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Abstract

This paper investigates how neurons can use metabolic cost to facilitate
learning at a population level. Although decision-making by individual
neurons has been extensively studied, questions regarding how neurons
should behave to cooperate effectively remain largely unaddressed. Un-
der assumptions that capture a few basic features of cortical neurons, we
show that constraining reward maximization by metabolic cost aligns the
information content of actions with their expected reward. Thus, metabolic
cost provides a mechanism whereby neurons encode expected reward into
their outputs. Further, aside from reducing energy expenditures, impos-
ing a tight metabolic constraint also increases the accuracy of empirical
estimates of rewards, increasing the robustness of distributed learning. Fi-
nally, we present two implementations of metabolically constrained learning
that confirm our theoretical finding. These results suggest that metabolic
cost may be an organizing principle underlying the neural code, and may
also provide a useful guide to the design and analysis of other cooperating
populations.

1 Introduction

Rational decision making is typically formalized as optimizing a reward function [19,22,26].
This paper investigates neuronal learning from an optimization perspective. We assume that
both the brain as a whole and individual neurons are rational decision makers optimizing
reward functions of some kind.

Since the brain learns from finite samples, it is exposed to a tradeoff between over- and
under-fitting: increasing a model’s capacity can improve its fit on training data, but poten-
tially worsens performance on future samples [29]. Remarkably, however, the human brain
effortlessly handles a wide-range of complex pattern recognition tasks suggesting it both
has a large capacity and, paradoxically, also generalizes extremely well. On the basis of
these conflicting observations, it has been argued that useful biases in the form of “generic
mechanisms for representation” must be hardwired into cortex [10]. Our goal in this paper
is to propose a bias that is both useful and biologically plausible.

Let us outline the problem. Neurons learn inductively. They can generalize from finite
samples and encode estimates of future outcomes (for example, rewards) into their spike-
trains [12]. Learning-theoretical results imply that generalizing successfully from small sam-
ples requires strong biases [29] or, in other words, specialization. Thus, at any given time
some neurons’ specialties are more relevant than others. Since most of the data neurons
receive are other neurons’ outputs, it is essential that they indicate which of their outputs
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encode high quality estimates. Downstream neurons should then be biased to specialize on
these outputs, thereby reducing the effective search space that neurons explore.

The question we ask is: How can a single neuron near-maximize its expected reward and
simultaneously help downstream neurons do the same?

As a partial answer, we propose the following organizing principle. Neurons should consis-
tently label outputs as useful and not useful. Specifically, the optimizations performed by
neurons should be designed so that spikes are useful and silences are not. For example, it is
well known that, on average, the more spikes a neuron receives, the more it learns by modi-
fying its synapses. Although this fact is often taken for granted, it requires explanation. We
suggest that spikes drive learning because they are useful. By useful, we mean an output
that (i) predicts high reward with (ii) tight confidence intervals.

Distinguishing useful from irrelevant outputs is helpful to downstream neurons since it
reduces the size of the search space they are confronted with. If spikes reliably predict
future reward, then neurons should be biased towards learning from spikes. In fact, this fits
well with experimental evidence [8, 9, 20]. Moreover, consistently biasing learning toward
outputs labeled as useful (i.e. spikes) also provides a principled way to reduce capacity, and
thus improve generalization guarantees, without sacrificing empirical performance.

The scope of this paper is limited to showing how neurons may systematically distinguish
useful from irrelevant outputs. Fleshing out the implications for learning at the population
level is deferred to future work. Furthermore, we only consider excitatory connections in
this paper; the role of inhibition is also deferred to future work.

Overview. We explore the consequences of a few basic assumptions regarding spikes,
metabolic cost and neuronal rewards, see §2. We consider a minimal model of biological
neural network from which we extract guiding principles that may apply, at least approx-
imately, to more complex, biologically realistic models. The most important assumptions
are that neurons aim to maximize reward after spiking, and that neurons have to operate
within a fixed metabolic budget that constrains how often they can spike in a given time
interval.

It turns out that these seemingly innocuous assumptions are the key to distinguishing useful
from irrelevant outputs. Our first result is that constrained reward maximization causes
neurons to maximize the information they encode into their spikes, see §3. Moreover, if
spikes are sufficiently rare, it turns out that spikes dominate the information communicated
by neurons, which has interesting implications for credit assignment in cortex, see §3 and [5].

If neurons attempt to maximize empirical reward after spiking, it follows that neurons encode
reward estimates into spikes. When a neuron produces a spike, it thus signals to downstream
neurons that it expects a positive neuromodulatory signal such as dopamine. This raises
questions concerning the quality of the reward estimates encoded in spikes, see §4. We
show that the more information neurons encode into spikes, the tighter the guarantees tying
empirical reward to expected reward.

We conclude by describing some implications of our results for cooperative optimization.
Theorems are proved in the appendices.

Related work. Neuronal plasticity and its implications for the neural code have been
intensively studied for many years. The work closest in spirit to this paper is Seung’s
“hedonistic” synapses, which seek to increase average reward [24]. A second related line
of research applies the information bottleneck method – an alternate constraint to the one
considered here – to neuronal learning [7, 27].

An information-theoretic perspective on synaptic homeostasis that complements the results
in this paper is [5]. The consequences of constrained optimization for spike-timing dependent
plasticity (STDP) are presented in [2]. A practical implementation of regularized STDP,
inspired by the ideas presented here, can be found in [16].

Acknowledgements. We thank Yevgeny Seldin and Giulio Tononi for useful discussions.

2



2 A minimal model

The mammalian cortex contains between 107 and 1011 neurons (depending on the species)
that are guided by neuromodulators signaling pleasure, pain and other globally salient
events. Neurons communicate with each other via spiketrains – sequences of silences and
spikes they receive from and transmit to 103 to 104 other neurons through connections
called synapses. Neurons learn by increasing and decreasing the efficacy of their synapses
according to the timing of pre-synaptic (input) and post-synaptic (output) spikes, as well
as the presence or absence of neuromodulators [8, 9, 15,20,25].

Model neurons. The cortex can be modeled as a population of K neurons. Neuron nk
follows policy πk, where πk(a|s) is a Markov matrix specifying the probability the neuron
picks action, or output, a ∈ A = {0, 1} upon encountering situation s ∈ S. A situation, or
input, is a vector s = (a1, . . . , aK) whose entries are the actions of all the neurons in the brain
at the previous time step. Since each neuron is only exposed to a small fraction of the brain,
it ignores most entries in the vector. Thus, the policy of neuron k is πk(a|s) = πk(a|Σk)
for some subset Σk ⊂ {a1, . . . , aK}. Let P (S) denote the prior over situations. We will
assume the prior is i.i.d. when providing guarantees on estimates, see Remark 4 for a brief
discussion.

Neurons are exposed to a global neuromodulatory signal ν ∈ N that signals the performance
of the population as a whole. Neuromodulators are drawn with probability P (ν|s).
We make the following assumptions.

Assumption 1 (reward maximization).
Neurons maximize a reward function that depends on neuromodulatory signals, input spikes
and output spikes:

π̂k = arg max
π∈M

N∑
i=1

Rk(si, ai, νi), (1)

where ai is the output chosen by π in response to input si.

The set M is the set of possible neuronal mechanisms, a subset of the set Markov matrices
on S × A. Two examples of M that are relevant to our discussion are discrete threshold
neurons

M =
{
H(〈w, s〉 − ϑ)

∣∣w ∈ RK
}

where H(•) is the Heaviside function, see [2], and the full set of Markov matrices, see
discussion of Q-learning below.

Note that, since different neurons are exposed to different subsets of the total brain activity,
they have different reward structures, even for the same neuromodulators: in general Rk 6=
Rj for j 6= k since Σk 6= Σj .

Since we focus on the behavior of a single neuron, we will often drop the subscript k from
the notation below.

Assumption 2 (spikes gate rewards).
The reward function is gated by synaptic outputs:

R(s, a, ν) = R(s, ν) · Ia=1, where Ia=1 =

{
1 a = 1

0 else
is the indicator function. (2)

Neurophysiological evidence suggests that neurons only potentiate or depotentiate their
synapses shortly before or after producing spikes [8,9,15,25]. This encourages specialization:
neurons search for a small set of inputs that reliably predict future reward signals – other
inputs are ignored.

For simplicity we assume neurons have two outputs, spikes and silence. We use notations
a0 or a = 0 for silence and a1 or a = 1 for spikes.
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Assumption 3 (metabolic budget).
Neurons have a fixed metabolic budget that determines the maximum frequency of spiking
over some (unspecified) time period:

π(a1) ≤ ρ (3)

where π(a1) =
∑
s p(s) · π(a1|s) is the spiking frequency under policy π.

Although a soft constraint is more biologically plausible, imposing a hard constraint simpli-
fies the exposition without significantly altering the conclusions. The main effect of softening
the constraints is to allow the information carried by spikes and the capacity of neurons to
vary, thereby softening Theorems 2 and 3 below.

Since neurons only modify their synapses when they spike, it follows that neurons that spike
very infrequently learn very little if at all. Thus, we expect that there are mechanisms in
place ensuring that neurons not only stay within their metabolic budget, but also that they
come close to using all of it.

Spikes and silences are not abstract, interchangeable symbols. Spiking and responding to
spikes carries a much higher metabolic cost than not spiking [13]. This cost is significant
since the nervous system consumes a disproportionate share of an organism’s total energy
budget [1]. It has been hypothesized that a function of sleep is to homeostatically regulate
synaptic strengths, so as to control metabolic expenditures associated with action potentials,
see [11,14,28,30].

Unlike “agents in the wild”, individual neurons have negligible impact on what happens
next: a single neuron has little effect on the neurons it targets – since each receives inputs
from thousands of other neurons. The inability of individual neurons to manipulate their
environment simplifies the optimization problems they face by stripping out the recursive
Bellman aspect [6]:

Assumption 4 (disempowerment).
An individual neuron has no immediate influence on its environment

p
(
s(t+ 1, . . .)

∣∣∣ s(t), ak(t)
)

= p
(
s(t+ 1, . . .)

∣∣∣ s(t)), (4)

where t refers to time. I.e. conditioning on the neuron’s output makes no difference to the
distribution on subsequent actions by the rest of the brain.

The future situations a neuron encounters are essentially unaffected by its output. This
assumption fails at the population level – populations of neurons necessarily affect the
organism’s actions. Nevertheless Eq. (4) is a reasonable assumption at the individual neuron
level since, for example, destroying a single neuron makes essentially no difference to brain
function.

3 Encoding useful information in spikes

This section considers the implications of our assumptions for the information content of
spikes. Mutual information provides a formal method for quantifying the information con-
tent of a channel. We present a related measure, effective information, that measures the
information content of a single output in terms of how much that output reduces prior
uncertainty regarding the set of inputs. Importantly, we show that under the above as-
sumptions, spikes not only reduce uncertainty, but also signal that the neuron received an
input that was historically followed by high rewards. The information encoded in spikes is
thus indicative of expected future rewards.

Information. It is useful to consider neurons as communication channels mapping situ-
ations to actions. The average information communicated by a neuron is then the mutual
information Iπ(S,A). However, since we are interested in the information communicated
by specific actions (in particular, spikes), we introduce effective information1 [3, 4] which
quantifies the information that a single output encodes about the input.

1We extend the definition of effective information in [3] to allow arbitrary priors instead of
restricting to the uniform distribution.
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Definition 1 (effective information).
Given a neuron with policy π(a|s) and prior P (S) on situations, the effective information

generated by action a ∈ A is

ei(π, a) := D
[
π(S|a)

∥∥P (S)
]

where π(s|a) :=
π(a|s)
π(a)

· P (s) (5)

is computed via Bayes’ rule and D[•‖•] is the Kullback-Leibler divergence D[p‖q] :=∑
pi log pi

qi
.

An interesting special case is when the prior on situations is the uniform distribution and
the policy is deterministic. It follows that

ei(π, a) = − log
|π−1(a)|
|S|

, (6)

where | • | denotes cardinality and (since the policy is deterministic), π is a function π : S →
A. In Eq (6), effective information quantifies the selectivity of an output: the fraction of
inputs causing the policy to output a. The smaller the fraction, or alternatively the more
sensitive output a is to perturbations in the input, the higher effective information [5].

Remark 1. Suppose we have model PM(d|h) that specifies the probability of observing data
given a hypothesis. Further suppose we have prior distribution P (h) on hypotheses. If we
observe data d, how much have we learned about the hypotheses? The Bayesian information
gain is

D
[
PM(H|d)

∥∥P (H)
]
. (7)

If we consider a neuron’s policy as a model, with inputs as hypotheses and outputs as
evidence, then effective information quantifies the Bayesian information gained about the
inputs given an output.

Remark 2. The expectation of ei is mutual information: Eπ(a)
[
ei(π, a)

]
= Iπ(S,A).

Information aligns with rewards (theory). We show that neurons implementing con-
strained reward maximization from Assumption 1 also maximize the effective information
of their spikes ei(π, a1), that we will call information per spike.

Definition 2 (empirical reward).
Given a finite sample of situations, actions and neuromodulators (si, ai, νi)

N
i=1, let the em-

pirical reward observed after performing action a in situation s be

R̂(s, a) :=
1

N

∑
{i|si=s,ai=a}

R(si, ai, νi).

We also introduce the empirical reward after spiking, 1
N

∑
{i|ai=1}R

(
si, a1, νi

)
and the em-

pirical reward per spike 1
|{i|ai=1}|

∑
{i|ai=1}R

(
si, a1, νi

)
.

Theorem 1 (maximizing reward/spike maximizes information/spike).

Assume that situations yield different empirical rewards, i.e. R̂(s, a1) 6= R̂(s′, a1) for all
s, s′ ∈ S. Recall that by Assumptions 1 and 3 an optimal policy π̂ satisfies

π̂ = arg max
{π∈M|π(a1)≤ρ}

N∑
i=1

R(si, ai, νi),

If we also apply constraint π(a1) ≥ ρ, i.e. ρ is both upper and lower bound, then the optimal
policy π̂ maximizes information per spike. More precisely, the optimal policy π̂ satisfies

ei(π̂, a1) ≥ ei(π, a1) for all π such that π(a1) = ρ.

Remark 3. The optimal policy will satisfy π̂(a1) = ρ if there are enough inputs s satisfying
Eν [R(s, ν, a1)] > 0. In other words, if there are enough situations where spiking, on average,
is followed by positive reward. Imposing the lower bound in the theorem means we compare
the optimal policy with alternate policies that spike with the same frequency.

Thus, the optimal policy necessarily maximizes both the empirical reward after spiking and
the effective information encoded in spikes. We illustrate this result with simulations below.
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Information aligns with rewards (experiments). A learning algorithm implementing
constrained reward maximization is a modification of Q-learning [31]:

Example 1 (Metabolically constrained Q-learning).
If a neuron chooses action a in situation s and subsequently receives neuromodulator ν,

then it updates the Q-matrix by

Q(s, a)← Q(s, a) + α ·
[
R̂(s, a, ν)−Q(s, a)

]
,

where α controls the rate. After updating Q, the neuron constructs new policy

π(a|s) =Mn
(
eQ(s,a)

)
.

Operation M(•) renormalizes the policy twice: first by Z(a) chosen such that∑
s∈S π(a|s)P (s) = P (a) for all a, and then by Z(s) chosen such that

∑
a∈A π(a|s) = 1

for all s. Setting n = 3 yields a policy that approximately implements the metabolic con-
straint.

Figure 1 shows how effective information and empirical reward after spiking covary as neu-
rons Q-learn. We initialized 5000 neurons randomly and applied metabolic constraints
ρ ∈ {0.1, 0.3, 0.5}. Rewards are drawn randomly. As the neurons adapt, their policies be-
come both more deterministic and more likely to spike in situations yielding higher rewards,
so as neurons adapt they both encode more information into their spikes and predict higher
rewards after spiking. The tighter the metabolic constraint (i.e. the lower ρ), the higher the
empirical reward after spiking. Thus, the information encoded in spikes provides a reliable
guide to the empirical reward after spiking.

Spikes dominate information content. Theorem 1 shows information per spike is max-
imized by constrained reward maximization. Theorem 2 below consider how much of the
total information communicated by a neuron is carried by spikes.

Theorem 2 (spikes carry essentially all information).
Suppose a neuron has two actions (silence a0 and spike a1) and produces spikes infrequently:
π(a1) � 1. Then the total information communicated by the neuron is approximately the
information it communicates using spikes alone:

Iπ(S;A) = π(a1) · ei(π, a1) +O
(
π(a1)2

)
. (8)

If the metabolic constraint is tight, meaning ρ and so π(a1) are small, then for the optimal
policy encodes a lot of information into spikes. In this setting, Theorem 2 implies that the
information communicated by a neuron is (up to first order) carried by spikes alone.

Eq (6) and Theorem 2 together have interesting implications for credit assignment, see [5]
for details. In particular, if spikes carry most of the information in cortex, then spiking neu-
rons and synapses should reinforced in response to positive global signals such as dopamine,
and conversely for negative global signals. Neurons and synapses that are silent contribute
little to the information generated by cortex, and so should be neither potentiated nor depo-
tentiated. This fits neurophysiological evidence suggesting that spikes play a distinguished
role in synaptic potentiation and depotentiation [8, 9, 15,20].

Encoding reward estimates in spikes. Finally, we briefly illustrate the effect of the
metabolic constraint ρ on the empirical reward per spike. Suppose we have sampled em-

pirical rewards
{
R̂(s, a1)

∣∣s ∈ S}. The optimal policy is constructed as follows. First, rank

states by their empirical reward. Let Sρ denote the states in the top ρth percentile. Define

π̂(a1|s) =

{
1 s ∈ Sρ
0 else.

The optimal policy can be visualized as moving a window of fixed size and variable shape
over the input space, such that the underlying configuration maximizes reward.
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Figure 2 shows an example. Situations are ranked according to their empirical reward. The
metabolic constraint is set at ρ = 15%, so the optimal policy spikes for the 15% of situations
with highest reward. The policy picking these situations results in a reward per spike of
0.89. Situations which do not cause spikes receive no reward ; if spikes and silences would
be exchanged, this reward would be .21 (we call it reward after silence).

We make two observations. First, tightening the metabolic constraint, so that the policy
spikes for � 15% of situations, increases the reward per spike. Second, the variance in
reward per spike is much lower than after not spiking, and typically decreases with ρ.

As a general rule of thumb, tightening the metabolic constraint by decreasing ρ both in-
creases the empirical reward per spike and reduces the variance in empirical reward per
spike.

4 Guarantees on reward estimates

In a dynamically changing environment like the cortex, it is important that neurons reliably
represent high reward. This section shows that the reliability of spikes depends on how
much information is encoded in them.

Theoretical guarantees. We say that a neuron’s spikes reliably represent reward when
there is a low variability in the empirical mean reward when the neuron spikes. For a given
policy π. The expected and empirical rewards per spike are

Rπ := E
[
R(S, a1, N)

]
:=
∑
s,n

π(s|a1) · P (ν|s) ·R(s, a1, ν) and

R̂π :=
1

T1

∑
{(st,νt)|π(st)=1}

R
(
st, a1, νt

)
respectively,

where T1 counts spikes produced by the neuron during [1, T ]. We measure sample size in
terms of spikes (rather than spikes and silences) because spikes are metabolically expensive,
so only spikes count towards the cost of collecting a finite sample.

Let us introduce notation for computations with respect to the uniform prior U(s) = 1
|S| ,

where |S| is the total number of possible situations. Let πu(a) =
∑
s π(a|s) ·U(s), πu(s|a) =

π(a|s)U(s)
π(a)

, and eiu(π, a) =
∑
s πu(s|a) log πu(s|a)

πu(a)
. Note that eiu recovers the original notion

of effective information in [3], which Definition 1 generalizes.

The following theorem is proved using a version of Occam’s razor [23].

Theorem 3 (error bound for empirical reward).
Suppose the neuron chooses a deterministic policy π under the constraint that it spikes for

a fixed fraction of situations: πu(a1) = const. Further, suppose that situations are sampled
i.i.d. Without loss of generality,2 assume that rewards lie in [0, b]. Then with probability at
least 1− δ, ∣∣∣Rπ − R̂π∣∣∣ ≤ b ·

√
|S| · eiu(π, a1) + 1

2T1 · eeiu(π,a1)
+

log 2
δ

2T1
(9)

Guarantees improve as eiu increases since x+1
ex decreases as x increases.

Note that ei and eiu covary since increasing the number of situations where a neuron spikes
decreases both ei and eiu; similarly, decreasing the number of situations where a neuron
spikes increases both ei and eiu.

Thus, tightening the metabolic constraint in Assumption 3, by choosing low ρ, yields policies
that have better guarantees on their reward estimates.

2Since only relative rewards affect the choice of optimal policy, it follows that negative rewards
can be stripped out of the optimization problem by introducing an additive constant.
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Remark 4. The assumption that inputs are i.i.d. is not realistic for cortical neurons. We
make two remarks. First, if rewards are only non-zero in the presence of neuromodulatory
signals, then the assumption states that situations directly preceding neuromodulator release
are i.i.d, which is more reasonable. Second, similar results have recently been obtained in
non-i.i.d. scenarios using more sophisticated PAC-Bayes methods [21] – and these may be
applicable to our setting.

Guarantees in practice. Figure 3 plots information encoded in spikes (x-axis) against
the difference between the normalized empirical and expected reward (y-axis). Rewards
were drawn randomly and the expected and empirical error for 16,000 deterministic policies
with |S| = 50, P (S) uniform and T1 = 20 were computed. Policies were sampled randomly
with k, the number of situations causing the policy to spike, varying uniformly across [1, 25].
The figure shows that both normalized error and the standard error of the error decrease
as ei increases. Figure 3 confirms that the bound in Theorem 3 is a reasonable guide to
performance in practice.

Thus, the more information encoded in spikes, the better a neuron’s empirical estimate of its
expected reward per spike. The metabolic constraint in Assumption 3 controls the quality
of a neuron’s empirical estimates of its expected reward.

5 Discussion

The space of possible policies that the cortex as a whole could implement is vast : it consists
in choosing synaptic weights of millions or billions of neurons each receiving inputs from
thousands or tens of thousands of other neurons. However, the space of policies that makes
sense biologically is probably much smaller due to biological as well as learning-theoretic
considerations. This paper has shown that metabolically constrained reward maximization
provides a biologically plausible way for neurons to distinguish useful outputs from those
that are not. It follows from our assumptions that spikes:

• are responsible for most of the information communicated by neurons;

• signal when, based on empirical estimates, neurons predict high reward; and

• come equipped with performance guarantees that increase as the metabolic con-
straint is tightened, and so more information is encoded in spikes.

This suggests that neurons should privilege spikes during learning; and indeed there is a
large body of experimental evidence that this is exactly what occurs [8, 9, 15, 25]: synaptic
plasticity is triggered by pre- and post-synaptic spikes, with the decision to potentiate or
depotentiate depending on their precise timing.

An important unanswered question is setting the metabolic constraint ρ. Clearly, if ρ is
too low, then neurons will barely fire at all, which is not desirable. Conversely, if ρ is too
high then information and empirical reward encoded in spikes, as well as the quality of the
empirical estimates, all degrade, which is also to be avoided. In this paper, we have simply
highlighted the metabolic constraint ρ as an important lever that neurons may actively
manipulate. Finding an optimal value or range of values for ρ is outside the scope of this
paper.

Biasing neuronal mechanisms. Q-learning is not a practical learning rule; it simply
constructs a giant lookup table. If we think of the set of inputs causing a neuron to fire as
a window of varying shape, then the metabolic constraint fixes the size of the window and
Q-learning places no other constraints on its shape.

However, if upstream neurons systematically encode information and reward in spikes, then
it makes sense to bias shape of downstream neuronal “firing windows” to take the asymmetry
between spikes and silences into account. This is exactly what we occurs in cortex. The
vast majority of synapses are excitatory : the more input spikes neurons receive, the more
likely they are to spike themselves.
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Cortical neurons are biased toward firing for more spikes, which makes sense if spikes are
reliable predictors of future reward. Thus, neuronal “firing windows” are shaped such that if
a firing pattern causes a neuron to spike, then so does any firing pattern containing strictly
more spikes. Moreover, sufficiently many pre-synaptic spikes will (essentially) always cause
a neuron to fire.

Thus, neurons aggregate evidence for high reward (spikes from upstream neurons), and
modify their synaptic strengths to maximize their empirical reward. Fine-tuning is necessary
since no two neurons have exactly the same connectivity, and therefore no two neurons use
the same data to predict global neuromodulatory signals.

Inhibitory (GABA) synapses do not fit this picture. Extending our framework for plasticity
to include both types of neurons is challenging. However, we conjecture this incompatibility
can be overcome, with inhibition playing a complementary role; possibly centered on im-
posing sparse activity in the brain [17, 18] and selecting competing neural assemblies and
structures.

Global versus overlapping local optimizations. The results in this paper depend
on specific assumptions and model choices. A particularly important assumption is that
all neurons attempt to maximize the same global neuromodulatory reward signal. In this
scenario, since neurons differ in their connectivity, they have access to different subsets
of brain activity representing different environemental features and events, and therefore
specialize on different sources of reward.

The reality is more complicated with multiple overlapping neuromodulatory signals includ-
ing dopamine, noradrenaline, acetylcholine and others. Moreover, neurons involved in, say,
early visual processing may not require neuromodulatory guidance; rather, they may search
for stable invariants over short time frames (hundreds of milliseconds). There is likely a
diverse array of reward functions implemented across cortex.

It is thus unclear whether the brain can be accurately described as optimizing a single well-
defined reward function. Nevertheless, until decisively shown to be false, we believe the
optimization perspective to be a fruitful working hypothesis. Even if it does not apply to
the brain as a whole, it may nevertheless provide insight into how populations of neurons
in specific brain areas converge on useful behaviors.

A spiking currency. Finally, it is interesting to speculate on an analogy between spikes
and paper currency. Money plays many overlapping roles in an economy, including: (i)
focusing attention; (ii) stimulating activity; and (iii) providing a quantitative lingua franca
for tracking revenues and expenditures. Note that, as for the brain, it is unclear whether
an economy as a whole can be reduced to optimizing a single well-defined function.

Spikes may play similar roles in cortex to those of paper currency in an economy. Spikes
focus attention: STDP and other proposed learning rules are particularly sensitive to spikes
and spike timing. Spikes stimulate activity: input spikes cause output spikes. Finally, spikes
leave trails of (Calcium) traces that are used to reinforce and discourage neuronal behaviors
in response to neuromodulatory signals.

Neither money nor spikes are intrinsically valuable. Currency can be devalued by inflation.
Similarly, the information content and guarantees associated with spikes can be eroded
by overpotentiating synapses which reduces their selectivity (potentially leading to epileptic
seizures in extreme cases). Regulating the information content of spikes is therefore essential.
Assumption 3 provides a simple constraint that can be approximately imposed by regulating
synaptic weights. Indeed, there is evidence that one of the functions of sleep is precisely
this [11,14,28,30].

Spikes with high information content are valuable because they come with strong guarantees
on their estimates. They are therefore worth paying attention to, worth responding to, worth
keeping track of, and worth learning from.
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A.1 Proof of Theorem 1

Proof. First we show that deterministic policies maximize the information encoded in spikes,
then we show that deterministic policies maximize reward per spike.

Deterministic policies maximize effective information subject to π(a1) ≤ ρ. Observe that

ei(π, a) =
∑
s∈S

π(s|a) log
π(s|a)

P (s)

=
∑
s∈S

π(s|a) log
π(a|s)
π(a)

= − log π(a)︸ ︷︷ ︸
log frequency of output a

+
∑
s∈S

π(s|a) log π(a|s)︸ ︷︷ ︸
stochasticity

.

The log-frequency, or surprise, term is nonnegative and the stochasticity term is non-
positive. It is easy to see that the stochasticity term is maximized at 0 if and only if
output a is chosen deterministically – i.e. π(a|s) is either 0 or 1 for all s ∈ S.

Deterministic policies maximize reward per spike. Suppose there are N situations ordered

according to their empirical reward, so that R̂(s1) < · · · < R̂(sN ). It is clear that a deter-
ministic policy spiking only for the ρ ·N policies with highest empirical reward maximizes
empirical reward after spiking.

A.2 Proof of Theorem 2

Proof. Observe that

P (s|a0) =
P (s)− π(s|a1) · π(a1)

1− π(a1)

= P (s) + π(a1)
(
P (s)− π(s|a1)

)
+O

(
π(a1)2

)
.

Thus to first order in π(a1), π(s|a0) is of the form p + δp where
∫
δp = 0. We can then

compute

D
[
p+ δp

∥∥ p] =

∫
(p+ δp) log2

p+ δp

p

= α

∫
(p+ δp)

δp

p

(
1− δp

2p

)
+O

(
(δp)3

)
= α

∫
(δp)2

2p
+O

(
(δp)3

)
,
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where α = 1
ln 2 .

Substituting p = P (s) and δp = π(a1)
(
P (s)− π(s|a1)

)
gives

D
[
π(S|a0)

∥∥P (S)
]

= D
[
p+ δp

∥∥ p]+O
(
π(a1)2

)
= α · π(a1)2

∫ (
P (s)− π(s|a1)

)
2P (s)

+O
(
π(a1)2

)
.

Thus I(S;A) = π(a1)D
[
π(S|a1)

∥∥P (S)
]

+O
(
π(a1)2

)
.

A.3 Proof of Theorem 3

Occam’s razor can be paraphrased to say that the simplest hypothesis should be preferred.
Suppose we have a setof hypotheses H with prior distribution P (h) on H. Let − logP (h)
denote the complexity of hypothesis h. Let L : X ×H → [0, b] be a loss function. Then

Theorem 4 (Occam’s razor).
For any data generating distribution on X and any prior distribution P (h) over H, with a

probability greater than 1− δ over drawing an i.i.d. sample from X of size T , for all h ∈ H:

∣∣∣L(h)− L̂(h)
∣∣∣ ≤ b ·

√
− logP (h) + log 2

δ

2T
.

Proof. See [23].

Let H =
{
π : S → A

}
denote the set of deterministic policies, where A = {a0, a1} = {0, 1}.

Define loss function

L :
(
S ×N

)
×H −→ R : (s, ν)× π 7→ R(s, π(s), ν).

Further, set probability distribution P (s, ν) = P (s) · P (ν|s) on S × N . Theorem 4 holds
for any sampling distribution. In particular we may use the policy π to restrict samples to
situations that cause the neuron to spike to obtain P (s, ν|π(s) = a1) = π(s|a1) · P (ν|s). It
follows that

L(π) = Rπ = E
[
R(s, a1, ν)

∣∣∣π(s|a1) · P (ν|s)
]

is the expected reward and

L̂(π) = R̂π =
1

T1

∑
{(st,νt)|π(st)=a1}

R
(
st, a1, νt

)
is the empirical reward,

where T1 is the number of spike produced by the neuron during [1, T ].

Theorem 3.
Let H ⊃ Hk =

{
π : S → A s.t. |π−1(a1)| = k

}
denote policies that spike for exactly k

situations. Given the setup above, with probability at least 1− δ,∣∣∣Rπ − R̂π∣∣∣ ≤ b ·
√
|S| · eiu(π, a1) + 1

2T1 · eeiu(π,a1)
+

log 2
δ

2T1

Proof. Let N = |S| denote the number of possible situations. We put the uniform prior on

Hk, so P (π) = 1

(N
k)

. By Stirling’s approximation, log
(
N
k

)
≤ k log

(
N ·e
k

)
, and it follows that

− logP (π) = log

(
N

k

)
≤ k log

N · e
k

= N · k
N
·
(

log
N

k
+ 1

)
.

The theorem follows since πu(a1) = k
N and eiu(π, a1) = log N

k .
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P (a1) = 0.5

P (a1) = 0.3

P (a1) = 0.1

(a) Effective information from spikes

P (a1) = 0.5

P (a1) = 0.3

P (a1) = 0.1

Rπ

(b) Empirical reward after spiking

Figure 1: Metabolically constrained Q-learning. As neurons learn, effective infor-
mation and empirical reward increase in qualitatively the same way. Tighter metabolic
constraints yield both higher effective information and greater rewards.
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Empirical reward after spiking

Empirical reward after silence

15 percentile

μ =   0.21
σ2 = .054
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Figure 2: Concentration of reward. The x-axis lists situations, ranked by the empirical
reward the neuron would receive if it spiked. Situations are grouped into two categories:
the top 15%, which cause spikes, and the rest, which do not. The average and variance of
the empirical reward in each category is displayed.

Figure 3: Empirical versus expected reward. The normalized difference between ex-
pected and empirical reward, plotted against effective information.
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