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Abstract

We introduce a model for the evolution of species triggered by gener-
ation of novel features and exhaustive combination with other available
traits. Under the assumption that innovations are rare, we obtain a bursty
branching process of speciations. Analysis of the trees representing the
branching history reveals structures qualitatively different from those of
random processes. For a tree with n leaves generated by the introduced
model, the average distance of leaves from root scales as (logn)2 to be
compared to logn for random branching. The mean values and standard
deviations for the tree shape indices depth (Sackin index) and imbalance
(Colless index) of the model are compatible with those of real phyloge-
netic trees from databases. Earlier models, such as the Aldous’ branching
(AB) model, show a larger deviation from data with respect to the shape
indices.

1 Introduction

Since the seminal work by Darwin [11], the evolution of biological species has
been recognized as a complex dynamics involving broad distributions of tempo-
ral and spatial scales as well as stochastic effects, giving rise to so-called frozen
accidents. There is vast exchange and overlap of concepts and methods between
the theory of evolution and the foundations of complex systems such as fitness
landscapes [35, 12, 20] and neutral networks [19], the evolution of cooperation
[3] and self-organized criticality [4] to name but a few.

A striking feature of biological macroevolution is its burstiness. The tem-
poral distribution of speciation and extinction events is highly inhomogeneous
in time [28]. As described by the theory of punctuated equilibrium [13], a
connection between punctuated equilibrium in evolution and the theory of self-
organized criticality [4] is established through the model by Bak and Sneppen
[5, 29]. Ecology, i.e. the system of trophic interactions and other dependencies
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between species’ fitnesses, is driven to a critical state. Then minimal perturba-
tions cause relaxation cascades of broadly distributed sizes.

Rather than through ecological interaction across possibly all species, bursty
diversification may also be due to adaptive radiation as a rapid multiplication
of species in one lineage after a triggering event. About 200 million years ago,
a novel chewing system with dedicated molar teeth evolved in the lineage of
mammals, allowing it to rapidly diversify into species using vastly distinct types
of nutrition [33]. There are many more examples where a single innovation
triggers adaptive radiation such as the tetrapod limb morphology caused by a
binary shift in bone arrangement [32] and the homeothermy as a key innovation
by the group of mammals [14, 21]. Environmental conditions a species has not
encountered previously, e.g. when entering a geographical area with unoccupied
ecological niches, may also be the source of adaptive radiation. The diversity
of finch species on Galapagos islands is the famous example first studied by
Darwin. Spontaneous phenotypic or genetic innovations and those caused by
the pressure to adapt to a change in environment are treated on the same footing
for the modeling purposes in this contribution. Though being a central concept
in the theory of evolution, the term innovation has not been ascribed a unique
definition so far [23].

Here we study a branching process to mimic the evolution of species driven
by innovations. The process involves a separation of time scales. Rare inno-
vation events trigger rapid cascades of diversification where a feature combines
with previously existing features. We call this newly defined branching process
innovation model.

How can the validity of models of this kind be assessed? The evolutionary
history of species is captured by phylogenetic trees. These are binary trees
where leaves represent extant species, alive today, and inner nodes stand for
ancestral species from which the extant species have descended. By comparing
the shapes of these trees [26, 17, 8, 31], in particular their degree of imbalance
[9, 22], with trees generated by different evolutionary mechanisms [2, 6, 15], a
selection of realistic models is possible.

2 Stochastic models of macroevolution

We consider models of macroevolution within the following formal framework.
At each point in time t, there is a set of species S(t). Evolution proceeds as
follows. A species s ∈ S(t) is chosen according to a probability distribution
π(s, t) on S(t). Speciation of s means replacing s by two new species s′ and s′′

such that
S(t+ 1) = S(t) \ {s} ∪ {s′, s′′} (1)

is the set of species at time t + 1. The initial condition (at t = 1) is a single
species. Therefore discrete time t and number of species n are identical, n =
|S(t)| = t.

2



Figure 1: Comparison of tree shapes. Each tree of size eight consists of a root
(white diamond), a set of inner nodes (black squares) and a set of leaves (gray
circles). The left tree is totally imbalanced, also called comb tree, with depth
d = 35/8 = 4.375 and Colless index c = 21/21 = 1 . The right tree is a complete
binary tree with depth d = 24/8 = 3 and Colless index c = 0/21 = 0 .

2.1 Trees

The evolutionary history of organisms is represented by a phylogenetic tree. For
the purpose of this contribution, a phyologenetic tree is a rooted strict binary
tree T : a tree with exactly one node (the root) with degree two or zero, all
other nodes having degree three (inner node) or one (leaf node), cf. illustrations
in Figure 1. For such a tree T with root w, a subtree T ′ is obtained as the
component not containing w after cutting an edge {i, j} of T . T ′ is again a
rooted strict binary tree. Since this contribution focuses on tree shape, all
edges have unit length. The distance between nodes i and j on a tree T is the
number of edges contained in the unique path between i and j.

From the evolutionary dynamics, an evolving phylogenetic tree T (t) is ob-
tained as follows. At each time step t, the leaves of T (t) are the species S(t).
When s undergoes specation, two new leaves s′ and s′′ attach to a leaf s. After
this event, s is an inner node and no longer a leaf of the tree. In this way, each
model of speciation dynamics also defines a model for the growth of a binary
tree by iterative splitting of leaves.

2.2 Yule model

In the simplest case, the probability of choosing a species is uniform at each
time step, π(s, t) = 1/t. This is the Yule model or ERM model. It serves as a
null model of evolution.

The model corresponds to a particularly simple probability distribution on
the set of generated trees. For a tree with n ≥ 2 leaves generated by the Yule
model and i ∈ {1, 2 . . . , n − 1}, let pERM(i|n) be the probability that exactly i
leaves are in the left subtree of the root. Then pERM(i|n) = 1/(n− 1). This is
shown inductively as follows. Obtaining exactly i leaves at step n, either they
were already present at the previous step and the speciation took place in the
right subtree, or the number increased from i − 1 to i by speciation in the left
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subtree. Addition of these products of probabilities for the two cases yields

pERM(i|n) =
n− 1− i
n− 1

pERM(i|n− 1) +
i− 1

n− 1
pERM(i− 1|n− 1) . (2)

With the induction hypothesis pERM(j|n− 1) = 1/(n− 2) for all j, we obtain

pERM(i|n) =
(n− 1− i) + (i− 1)

(n− 1)(n− 2)
=

1

n− 1
. (3)

The induction starts with pERM(1|2) = 1 which holds because a tree with two
leaves has one leaf each in the left and in the right subtree. Thus the uniform
selection of species turns into a uniform distribution on the number of nodes in
the left or right subtree. Note that the same distribution applies to each subtree
of an ERM tree. Therefore pERM fully describes the statistical ensemble of ERM
trees. The probability of obtaining a particular tree is the product of pERM terms
taken over all subtrees. This becomes particularly relevant for modifications of
the model taking p non-uniform, see the following subsection.

2.3 Aldous’ branching (AB) model

The class of beta-splitting models defines a distribution of trees by the proba-
bility

pβ(i|n) =
1

αβ(n)

Γ(β + l + 1)Γ(β + n− l + 1)

Γ(l + 1)Γ(n− l + 1)
(4)

with appropriate normalization factor αβ(n). Analogous to pERM of the previous
subsection, pβ(i|n) is the probability that a tree has i out of its n leaves in the
left subtree. In order to build a tree with n leaves, one first decides according
to pβ(i|n) to have i leaves in the left and n− i leaves in the right subtree. Then
the same rule is applied to both subtrees with the determined number of leaves.
The recursion into deeper subtrees naturally stops when a subtree is decided to
have one leaf.

The parameter β ∈ [−2; +∞[ in Equation (4) tunes the expected imbalance.
By increasing β, equitable splits with i ≈ n/2 become more probable. The
probability distribution of trees from the Yule model is recovered by taking β =
0. The case β = −1.5 is called Proportional to Distinguishable Arrangements
(PDA). It produces a uniform distribution of all ordered (left-right labeled) trees
of a given size n [25, 24, 30, 10].

Another interesting case is Aldous’ branching (AB) model [1, 2] obtained for
β = −1, where Equation 4 reads

p−1(i|n) ∝ 1

i(n− i)
. (5)

Blum and François have found that β = −1.0 is the maximum-likelihood choice
of β over a large set of phylogenetic trees [6]. Therefore we use it as a standard
of comparison. The AB model does not have an interpretation in terms of
macroevolution, as noted by Blum and François [6]. In particular, it is unknown
if its probability distribution of trees can be obtained by stochastic processes of
iterated speciation as introduced at the beginning of this section.
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2.4 Activity model

In the activity model [15], the set of species S(t) is partitioned into a set of active
species SA(t) and a set of inactive species SI(t). At each time step, a species
s ∈ SA(t) is drawn uniformly if SA(t) is non-empty. Otherwise s ∈ SI(t) is
drawn uniformly. The two new species s′ and s′′ independently enter the active
set SA(t+ 1) with probability p. The activation probability p is a parameter of
the model. For p = 0.5 a critical branching process is obtained. Otherwise the
model is similar to the Yule model. A variation of the activity model has been
introduced by Herrada et al. [16] in the context of protein family trees.

2.5 Age-dependent speciation

In the age model [18], the probability of speciation is inversely proportional to
the age of a species. At each time, a species s ∈ S(t) is drawn with probability

πs(t) ∝ τs(t)−1 (6)

normalized properly. The age τs is the number of time steps passed since cre-
ation of species s.

2.6 Innovation model

Algorithm 1: Pseudocode for the innovation model

1 set t = 1, F (0) = ∅, S(0) = {∅};
2 while |S(t)| < N do // N as final size of simulated tree

3 if S(t) \ {s \ {φ} : s ∈ S(t), φ ∈ F (t)} 6= ∅ then
4 // loss event

5 draw φ ∈ F (t) uniformly;
6 draw s ∈ S(t) uniformly;
7 if s \ {φ} /∈ S(t) then
8 S(t+ 1) = S(t) ∪ {s \ {φ}};
9 F (t+ 1) = F (t);

10 increment t;

11 else
12 // innovation event

13 draw s ∈ S(t) uniformly;
14 set φ = 1 + max(F (t) ∪ {0});
15 set S(t+ 1) = S(t) ∪ {s ∪ {φ}};
16 set F (t+ 1) = F (t) ∪ {φ};
17 increment t;

In the innovation model, each species s is defined as a finite set of features
s ⊆ N. Features are taken as integer numbers in order to have an infinite supply
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Figure 2: A tree of five leaves generated by the innovation model. The root node
labeled with the empty feature set ∅ speciates by an innovation event adding the
feature 1 to the feature set. This results in the species ∅ and {1} . Innovation
events are performed, generating features until a loss event is possible. The loss
event generates the species {3} by removing the feature 1 from {1, 3}.

of symbols. We denote by F (t) the set of all features existing at time t, that is
F (t) =

⋃
s∈S(t) s. Each speciation occurs as one of two possible events.

An innovation is the addition of a new feature φ ∈ N\F (t) not yet contained
in any species at the given time t. One of the resulting species carries the new
feature, s′ = s ∪ {φ}. The other species has the same features as the ancestral
one, s′′ = s.

A loss event generates a new species by the disappearance of a feature.
A feature φ is drawn from F (t) uniformly. The loss event is performed only
if s \ {φ} /∈ S(t) such that elimination of φ from s actually generates a new
species. In this case, the resulting species are the one having suffered the loss,
s′ = s \ {φ} and the species s′′ = s remaining unaltered. Otherwise, φ is not
present in s or its loss would lead to another already existing species, so nothing
happens.

We assume that creation of novel features is significantly less abundant than
speciation by losses. This separation of time scales is implemented by the rule
that an innovation event is only possible when no more losses can be performed.
In order to facilitate further studies with the model, we provide a pseudocode
description in Algorithm 1. Figure 2 shows an example of the dynamics.

3 Comparison of simulated and empirical data
sets

Now let us compare the tree shapes obtained by the models with those of evolu-
tionary trees in databases. The TreeBASE [27] database contains phylogenetic
information about the evolution of species whereas the database PANDIT [34]
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(a) (b) (c)

Figure 3: Empirical and simulated trees. The depicted phylogenetic tree in
(a) is from the database TreeBASE (Matrix ID M2957, relationships in rosids
based on mitochondrial matR sequences), (b) is a tree created as a realization
of the innovation model and (c) a tree from the ERM (Yule) model. Each of
the trees has 161 leaves.

7



contains phylogenetic trees representing protein domains. Analysing the prop-
erties with reference to the tree shape of both data sets and applying a compar-
ative study with statistical data sets of different models one can conclude how
well a growth model constructs “real” trees.

Comparison by simple inspection of trees from real data and models may
already reveal substantial shape differences. Figure 3 shows an example. The
trees in panels (a) and (b) are less compact than that of panel (c) of Figure 3.

For an objective and quantitative comparison of trees, we use the following
two measures of tree shape. Compactness is best described by the distance di
of a leaf i from root being small. The depth (or Sackin index) [26] is the average
distance of leaves from root,

d =

∑n
i=1 di
n

. (7)

The Colless index measures the average imbalance of a tree [9]. The imbal-
ance at an inner node j of the tree is the absolute difference cj = |lj − rj | of
leaves in the left and right subtree rooted at j. Then the average of imbalances

c =
2

(n− 1)(n− 2)

n−1∑
j=1

cj (8)

with appropriate normalization is the Colless index c of the tree. The index j
runs over all n − 1 inner nodes including the root itself. We find c = 0 for a
totally balanced tree and c = 1 for a comb tree, see also Figure 1.

Ensemble mean values and standard deviations of these indices are shown in
Figure 4. Comparing the results of three models (ERM, AB and innovation) to
those of trees from two databases, the least discrepancy is obtained between the
innovation model and the trees from TreeBASE, representing macroevolution.
In Figure 5, the averages of the two indices are shown after rescaling to facilitate
the comparison. Of all models, the values of the innovation model are also best
matching those of PANDIT.

4 Depth scaling in the innovation model

4.1 Subtree generated by an innovation

Suppose the i-th innovation, generating feature i, affects a species s with f
features. Then s is removed from the set S of extant species, turning into an
inner node in the tree. Two new species s′ and s′′ are attached, having feature
sets s′ = s and s′′ = {i} ∪ s. In subsequent loss events, a subtree Ti is built up
with 2f leaves, each of which is a species σ ⊆ s ∪ {i}. Call D(Ti) sum of the
distances of all the leaves in Ti from the root of Ti.

Let us now estimate the expectation value 〈D(Ti)〉, which only depends on
the number of features of f . Trivially, D(Ti) is lower bounded by f2f since the
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Figure 4: Comparison of size-dependent summary statistics for models and
real trees. Symbols distinguish the ERM model (◦), the AB model (�) and the
innovation model (�) and the data sets TreeBASE (∗) and PANDIT (+). The
data sets were preprocessed by solving monotomies and polytomies randomly
as well as removing the outgroups as proposed by [6]. The mean values of
depth, and Colless index, panels (a) and (b) are binned logarithmically as a
function of tree size n. The same procedure is applied to the standard deviations,
panels (c) and (d). The analysed TreeBASE data set has been downloaded
from http://www.treebase.org on June, 2007 containing 5,087 trees of size 5
to 535 after preprocessing. The PANDIT data set has been downloaded from
http://www.ebi.ac.uk/goldman-srv/pandit on May 2008 and includes 36,136
preprocessed trees of size 5 to 2,562 . The simulated data set comprises for each
model (AB model, ERM model and innovation model) 1,000 trees for each tree
size from 5 to 535 and 10 trees for each tree size from 536 to 2,562.
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Figure 5: The same values of depth and Colless index as in Figure 4 (a,b)
with an n-dependent rescaling. (a) Average depth divided by lnn. (b) Average
Colless index divided by n−1 lnn. These factors are chosen such that the rescaled
values for the ERM model asymptotically approach a constant. See refererence
[7] for the scaling of the indices of the ERM model.

most compact tree is the fully balanced one with all nodes at distance f from
root. In particular, we conjecture

f2f < 〈D(Ti)〉 < DERM(2f ) . (9)

The second inequality is corroborated by the plots in Figure 6. We make it
plausible as follows. Similar to the ERM model, a leaf is chosen in each time
step when executing loss events. Here, however, the loss event is performed
only if the chosen leaf carries the chosen feature and the reduced feature set is
not yet present in the tree. Thus the probability of accepting a proposed loss
event at a leaf s is anticorrelated with the number of features |s| at s. The
expected number of features carried by a leaf decreases with its distance from
root. Therefore we argue that the present model adds new nodes preferentially
to leaves closer to root than average, resulting in trees with an expected depth
increasing more slowly than in the ERM model.

4.2 Approximation of depth scaling

We study a tree growth that is derived from the innovation model by two simpli-
fying assumptions. (i) Each innovation is introduced at the leaf with the largest
number of features in the tree. (ii) Introducing an innovation at a leaf with f
features triggers the growth of a subtree that is a perfect (complete) binary tree
with 2f leaves at distance f from the root of this subtree.

This leads us to consider the following deterministic growth starting with a
single node and i = 0. Choose a leaf s at maximum distance from root; split
s obtaining new leaves s′ and s′′; take s′′ as the root of a newly added subtree
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that is a perfect tree with 2i leaves; increase i by one and iterate. Figure 7
illustrates the first few steps of the growth.

After i steps, the number of leaves added to the tree most recently is 2i−1.
Therefore, the total number of leaves after step i is

n(i) = 1 +

i∑
j=1

2j−1 = 2i . (10)

because the procedure starts with a single leaf at i = 0.
The leaves of the subtree added by the j-th innovation have distance

j∑
k=1

k =
j(j + 1)

2
(11)

from root because these leaves are j levels deeper than those generated by the
previous innovation. Therefore the sum of all leaves’ distances from root is

D(i) = i+

n∑
j=1

2j−1[j(j + 1)/2] (12)

after the i-th innovation has been performed. The first term i arises because
the innovation itself renders one previously existing leaf at a distance increased
by one, cf. the leaves outside the shaded areas in Figure 7. In performing the
sum of Equation 12 we use the equality

i∑
j=0

xj−1[j(j + 1)] = 2i[i2 − i+ 2]− 2 (13)

to arrive at
D(i) = i+ 2i−1[i2 − i+ 2]− 1 . (14)

We substitute n(i) = 2i, i.e. i = log2 n, and divide D by n to arrive at the depth

d(n) =
1

2
[(log2 n)2 − (log2 n) + 2] +

(log2 n)− 1

n
(15)

of the tree with n leaves generated by deterministic growth. For large n, the
depth scaling is

d(n) ∼ (log n)2 . (16)

By the comparison in Fig. 8, we find the (log n)2 scaling also for the depth
of trees obtained from the innovation model as defined in Section 2.6. Thus
we hypothesize that the deterministic growth captures the essential mechanism
leading to the depth scaling of the innovation model. The prefactor of (log n)2 is
smaller in the innovation model than in the deterministic growth. In the actual
model, most innovations hit a leaf with a non-maximal number of features and
therefore trigger the growth of a lower subtree than assumed by deterministic
growth. Table 1 provides an overview of the scaling of average depth with the
number of leaves for various tree models .
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Table 1: Depth scaling of models.

innovation model (log n)2

β-splitting [1]


log n if β > −1, includes ERM (β = 0)

(log n)2 if β = −1, AB model

n−β−1 if β < −1, includes PDA (β = −1.5)

age model [18] (log n)2

activity model [15]

{
n0.5 if p = 0.5,

log n otherwise.

complete tree log n

comb tree n
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Figure 8: Depth as a function of tree size n for the innovation model (◦) and for
the deterministic growth (solid curve) according to Equation (15). Note that
square root of depth is plotted such that a straight line in the plot indicates
a depth scaling d(n) ∼ (log n)2. For each size n, the plotted point (◦) is the
average over

√
d(n) for 100 independently generated trees. Error bars give the

standard deviation.
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5 Discussion

The innovation model establishes a connection between the burstiness of macroevo-
lution and the observed imbalance of phylogenetic trees. Bursts of diversification
are triggered by generation of new features and combination with the repertoire
of existing traits. In order to keep the model simple, the diversification after
an innovation is implemented as a sequence of random losses of features. More
realistic versions of the model could be studied where combinations of traits are
enriched by re-activation of previously silenced traits or horizontal transfer be-
tween species. Furthermore, the model as presented here neglects the extinction
of species and their influence on the shapes of phylogenetic trees.

Regarding the robustness of the model, the depth scaling would have to
be tested under modifications. In particular, the infinite time scale separation
between rare innonvations and frequent loss events could be given up by allowing
innovations to occur at a finite rate set as a parameter.

In summary, we have defined a well-working, biologically motivated model
which nevertheless is sufficiently simple to allow for further enhancement re-
garding biological concepts such as sequence evolution and genotype-phenotype
relations.
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