speeds. This would still increase the computation time by a factor of two to ten, but it would
be manageable. Yet there is another reason why one would like to have one potential per affected agent:
only in this way could an agent be affected by a potential on which it has not had an impact on before.
In the method as it is proposed each agent has an impact on the dynamic potential and later is influenced
by that same potential. This implies that the agent in its movement is affected by its own presence and
velocity (compare section 6.1 of [37]). This can lead to undesired side-effects, which can only be guaranteed
to be controlled if parameter g is kept to moderate values of approximately g < 3.0 m/s (with grid spacing
constant 20 cm and above mentioned radius of influence).

It is possible to use values of g that are larger, if one takes care that the undesired side-effects are
suppressed. One way to do this is to use a mix of the direction of the shortest path and the direction of the
estimated least travel time as direction of the desired velocity:

170 = Vg (10)

with 0 < p < 1. This allows to continuously switch from static to dynamic potential. Another method is
to forbid that for a particular agent the angle between the desired velocity and the direction of the shortest
path changes too much within a time step, i.e. if the angle between VT and V.S increases too much from
one simulation time step to the next, not —V7T is used as direction of the desired velocity, but a direction
that is closer to —VS.

In the method as proposed each agent individually has a roughly circle-shaped impact on the field of f.
From this follows in the field of f many steps from 1/f = 1 (outside the circles) to a larger value (inside
a circle). For the movement of the agents this can result in small but frequent changes in the velocity.
Smoother movement might be received if first a density field is calculated for the whole walkable area and
then from these densities f is calculated. As long as the density field consists of Voronoi cells [38, 39] the
individual and locatable information of walking velocity remains preserved, if the density is calculated in the
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way of a probability density [40, 41] one could expect even smoother movements, but runs into trouble with
locating the velocities.

It has already been stated that equation (5) is not strictly derived, but rather chosen by plausibility. It is
not the simplest equation one can think of, this would be f = f < 1 for all grid points marked as occupied.
Equation (5) is a rather simple one under the constraint that one wants to consider the velocity of the agent
at that spot and that one wants to be able to calibrate both: the dependence of the velocity (via h) and the
general strength of the impact of an agent (via g). From this follows that equation (5) is not guaranteed to
be the best choice for this purpose, but it suggests itself as a starting point. An alternative idea would be
to make use of a common capacity restraint function from macroscopic transportation planning instead [42].
However, this is problematic as capacity restraint functions use the capacity of a link as explicit input. As
pedestrian walking infrastructure can be arbitrarily complicated it is not trivial in general to give a capacity
although not always impossible [43-47].

5.2 Additional Applications

It should shortly be mentioned here that the method as proposed can perfectly be used to model a few other
phenomenons.

The repulsive effect of walls and corners (beyond preventing agents and walls to overlap) can be modeled
by assigning a value f < 1 to grid points, which are close to walls.

Areas with variant average movement speed (a conveyor belt or a sand beach) can directly be taken into
account by setting f = vyariant/Unormaifo (With fo applying outside the special area). This will attract or
repulse agents in the surrounding to detour to use that area or to avoid it. Note: This does not cause agents
on that area to change their desired speed automatically, this needs to be defined in the simulation scenario
separately.

Areas like bike or vehicle lanes that are avoided by pedestrians if the density on the walkway is sufficiently
low, but which do not cause a change in walking speed, can nevertheless be modeled in the same way. The
value of f for these needs to be set such that inundation of pedestrians to the lanes begins at an empirically
verified density on the walkway [43]. f is then more of a gauge parameter whose value cannot be interpreted
directly, but depends on the other settings of the scenario. Needless to say that it is also possible to model
specifically preferred areas (e.g. a roofed path on a rainy or hot day) just in the same manner.

5.3 Choosing the Values of g and h

Parameter g has the role of setting the overall strength of the dynamic potential. If ¢ = 0 then a static
potential is calculated that gives the distances to the destination. If ¢ — oo then the agents are handled
as if they were static obstacles. The experience with the method has been that 0 < g < 1 leads to effects
which are barely noticeable?, i.e. agents walk more or less on the shortest path. A good value appears to
be g = 1.5 where a positive effect is visible, while undesired side-effects hold off. For difficult situations as
a u-turn or situations with discrete choices (ticket gates in a bending) a value of g = 1.5 might be too weak
and increasing it to about g = 3.0 is an option. Above that value the side-effects become annoyingly visible.

A large value of g can also induce a problem in combination with the fact that the gradient calculation
is a difference and not a differential quotient. If g is large then it may happen that the dynamic potential
flows into the area occupied by the agent from the front and from the back. The center will always be
reached from the front, but if the grid point used for gradient calculation which lies to the back is reached
from the back, the gradient might reverse its direction and by that result in entirely unrealistic directions of
the desired velocity. This problem is reduced, when the grid point spacing is reduced and it would vanish,
if there was one potential per agent and each agent would not have an impact on the potential which it is
influenced by.

Parameter h determines how much the velocity of an agent is taken into account, when its impact on the
field of f is calculated. With A = 0 there is no impact, with A = 1 there is a full impact as so far as an agent
has no impact on the field of f when it moves with vy exactly in the direction of the static potential. It
does not cause problems to set A > 1, although it probably does also not help. The experience with h so far
is that good values lie in 0.6 < h < 0.8. At the upper end agents appear to mainly react on existing jams,

3All these statements are made on the background of a spacing of 20 cm between the grid points.
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while at the lower end of the interval agents seem to expect that a dense but still moving crowd soon will
form a jam. The latter case gives the impression of stronger foresight but also introduces more disturbance
while the crowd is moving.

5.4 Existing Work

This section is to sharpen the profile and intentions of this contribution by distinguishing it from related
existing work.

In [48] Hoogendoorn and Bovy introduced a very profound theory of pedestrian dynamics based on utility
maximization. The (dis)utilities affecting the route choice are travel time, kinetic energy (i.e. walking speed),
nearby obstacles, density as determinant of unwanted contacts, and the stimulation of the environment.
Hoogendoorn and Bovy take higher walking speeds as disutilities into account just as higher travel times. A
time-pressure coéfficient controls exogenously, if a pedestrian rather accepts the disutility of higher walking
speeds or higher travel times. Additionally the desired walking speed is affected by the absolute value of the
gradient of the utility field: if the utility to be at another nearby spot is not much different from the utility
of the current spot then the agent walks slower. In our method the absolute value of the gradient of the
field of remaining walking times does not have an impact on the desired walking speed. Only the normalized
direction is used for the desired walking direction. This has three reasons: first off, the desired speed is a
more manifest parameter than a time-pressure coéflicient. And second, it needs to be shown, if pedestrians
really slow down, if utility cannot be increased much now, as long as there is a chance for a steeper increase
in utility later.

Treuille et al [49] also have introduced a model with (dis-)utility as determinant of the movement. There
however it is not stated which value of f is used at occupied spots. As the authors do not discuss this issue,
one can assume that it is globally a constant value, maybe even f = 0, i.e. that occupied spots are treated
as if they were walls.

The work of Hughes [50, 51] is more similar to this contribution as it closely links travel time and density
and focuses on travel time as the determining factor. However, it is a macroscopic first-order theory and as
such only loosely related to our intention to enhance a microscopic simulation of pedestrian dynamics.

There is other preceding work [25, 37, 52-54] which adopted a very similar approach for a discrete-space
(“cellular automata type”) model but used a different method to calculate the direction determining fields,
the reason for this being a very high computational efficiency of that method. As a downside the field suffers
from deviations from Euclidean metric, even if there is not a single agent present. Anyhow it is possible to
transfer the insight gained in these works to the usage of the method with the Social Force Model.

In the field of robotics a related work has been introduced by Shopf et al. [55]. They have used the
same Eikonal Equation solver and implemented it for execution on a GPU. Differences to our approach are
that the model for agent dynamics is a different one which was formulated for robot path planning [56]. As
the trajectories of robots do not need to resemble those of humans, this is not sufficient for our task. For
example will robots moving according to this model only decelerate if the time to collision is less than the
time step of the simulation (the inverse of the number of simulation steps per second). This resembles to
the Nagel-Schreckenberg-Modell with p = 0 [57]. With such a computationally cheap movement model and
the Eikonal Equation solver’s computational complexity being dependent only on area size and not agent
number, the authors manage to simulate 65,000 agents in real time. Under given circumstances this high
computation speed might only be possible by having dense crowds (compare Bleiweiss [58]). At the same
time a real-time simulation capability of 180,000 agents in a model without Eikonal Solver [54] shows that
inevitably the method will have a major share of the computation time, no matter how efficiently computed
and no matter what model it is used with.

Kirik et al have considered and modeled the issue of quickest path movement in a simulation of pedestrians
in a cellular automata-derived model [59, 60].

The FMM was used in at least two more models of pedestrian dynamics to calculate a static potential
[61, 62].

Dressler et al [63] approached the problem of quickest paths in microscopic simulations of pedestrians by
relating route choice to previously calculated network flows.

Lammel et al [64] have approached the problem of quickest paths for pedestrians with a network-based
micro simulation.
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Guy et al [24] based pedestrian navigation not on a principle of least remaining travel time, but on least
effort.

Ondrej et al have published a model, where for agent navigation the vision process is directly modeled
[65]. In this aspect the model is similar to the very recent Social Force Model update by Moussaid et al [19],
however, Ondfej et al do not base their model on forces.

Kemloh et al have introduced an event-based method that allows local as well as global quickest path
egress strategies [66].

6 Summary and Conclusions

In this contribution we have introduced a non-iterative method that estimates the direction of the quickest
path for the movement of pedestrians in a microscopic simulation. The method and therefore the calculated
direction is continuous with regard to space. We have used the results of the method as input for the Social
Force Model of pedestrian dynamics and presented the effect in four different examples. All examples have
in common that for many agents the direction of the shortest and the direction of the quickest path differ
considerably for relevant time spans. We think it is clearly visible already from the still images in this
contribution that calculating the direction of the desired velocity along the quickest path according to the
new method gives better results. Having in this way demonstrated the benefit of the method we engaged in
a discussion of limitations and possible variants and improvements.

7 Supplemental Material

The illustrating example of section 2, the examples of section 3 plus some additional examples are available
as animation at http://www.youtube.com/watch?v=8SmRBTJ-jeU. The pedestrian simulation model and
the extension proposed in this contribution have been implemented in VISSIM [12, 67] and are available for
download as a trial version including all functionality relevant for this paper.

Numerical Values for Parameters and Properties of the Simulation: We have found the following values
useful and feasible for typical applications:

e Time step of the pedestrian simulation (Social Force Model): 0.05 seconds.

e Recalculation time interval for the dynamic potential: 0.1 seconds.

Lattice spacing of map of distances as well as dynamic potential (map of estimated remaining travel
times): 15 to 20 cm.

Parameter g: 1.0 to 2.5, if in equation (10) parameter p = 1, else g can be larger.

Parameter h: 0.0 to 2.0.

References

[1] J. Wardrop, “Some Theoretical Aspects of Road Traffic Research. Proceedings”, Institution of Civil
Engineers 11 no. 1, (1952) 325-378.

[2] A. Schadschneider, W. Klingsch, H. Kliipfel, T. Kretz, C. Rogsch, and A. Seyfried, “Evacuation Dy-
namics: Empirical Results, Modeling and Applications”, in Meyers [72], p. 3142. arXiv:0802.1620
[physics.soc-ph].

[3] D. Helbing and P. Molndr, “Social force model for pedestrian dynamics”, Phys. Rev. E 51 (1995)
42824286, arXiv:cond-mat/9805244 [cond-mat].

[4] D. Helbing, I. Farkas, and T. Vicsek, “Simulating dynamical features of escape panic”, Nature 407
(2000) 487-490, arXiv:cond-mat/0009448 [cond-mat].

19


http://www.youtube.com/watch?v=8SmRBTJ-jeU
http://dx.doi.org/10.1007/978-0-387-30440-3_187
http://dx.doi.org/10.1007/978-0-387-30440-3_187
http://arxiv.org/abs/0802.1620
http://arxiv.org/abs/0802.1620
http://dx.doi.org/10.1103/PhysRevE.51.4282
http://dx.doi.org/10.1103/PhysRevE.51.4282
http://arxiv.org/abs/cond-mat/9805244
http://dx.doi.org/10.1038/35035023
http://dx.doi.org/10.1038/35035023
http://arxiv.org/abs/cond-mat/0009448

[5]

[6]

[18]

[19]

[20]

T. Werner and D. Helbing, “The Social Force Pedestrian Model Applied to Real Life Scenarios”, in
Galea [68], pp. 17-26.

A. Johansson, D. Helbing, and P. Shukla, “Specification of the Social Force Pedestrian Model by Evolu-
tionary Adjustment to Video Tracking Data”, Advances in Complex Systems 10 no. 4, (2007) 271-288,
arXiv:0810.4587 [physics.soc-ph].

D. Helbing and A. Johansson, “Pedestrian, Crowd and Evacuation Dynamics”, in Meyers [72], p. 6476.

M. Moussaid, N. Perozo, S. Garnier, D. Helbing, and G. Theraulaz, “The walking behaviour of
pedestrian social groups and its impact on crowd dynamics”, PLoS One 5 no. 4, (2010) e10047,
arXiv:1003.3894 [physics.soc-ph].

W. Yu, R. Chen, L. Dong, and S. Dai, “Centrifugal force model for pedestrian dynamics”, Physical
Review E 72 no. 2, (2005) 26112.

T. Lakoba, D. Kaup, and N. Finkelstein, “Modifications of the Helbing-Molnar-Farkas-Vicsek social
force model for pedestrian evolution”, Simulation 81 no. 5, (2005) 339.

N. Pelechano, J. Allbeck, and N. Badler, “Controlling individual agents in high-density crowd simula-
tion”, in Proceedings of the 2007 ACM SIGGRAPH/FEurographics symposium on Computer animation,
pp- 99-108. 2007.

PTV Planung Transport Verkehr AG, Stumpfstraie 1, D-76131 Karlsruhe, VISSIM 5.80 User Manual,
2010. http://www.vissim.de/.

B. Steffen, “A Modification of the Social Force Model by Foresight”, in Klingsch et. al. [70], pp. 677-682.
arXiv:0912.0634 [physics.soc-ph].

M. Chraibi, A. Seyfried, and A. Schadschneider, “Generalized centrifugal-force model for pedestrian
dynamics”, Phys. Rev. E 82 no. 4, (Oct, 2010) 046111, arXiv:1008.4297 [physics.soc-ph].

7. Zainuddin, M. Shuaib, and I. Abu-Sulyman, “The Characteristics of the Factors That Govern the
Preferred Force in the Social Force Model of Pedestrian Movement”, Engineering and Technology (2010)
970-974, arXiv:1008.0140 [cs.IT].

T. Kretz, G. Mayer, and A. Miihlberger, “Behaviour and Perception-based Pedestrian Evacuation Sim-
ulation”, in Peacock et. al. [73], pp. 827-832. arXiv:1002.3892 [physics.comp-ph].

M. Freialdenhoven, “Modellierung der Wunschrichtung selbstgetriebener Teilchen am Beispiel der
FuBlgiéngerdynamik”, Master’s thesis, Fachhochschule Aachen, Campus Jiilich, 2010.

S. Patil, J. van den Berg, S. Curtis, M. Lin, and D. Manocha, “Directing crowd simulations using
navigation fields”, IEEE Transactions on Visualization and Computer Graphics (2010) 244-254.

M. Moussaid, D. Helbing, and G. Theraulaz, “How simple rules determine pedestrian behavior and
crowd disasters”, Proceedings of the National Academy of Sciences 108 no. 17, (2011) 6884.

M. de Berg, M. van Krefeld, M. Overmars, and O. Schwarzkopf, Computational Geometry. Springer,
Berlin Heidelberg New York, 1997.

C. Burstedde, K. Klauck, A. Schadschneider, and J. Zittarz, “Simulation of Pedestrian Dynamics
Using a 2-dimensional Cellular Automaton”, Physica A 295 (2001) 507, arXiv:cond-mat/0102397
[cond-mat].

M. Bliimel, “Optimierung des taktischen Verhaltens in der Simulation von Fuflgingern”, Master’s thesis,
KIT, ISAS, 2008.

M. Hocker, V. Berkhahn, A. Kneidl, A. Borrmann, and W. Klein, “Graph-based approaches for sim-
ulating pedestrian dynamics in building models”, in 8th European Conference on Product € Process
Modelling (ECPPM), University College Cork, Cork, Ireland. 2010.

20


http://dx.doi.org/10.1142/S0219525907001355
http://arxiv.org/abs/0810.4587
http://dx.doi.org/10.1007/978-0-387-30440-3_187
http://dx.doi.org/10.1371/journal.pone.0010047
http://arxiv.org/abs/1003.3894
http://dx.doi.org/10.1103/PhysRevE.72.026112
http://dx.doi.org/10.1103/PhysRevE.72.026112
http://dx.doi.org/10.1177/0037549705052772
http://www.vissim.de/
http://dx.doi.org/10.1007/978-3-642-04504-2_64
http://arxiv.org/abs/0912.0634
http://dx.doi.org/10.1103/PhysRevE.82.046111
http://arxiv.org/abs/1008.4297
http://arxiv.org/abs/1008.0140
http://dx.doi.org/10.1007/978-1-4419-9725-8_82
http://dx.doi.org/10.1007/978-1-4419-9725-8_82
http://arxiv.org/abs/1002.3892
http://dx.doi.org/10.1109/TVCG.2010.33
http://dx.doi.org/10.1073/pnas.1016507108
http://dx.doi.org/10.1016/S0378-4371(01)00141-8
http://arxiv.org/abs/cond-mat/0102397
http://arxiv.org/abs/cond-mat/0102397

[24]

[25]

[26]
[27]

[28]

S. Guy, J. Chhugani, S. Curtis, P. Dubey, M. Lin, and D. Manocha, “PLEdestrians: A Least-Effort Ap-
proach to Crowd Simulation”, in Eurographics/ ACM SIGGRAPH Symposium on Computer Animation,
M. Otaduy and Z. Popovic, eds., pp. 119-128. 2010.

T. Kretz, C. Bonisch, and P. Vortisch, “Comparison of Various Methods for the Calculation of the
Distance Potential Field”, in Klingsch et. al. [70], pp. 335-346. arXiv:0804.3868 [physics.comp-ph].

H. Bruns, Das Fikonal. S. Hirzel, 1895.

P. Frank, “Uber die Eikonalgleichung in allgemein anisotropen Medien”, Annalen der Physik 389 no. 23,
(1927) 891-898.

J. Sethian, Level Set Methods and Fast Marching Methods. Cambridge University Press Cambridge,
1999.

W.-K. Jeong and R. Whitaker, “A fast eikonal equation solver for parallel systems”, in SIAM conference
on Computational Science and Engineering. 2007.

M. Schultz, T. Kretz, and H. Fricke, “Solving the Direction Field for Discrete Agent Motion”, in Cellular
Automata - 9th International Conference on Cellular Automata for Research and Industry, ACRI 2010,
S. Bandini, S. Manzoni, H. Umeo, and G. Vizzari, eds., pp. 489-495. Springer Berlin / Heidelberg,
2010. arXiv:1008.3990 [physics.soc-ph].

D. Helbing, “Derivation of a fundamental diagram for urban traffic flow”, The European Physical Journal
B 70 no. 2, (2009) 229-241, arXiv:0807.1843 [physics.soc-ph].

R. Kimmel and J. Sethian, “Computing geodesic paths on manifolds”, in Proc. Natl. Acad. Sci. USA,
pp. 8431-8435. 1998.

W.-K. Jeong and R. Whitaker, “A Fast Iterative Method for a Class of Hamilton-Jacobi Equations on
Parallel Systems”, Tech. Rep. UUCS-07-010, University of Utah, School of Computing, 2007.

W.-K. Jeong and R. Whitaker, “A Fast Iterative Method for Eikonal Equations”, SIAM Journal on
Scientific Computing 30 no. 5, (2008) 2512-2534.

W.-K. Jeong, Interactive Three-dimensional Image Analysis and Visualization using Graphics Hardware.
PhD thesis, University of Utah, 2008.

C. Rogsch and W. Klingsch, “Basics of Software-Tools for Pedestrian Movementldentification and Re-
sults”, Fire Technology (2010) 1-21.

T. Kretz, “Pedestrian Traffic: on the Quickest Path”, Journal of Statistical Mechanics: Theory and
Ezxperiment P03012 (2009) 0, arXiv:0901.0170 [physics.soc-ph].

B. Steffen and A. Seyfried, “Methods for measuring pedestrian density, flow, speed and direction with
minimal scatter”, Physica A 389 (2010) 1902-1910, arXiv:0911.2165 [physics.soc-ph].

J. Liddle, A. Seyfried, and B. Steffen, “Analysis of bottleneck motion using Voronoi diagrams”, in
Peacock et. al. [73], pp. 833-836. arXiv:1003.5465 [physics.soc-ph].

A. Johansson, D. Helbing, H. Al-Abideen, and S. Al-Bosta, “From crowd dynamics to crowd safety:
A video-based analysis”, Advances in Complexr Systems 11 no. 4, (2008) 497-527, arXiv:0810.4590
[physics.soc-ph].

U. Hanebeck and V. Klumpp, “Localized Cumulative Distributions and a Multivariate Generalization
of the Cramér-von Mises Distance”, in Proceedings of the 2008 IEEE International Conference on
Multisensor Fusion and Integration for Intelligent Systems (MFI 2008), pp. 33-39. Seoul, Republic of
Korea, August, 2011.

PTV Planung Transport Verkehr AG, Stumpfstrale 1, D-76131 Karlsruhe, VISUM 11.5 User Manual,
2010. http://www.ptvvision.com/visum/.

21


http://dx.doi.org/101007/978-3-642-04504-2_29
http://dx.doi.org/101007/978-3-642-04504-2_29
http://arxiv.org/abs/0804.3868
http://dx.doi.org/10.1002/andp.19273892304
http://dx.doi.org/10.1002/andp.19273892304
http://dx.doi.org/10.1145/1409625.1409626
http://dx.doi.org/10.1007/978-3-642-15979-4_52
http://arxiv.org/abs/1008.3990
http://dx.doi.org/10.1140/epjb/e2009-00093-7
http://dx.doi.org/10.1140/epjb/e2009-00093-7
http://arxiv.org/abs/0807.1843
http://dx.doi.org/10.1.1.51.1352
http://dx.doi.org/10.1137/060670298
http://dx.doi.org/10.1137/060670298
http://dx.doi.org/10.1007/s10694-010-0197-2
http://dx.doi.org/10.1088/1742-5468/2009/03/P03012
http://dx.doi.org/10.1088/1742-5468/2009/03/P03012
http://arxiv.org/abs/0901.0170
http://dx.doi.org/10.1016/j.physa.2009.12.015
http://arxiv.org/abs/0911.2165
http://dx.doi.org/10.1007/978-1-4419-9725-8_83
http://arxiv.org/abs/1003.5465
http://dx.doi.org/10.1142/S0219525908001854
http://arxiv.org/abs/0810.4590
http://arxiv.org/abs/0810.4590
http://dx.doi.org/10.1109/MFI.2008.4648104
http://dx.doi.org/10.1109/MFI.2008.4648104
http://www.ptvvision.com/visum/

[43]

[44]

[45]

[60]

[61]

[62]

K. Lew, K. Giese, and F. Yaun, “A Multiclass Dynamic Traffic Assignment Model for Special Events
Management”, in 12th TRB National Transportation Planning Applications Conference, H. Dugas, ed.
TRB, 2009. http://tinyurl.com/6dzfrdd. eprint.

A. Schomborg, K. Nokel, and A. Seyfried, “Evacuation Assistance for a Sports Arena Using a Macro-
scopic Network Model”, in Peacock et. al. [73], pp. 389-398.

H. Hamacher, K. Leiner, and S. Ruzika, “Quickest Cluster Flow Problems”, in Peacock et. al. [73],
pp. 327-336.

H. Hamacher, S. Heller, W. Klein, G. Koster, and S. Ruzika, “A Sandwich Approach for Evacuation
Time Bounds”, in Peacock et. al. [73], pp. 503-514.

A. Kneidl, M. Thiemann, A. Borrmann, S. Ruzika, H. Hamacher, G. Ké&ster, and E. Rank, “Bidirectional
Coupling of Macroscopic and Microscopic Approaches for Pedestrian Behavior Prediction”, in Peacock
et. al. [73], pp. 459-470.

S. Hoogendoorn and P. Bovy, “Pedestrian route-choice and activity scheduling theory and models”,
Transportation Research Part B 38 no. 2, (2004) 169-190.

A. Treuille, S. Cooper, and Z. Popovié¢, “Continuum crowds”, in ACM SIGGRAPH 2006 Papers, p. 1168.
2006.

R. Hughes, “A continuum theory for the flow of pedestrians”, Transportation Research Part B 36 no. 6,
(2002) 507-535.

R. Hughes, “The flow of human crowds”, Annual Review of Fluid Mechanics 35 (2003) 169-182.

T. Kretz, “The use of dynamic distance potential fields for pedestrian flow around corners”, in First
International Conference on FEvacuation Modeling and Management. TU Delft, 2009. arXiv:0804.4336
[cs.MA]. eprint.

T. Kretz, “Applications of the Dynamic Distance Potential Field Method”, in Dai, S. et al. [71].
arXiv:0911.3723 [cs.MA]. in press.

T. Kretz, “Computation Speed of the F.A.S.T. Model”, in Dai, S. et al. [71]. arXiv:0911.2900 [cs.MA].
in press.

J. Shopf, C. Oat, and J. Barczak, “GPU Crowd Simulation”, ACM Transactions on Graphics, Siggraph
Asia 2008 27 (2008) 0.

P. Fiorini and Z. Shiller, “Motion planning in dynamic environments using velocity obstacles”, The
International Journal of Robotics Research 17 no. 7, (1998) 760.

K. Nagel and M. Schreckenberg, “A Cellular Automaton Model for Freeway Traffic”, Journal de Physique
12 (1992) 2221-2229.

A. Bleiweiss, “Multi agent navigation on GPU”. Eprint, 2009.

E. Kirik, T. Yurgel’'yan, and D. Krouglov, “The shortest time and/or the shortest path strategies in a
CA FF pedestrian dynamics model”, Journal of Siberian Federal University. Mathematics & Physics 2
no. 3, (2009) 271-278, arXiv:0906.4265 [math-ph].

E. Kirik, T. Yurgel’yan, and D. Krouglov, “On realizing the shortest time strategy in a CA FF pedestrian
dynamics model”, Cybernetics and Systems 42 no. 1, (2011) 1-15.

J. Venel, “Integrating strategies in numerical modelling of crowd motion”, in Klingsch et. al. [70],
pp. 641-646.

D. Hartmann, “Adaptive pedestrian dynamics based on geodesics”, New Journal of Physics 12 (2010)
043032.

22


http://tinyurl.com/6dzfrdd
http://dx.doi.org/10.1007/978-1-4419-9725-8_35
http://dx.doi.org/10.1007/978-1-4419-9725-8_35
http://dx.doi.org/10.1007/978-1-4419-9725-8_30
http://dx.doi.org/10.1007/978-1-4419-9725-8_45
http://dx.doi.org/10.1007/978-1-4419-9725-8_45
http://dx.doi.org/10.1007/978-1-4419-9725-8_41
http://dx.doi.org/10.1007/978-1-4419-9725-8_41
http://dx.doi.org/10.1016/S0191-2615(03)00007-9
http://dx.doi.org/10.1145/1179352.1142008
http://dx.doi.org/10.1016/S0191-2615(01)00015-7
http://dx.doi.org/10.1016/S0191-2615(01)00015-7
http://dx.doi.org/10.1146/annurev.fluid.35.101101.161136
http://arxiv.org/abs/0804.4336
http://arxiv.org/abs/0804.4336
http://arxiv.org/abs/0911.3723
http://arxiv.org/abs/0911.2900
http://dx.doi.org/10.1177/027836499801700706
http://dx.doi.org/10.1177/027836499801700706
http://dx.doi.org/10.1051/jp1:1992277
http://dx.doi.org/10.1051/jp1:1992277
http://arxiv.org/abs/0906.4265
http://dx.doi.org/10.1007/978-3-642-04504-2_59
http://dx.doi.org/10.1088/1367-2630/12/4/043032
http://dx.doi.org/10.1088/1367-2630/12/4/043032

[63]

[64]

[65]

[70]

[71]
[72]

[73]

D. Dressler, M. Grof}, J. Kappmeier, T. Kelter, J. Kulbatzki, D. Plimpe, G. Schlechter, M. Schmidt,
M. Skutella, and S. Temme, “On the use of network flow techniques for assigning evacuees to exits”,
Procedia Engineering 3 (2010) 205-215.

G. Lammel, M. Rieser, and K. Nagel, “Large scale microscopic evacuation simulation”, in Klingsch
et. al. [70], pp. 547-553.

J. Ondfej, J. Pettré, A. Olivier, and S. Donikian, “A synthetic-vision based steering approach for crowd
simulation”, ACM Transactions on Graphics (TOG) 29 no. 4, (2010) 1-9.

A. Kemloh Wagoum, A. Seyfried, and S. Holl, “Modelling dynamic route choice of pedestrians to assess
the criticality of building evacuation”, arXiv:1103.4080 [cs.0H]. submitted.

M. Fellendorf and P. Vortisch, “Microscopic Traffc Flow Simulator VISSIM”, in Fundamentals of Traffic
Simulation, J. Barceld, ed., pp. 63-94. Springer, 2010.

E. Galea, ed., Pedestrian and Evacuation Dynamics: 2nd International Conference. CMS Press, Old
Royal Naval College, University of Greenwich, London, 2003.

S. El Yacoubi, B. Chopard, and S. Bandini, eds., Cellular Automata - 7th International Conference on
Cellular Automata for Research and Industry, ACRI 2006. Springer-Verlag Berlin Heidelberg, Perpig-
nan, France, September, 2006.

W. Klingsch, C. Rogsch, A. Schadschneider, and M. Schreckenberg, eds., Pedestrian and Evacuation
Dynamics 2008. Springer Berlin Heidelberg, 2010.

Dai, S. et al., ed., Traffic and Granular Flow ’09. Springer Berlin Heidelberg, 2011. in press.

R. Meyers, ed., Encyclopedia of Complexity and Systems Science. Springer Science+Business Media,
New York, 2009.

R. Peacock, E. Kuligowski, and J. Averill, eds., Pedestrian and Evacuation Dynamics. 2011.

23


http://dx.doi.org/10.1016/j.proeng.2010.07.019
http://dx.doi.org/10.1007/978-3-642-04504-2_48
http://dx.doi.org/10.1145/1778765.1778860
http://arxiv.org/abs/1103.4080
http://dx.doi.org/10.1007/978-1-4419-6142-6
http://dx.doi.org/10.1007/978-3-642-04504-2
http://dx.doi.org/10.1007/978-3-642-04504-2
http://dx.doi.org/10.1007/978-0-387-30440-3
http://dx.doi.org/10.1007/978-1-4419-9725-8

	1 Introduction
	1.1 Motivation: Travel Time matters for Pedestrians
	1.2 The Social Force Model
	1.3 Distance Maps

	2 Calculating the Direction of the Quickest Path
	2.1 Step One: Estimating Walking Speeds
	2.2 Step Two: Numerical Integration for the Travel Time Map

	3 Examples
	3.1 A U-Turn
	3.2 Station Hall
	3.3 Movement around a 90 Degree Corner

	4 Computation Times
	5 Discussion
	5.1 Open Issues
	5.2 Additional Applications
	5.3 Choosing the Values of g and h
	5.4 Existing Work

	6 Summary and Conclusions 
	7 Supplemental Material

