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Abstract
Simulation with agent-based models is increasingly used in the study of

complex socio-technical systems and in social simulation in general. This
paradigm offers a number of attractive features, namely the possibility
of modeling emergent phenomena within large populations. As a conse-
quence, often the quantity in need of calibration may be a distribution
over the population whose relation with the parameters of the model is
analytically intractable. Nevertheless, we can simulate. In this paper we
present a simulation-based framework for the calibration of agent-based
models with distributional output based on indirect inference. We illus-
trate our method step by step on a model of norm emergence in an online
community of peer production, using data from three large Wikipedia
communities. Model fit and diagnostics are discussed.

1 Introduction
Computational agent-based models (abm) are increasingly used in several areas
of science because of a number of attractive features [10]. They are an effective
alternative to more traditional methods because they let one test in silico dif-
ferent hypotheses about the origin of collective phenomena, and to explore the
connection between the micro and macro levels, i.e. what kind of macroscopic
patterns are generated starting from a set of microscopic interactions between
agents. [25].

Like most models, abms contain tunable parameters and thus, as a first step
towards empirical investigation, it is desirable to calibrate them. However, often
it is not possible to formulate an equivalent analytical model, and even if this is
the case, it may still be intractable or too complicated, for example when latent
variables are used. In all these cases, an abm can be just regarded as a black box,
and be calibrated via simulation, using the machinery developed for complex
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computer codes [62]. These approaches typically involve the use of emulators
such as splines, polynomials, or semi-parametric techniques such as Gaussian
Processes [62]. Other approaches to calibration that are not simulation-based
but still use Gaussian processes are Bayesian techniques [43, 40, 6]; they have
been applied in biology [20] and cosmology [39], to cite a few. Computational ap-
proaches for the calibration of abms have been developed in biology [24, 20] and
economics [8, 31, 70]. Comparatively, issues related to calibration and empirical
testing are still largely underrepresented in the social-simulation literature [66].

Agent-based models, though, present another difficulty to the above ap-
proaches: it is often the case that the output of an abm is a distribution of
values over a population of agents, and not just a scalar or vector-valued quan-
tity. This is common, for example, in models of social collective phenomena.
Sometimes distributions can be summarized by their moments and thus meth-
ods like the Simulated Method of Moments may be applied [49]. Some other
times the distribution moments do not provide a good description of the output
distribution, and other approaches must be used [8, 20, 24].

In this paper we present a step-by-step data-driven methodology for calibrat-
ing an agent-based model with distributional output. We use a computational
technique inspired by the indirect inference methodology [32]. This technique
predicates the use of an auxiliary model to match empirical data with synthetic
simulations.

Indirect inference is used to fit models to empirical data when maximum
likelihood estimation is either unfeasible, or simply too complicated from a
computational point of view. Examples from econometrics – where the technique
first originated – include dynamical models with latent variables (cf. [32, 64]),
agent-based models [8], and also dynamic models from population biology [42,
71]. A different, related approach based on simulation is the one by Gilli and
Winker [31].

We apply our technique to the calibration of a model of a techno-social
system, specifically a model of norm formation in an online community of social
production or commons-based peer production (shortened as “peer production”
in the remainder of the text) [16].

Norms are shared expectations about behaviors that members of a social
group ought follow or else incur in the risk of being sanctioned by other members
[54]. Norms are regarded as one of the main determinants of social behavior, a
sort of grammar for social interactions [9], and are central to the understanding
of group dynamics [26]. The emergence of social norms has been the subject of
a long-standing tradition of investigation [36, 37, 55] and, more recently, also
by means of agent-based models [2, 9, 1]. Norms may emerge from imposition
from a higher authority [54], but often – and this is the case we are interested
in with this paper – norms can emerge informally from the aggregated behavior
of many different actors [2, 9].

Social norms are important determinants of behavior in online peer produc-
tion groups, where members engage, often for free [46], in the production of
digital contents [7]. In these settings users may be encouraged to contribute to
the digital common by a variety of extrinsic rewards, from reputation gains [18]
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to simple forms of acknowledgment [15]. Furthermore, direct surveys show that
the array of intrinsic motivations for contributing is surprisingly varied [58].

However, in many cases neither rewards nor personal motivations can fos-
ter true, long-term commitment to the community without the construction of
a shared sense of membership [60]. This can be construed in terms of social
identity [67] and self-categorization [68]. As a result, a strong, shared identity
may develop, even despite the fact that interactions on the Web are often asyn-
chronous and anonymous. For example, recent work by Neff et al. analyzed
the discourse of editors from the English Wikipedia and discovered that the
‘Wikipedian’ identity can be stronger than affiliation to the two major parties
of the US political system [53].

A peculiarity of peer-production groups is that norms may also specifically
regulate how, and under which conditions, users contribute to the digital com-
mon. An example of a social production norm is the Neutral Point of View
(npov) policy of Wikipedia. This policy prescribes users “to provide complete
information, and not to promote one particular point of view over another”
when contributing to encyclopedic articles.1 Users who do not frame their con-
tributions following the npov guidelines are sanctioned by other peers by having
their contributions rejected. Thus, besides the low barriers to contribution [18],
the emergence of the proper, efficient social production norms are fundamental
to the success of an online community of peer production as much as for any
social group [26]. An example of this is the establishment of a “good-faith”
collaboration culture in Wikipedia given by Reagle [59].

On the other hand, certain peculiar characteristics of online peer-production
groups pose challenges to the study of the emergence of social norms. Mass
collaboration platforms akin to Wikipedia may reach considerable sizes, and
the churn among users can become surprisingly large, meaning that previous
research, predicated on small group sizes and consistent participation [33], is
difficult to apply.2

Simple microscopic models of collective behavior are able to account for
striking regularities in social phenomena, a classic example being the case of
elections [29]. The model we propose in this paper addresses all the above
problems by embedding a process of belief adjustment based on homophily
[50] within a dynamic population [23, 38]. Social production norms emerge
informally from the microscopic interactions between agents and the digital
common, which in our case will be a set of pages, or artifacts. Thus our model
falls within the category of norm-emergence models with structured interactions
[1].

Unlike the other models of norm emergence cited so far, linking the process
of norm emergence with the population dynamic gives the possibility to study

1See http://goo.gl/Jw8Ic.
2As of December 2012, there were 796,945 registered editors with at least ten contributions

in the English Wikipedia; the peak of activity was in March 2007, when more than 51,000
‘Wikipedians’ (registered editors who made at least ten edits) contributed five or more edits
in that month. Of those, nearly 14,000 had registered that same month. See http://stats.
wikimedia.org.
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the emergence of norms in a more realistic setting and, as a collateral benefit, to
test it against empirical data about user participation, such as the span of user
activity. We use indirect inference and our model to analyze data on user activity
from three large Wikipedia communities (French, Italian, and Portuguese).

Because our objective for this paper is mainly to illustrate an abm cal-
ibration methodology, it would have seemed more sensible to set aside the
problem of norm emergence in peer production groups and to focus instead
on a well-established model from the literature on social simulation, such as the
Schelling segregation model [63] or the Axelrod model of cultural evolution [3],
to cite a few. Classic models have the advantage of a clear, extensively studied
phenomenology, and usually possess few parameters, making them an effective
choice for illustrative purposes. On the other hand, they are often very idealized
and sometimes fail at reproducing simple empirical evidence.3

Finally, the choice of studying norm emergence in an online setting can be
further motivated considering that studying norm emergence in an online setting
addresses a classic problem with modeling social norms and human behavior
in general: while data about preferences of social actors can be collected via
experimentation both online and offline [9, 11], large-scale online groups still
present several problems with respect to this task. In contrast, data about social
interactions in said groups are nowadays comparatively much easier to obtain,
as abundant traces of human activities are readily available on the Internet [45].

The model we use here is a modification of the original model by [16], that
employed homogeneous Poisson processes to describe the patterns of temporal
activation of agents – an assumption that is not in line with recent findings
on human activity on the Internet [57]. We found that this assumption has a
profound impact on the resulting distribution of user lifespans, which makes the
model not amenable for calibration against empirical data. We thus decided to
lift the homogeneity assumption and introduce a realistic sub-model of temporal
activation of users based on Poissonian cascades [47].

The rest of the paper is organized as follows: in section 2 we describe the
collection and preparation of the user activity span data; in section 3 we describe
the model of norm emergence in a community of peer production; section 4
illustrates the calibration technique in detail; section 5 gives the results of the
calibration, including various diagnostics procedures. We critically evaluate the
results of the calibration and conclude in section 6 and finally conclude (sec. 7).

2 Data
We measure the period of participation of a user within an online group as the
span between the first and the last contribution she makes. We call this mea-

3In the original model of Axelrod, for example, cultural diversity is more likely to occur
in small groups rather than large groups, contrary to basic empirical evidence; cf. the work
by Flache and Macy on this and other shortcomings of the Axelrod model [27]. The model of
Schelling has often been put to empirical test using data from surveys, but usually simulation
requires to introduce a number of parameters that is comparable to the one of the model we
use [19], thus defeating its original advantage in terms of simplicity.
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sure the user activity lifespan τ . Previous research on peer-production systems
shows that the period of activity of users in blogs, wikis, etc. follows a multi-
modal distribution [34, 17, 72, 73]. Data on user activity lifespans of Wikipedia
users were obtained from the official database dumps released by the Wikimedia
Foundation. We used the 2009 stub-meta-history dumps, which contain only
the metadata of the revisions.4

We selected the top five languages in terms of authored articles, which, as
of data collection time, were English (3,7M articles as of September 2011), Ger-
man (1,3M), French (1,1M), Italian (850K), and Portuguese (700K). In terms
of activity lifespan they represent roughly two distinct classes, depending on
the ratio between short-term and long-term users. One class, which comprises
Portuguese and English, has a more even ratio than the other (French, Italian
and German) [17]. The question of whether these two classes of user activity
lifespan are representative of the whole catalog of Wikipedia communities is still
an open one.

While we initially collected data from these five different Wikipedia commu-
nities, computational issues with the English and the German wikis eventually
forced us to drop these two, which were the most populated and thus could not
be simulated in a reasonable amount of time (i.e., they required > 1 month),
given our limited resources. Because each community is simulated indepen-
dently of the others, exclusion of these two dataset does not impact the results
about the other three. It also leaves us with at least one specimen per activity
lifespan class. We thus decided to report results only from the remaining three:
French, Italian, and Portuguese. For a histogram of the lifespan data, see Figure
6.

The raw data from the dumps includes details about each revision to a
Wikipedia article, the time stamp, user id, user name, and additional informa-
tion. As an example of the raw data format, Table 1 reports five consecutive
revisions taken from a page of the Italian Wikipedia. Anonymous contributions
have all id = 0 and the ip address of the originating computer instead of the
user name.

We discarded all anonymous contributions and all revisions of non-human
users (i.e. bots),5 grouped revisions by the user id, and sorted them chronolog-
ically, so that for each user u we obtained revision times t(i)1 < . . . < t

(i)
Ni

, where
Ni is the total number of edits of the i-th user. The lifespan of the i-th user is
thus τi = t

(i)
Ni
− t(i)1 .

It should be noted that τ is a proxy for the true period of participation of
a user. In our model, we have access to the latter, so care must be taken when
comparing the model output with the empirical data. This is further discussed
in Section 3.3 when describing the actual output of the model.

4See http://dumps.wikimedia.org.
5To do this, we cross referenced data from the user_groups table, which is also available

at the dumps website.
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Table 1: Raw data excerpt from the Wikipedia article about Pope Clement VII from the
Italian Wikipedia. See http://goo.gl/zCB8m for the online version.

user id user name revision time stamp

7077 Moroboshi 2006-05-26 04:37:45
0 82.50.4.229 2006-05-26 19:15:38

36426 Sailko 2006-06-05 08:32:48
57872 Dapa19 2006-06-07 16:31:58
35813 Moloch981 2006-06-07 20:24:14

3 A model of emergence of social production
norms

In this section we describe the agent-based model used in the paper. The model
is comprised of different mechanisms that describe when agents perform actions,
how they interact with other agents, and how these interactions lead to a change
in the state of the agents.

3.1 Norm emergence
We model the emergence of social production norms as a process of adjustment
of shared beliefs about how people ought to contribute to the digital common.
For example, we can consider whether Wikipedia users will adopt a neutral
style of writing or not. The concept of a neutral point of view is of course
nuanced and multifaceted and thus it seems plausible to model it as a quantity
ranging within a spectrum of possibilities, instead of just dichotomously. That
is, instead of saying that a user either writes neutrally or non-neutrally (e.g. x
is either 0 or 1) we could say that there is a range of possible alternatives (for
simplicity we consider only one dimension) and that, of all these alternatives,
there might be within the group a shared value that is socially acceptable, i.e.,
a consensus. In this case we say that a norm has emerged.

Thus we employ a continuous framework similar to the models of opinion
formation by Deffuant et al. [23] and by Hegselmann and Krause [38], which
explain under which conditions a group of people will, through repeated inter-
actions, reach a consensus about a set of beliefs, values, or opinions. In these
models people adjust their opinions based on who they interact with. The
empirical assumption is that belief adjustment is based on homophily; that is,
people will effectively adjust their opinion only if they interact with other people
that are sufficiently similar to them.

To adapt this framework to the context of norms and behavior in a peer
production group, we need to change the interpretation we give to these quan-
tities. In our model there are two types of agents: users and pages. Each user
is represented by a real dynamic variable xi (t) ∈ [0, 1]. Similarly, the j-th page
is described by real variable yj (t) ∈ [0, 1].

We can imagine that the following events may occur in our model: first, a
user i contributes to pages according to what she believes is socially appropriate
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behavior (i.e. her belief xi). Moreover, she may change her beliefs about what is
appropriate by interacting with a page j that shows how other users contributed
to the common (i.e. the page state yj), provided that these are sufficiently
similar to hers (i.e. |xi − yj | < ε), thus employing the empirical pattern of
homophily. In the language of the models of opinion formation, this is called
bounded confidence (bc). In particular, we use the bounded confidence rule from
the model by Deffuant et al. [23]: let t be time the i-th user interacts with the
j-th page. If |xi (t)− yj (t)| < ε then,

xi (t) ← xi (t) + µ (yj (t)− xi (t)) (1)
yj (t) ← yj (t) + µ (xi (t)− yj (t)) (2)

The speed or uncertainty parameter µ ∈ (0, 1/2] governs the entity of the
belief adjustment. The parameter ε ≥ 0 dictates the range of social influence
and is called the confidence.

The interpretation often given to extremal values of the opinion space in
classic models of opinion dynamics is that of ‘extreme’ opinions on a specific
topic of discussion. For example the [ 0, 1] space might represent the political
spectrum and the values 0 and 1 might represent the points of view of the
extreme Left and extreme Right. Under this interpretation it is thus interesting
to see what happens if one assumes that the confidence ε of an agent depends
on its opinion value, in order to mimic the empirical observation that extreme
opinions are often accompanied by narrow homophilistic bounds of confidence
[22, 38]. This assumption finds support in the pioneering work by Moscovici et
al. [52] on minority influence on a perceptual task.

Since our interpretation of the dynamic quantities x and y is different from
opinion formation, it is not clear what it would mean to have asymmetric con-
fidence bounds in this framework. That is, in our framework a consensus near
the bounds of the belief domain does not imply that an ‘extremist’ norm has
emerged, only that consensus has taken place there. This obviously does not
mean that heterogeneity in the population might not have interesting effects on
the dynamic of belief adjustment, as Hegselmann and Krause showed [38], but,
for simplicity, in this model we assume that the confidence bounds are the same
over the whole population of agents; that is, there is no asymmetry.

Of course, norms differ from pure informal social conventions that emerge,
for example, from coordination, because not abiding to a norm may result in
being sanctioned [9]. In our case it is plausible to think that doing a modification
to a page for sanctioning purposes does not involve a change in the beliefs of
who is sanctioning, but only in those shown by the page, e.g. Wikipedia editors
correcting vandalism. Of course, sanctioning involves a cost, and thus it does
not happen all the time. In some cases, reverting the work of others may be
cumbersome, in other cases not. The possibility to easily revert vandalism is
credited as one of the main reasons for the success of Wikipedia [18].

To account for this in our model, we introduce another possibility when a
user interacts with a page. If |xi (t)− yj (t)| ≥ ε, then with probability prollback
only eq. (2) applies. This is intended to model the act of reverting the work
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of the preceding editor, as described above. That is, even though similarity,
because of the homophily assumption, prompts a modification to both the user
belief xi and the feature of the page yi, dissimilarity may, with probability
prollback, still cause a modification of the page, thus allowing for an indirect
sanctioning mechanism of the people who edited the page before. We call the
parameter prollback the rollback probability as a reference to the rollback (or
revert) feature of Wikipedia, which allows editors to restore the current version
of a page to a previous revision. This mechanism is reminiscent of interaction
noise of models of opinion dynamics [48].

3.2 User activity lifespan
Users contribute to the digital common of the community and are active in the
community only for a certain period, the activity lifespan τ . The population of
users is open: at every time new users join and existing users retire. The rate
at which new users join will depend on different external factors, such as the
popularity of the project and the barriers to contribution. For simplicity, we
consider that new users join at a fixed rate ρu.

The rate at which existing users retire, instead, will plausibly depend on
the incentives and motivations of the users [21]. Research on retention of new
members on Wikipedia has shown in fact that the rejection of contributions is
especially demotivating for newcomers [35]. For more tenured editors, on the
other hand, the perceived quality of the community as a whole [41] could be an
important factor. Finally, people cannot assess factors like these accurately and
are instead more likely to resort to simple heuristics [37, 1].

We would like to have a single quantity that summarizes all these consider-
ations. Let us denote with ni (t) the total number of contributions a user made
at time t, with si (t) the number of times in which Eq. (1) was applied, that is,
the number of times in which she was ‘influenced’ by the page. A simple way to
model how user i perceives her ‘success’ within the community could thus be:

ri (t) = si (t) + cs
ni (t) + cs

(3)

where cs ≥ 0 is a constant that represents the initial motivation users have when
joining the community. The higher cs is, the larger the number of rejections
needed to induce them to retire. As the number of contributions ni (t) grows,
the effect of cs will become smaller, and the overall commitment ri of a user will
be determined by the perceived quality of the project, as estimated from the
sample of pages she interacted with. The ratio si/ni can also be regarded as an
estimate that the user has about how much her current belief is in accordance
with the rest of the group [9].

Because ri depends on si and ni, its temporal evolution will depend on
the rate at which users contribute to the community. Of course, if her first
contribution is rejected, then chances are the a user might still try more before
giving up completely, which means that even if ri = 0, the expected short-term
activity lifespan will be a value τ1 that does not depend on the frequency at
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which users perform edits. On the other hand, if ri = 1 a user may still decide
to retire for other external factors that may be largely personal and thus hard
to summarize, so it is reasonable to assume that there is also a natural lifespan
of long-term activity τ0, past which even the most committed member will stop
participating. A simple way to capture this is to define the rate of departure
λ

(i)
d (t) of user i at time t as:

λ
(i)
d (t) = ri (t)

τ0
+ 1− ri (t)

τ1
(4)

where we implicitly also assume τ0 � τ1; i.e. they effectively refer to different
time scales. It should be noted that Eq. (4) simply interpolates ri and thus
the actual proportion of short-term and long-term users, i.e. between ‘infant
mortality’ and ‘wear out’, will depend exclusively on the collective dynamics of
ri, i.e. Eq. (4) simply constrains the location of the distribution of τ , but not
its actual shape.

3.3 Temporal activation patterns
In the original model users interacted with pages at a constant rate λe [16].
However, a homogeneous process is not capable of capturing one essential aspect
of the real editing activity of users in an online community – burstiness. In a
broad range of user activities (e.g. emails, stock trading, phone calls, sms, etc.)
it is common to observe the existence of clusters of events, that is, events that
tend to happen in rapid sequence, separated by long periods of inactivity [5].

We found that the seemingly innocuous assumption of homogeneous activity
has strong implications on the distribution of user lifespans produced by the
original model. As we described in Section 2, the user lifespan τ is the period
between the first and the last contributions of a user. This obviously means
that we do not have data for those users who have less than two edits. To make
the comparison possible, then, we decided to code the model so that it would
output only the sequence of edits performed, and not the simulated lifespans.

Let us now consider a new user whose first interaction occurs with a page
s.t. |xi − yi| ≥ ε. As we described in Section 3, this counts as an ‘unsuccessful’
interaction and thus, after this si = 0 and ni = 1. Let us also assume, for
simplicity, that cs = 0. Then, according to Eq. (3), this user will have ri (t) = 0
and, from Eq. (4), an expected average survival time of E [τ ] = τ1, where
τ1 is the short-term time scale parameter. Now, if the mean interval between
two consecutive edits τe = λ−1

e is considerably higher than τ1, the user will
become inactive before performing the second edit, and thus she will not be
included in the output of the model. Thus, assuming homogeneous editing
activity introduces an artificial truncation of the data in that we do not see, on
average, lifespan observations τ below λe.

To overcome the above problem, we lift the homogeneity assumption and
instead consider a model of cascading editing events [47]. As before, we assume
that a user edits pages with a constant rate λa. Once she is active, she performs,
on average, Na additional edits with rate λe – a cascade of edits. This has the
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effect of decoupling the editing rate from the short-term lifespan, provided of
course that τ0 is also greater than λ−1

a . In practice, we set it s.t. λ−1
a ≈ τ0

2 .
A bursty pattern of activity is obtained by assuming λe � λa, i.e. the rate of
editing within an session is larger than the rate of editing sessions.

3.4 Page creation and selection
Finally, we need to specify how pages are created and modified. We may imagine
that new pages are continuously added to the project. Again, the rate at which
this will happen will depend on a host of external factors, and thus we can
simply assume that pages are created at a constant rate ρp. Pages are selected
for editing according to preferential attachment [4]. Once a user activates to
perform an edit, a page is chosen with probability proportional to the number of
edits k it has already received, plus a popularity dampening factor cp ≥ 0, which
controls how much popular pages, as measured by the number of contributions
received k, are more likely to be selected over non popular pages. In the limit
cp →∞, we recover a uniform distribution.

3.5 Model implementation
Let us consider a population of users and a pool of pages. There are four possible
events that we need to consider:

1. A new user joins the community.

2. A new page is created by some user.

3. A user retires permanently.

4. A user starts an editing session.

The first two events are homogeneous Poisson processes. The third event is
an inhomogeneous process, and therefore we need to keep track of the rates λ(i)

d

in a dynamic array to which we can add or remove users.
The last event models the presence of editing cascades. Because the acti-

vation of an editor induces a cascade of edits and not simply a single edit, we
need to keep track of which editors are currently active. We do this by means of
a queue. In practice, whenever an editor activates with rate λa, we put in the
queue Na edits. When we insert an edit event in the queue we draw the time
of the edit with rate λe.

The overall population dynamic is simulated using the Gillespie algorithm
[30]. The main simulation loop is structured as follows. Based on the number of
users and pages, we compute the global rate for each of the five events and from
these the global rate of activity λ. With this, we extract the time of the next
event. We then check the queue to see if there are any edits that happen before
the next event and perform them, selecting the page and updating their state.
Then we draw the type of the event and, conditional on this, the information
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needed to update the state of the system. If an editor retires, we scan the queue
and remove all the remaining edits with her index. Once the system is updated,
we recompute all the global rates for each class of events, and proceed with the
next iteration of the loop.

The model was implemented in Python, with optimizations of the most
computationally expensive parts made in Cython. A run of the model with the
parameterization for the Portuguese Wikipedia (see Table 3) took on average
15 minutes on a low-end workstation with 4GB of ram.

4 Methods
4.1 Overview
The goal of our estimation technique is to calibrate the peer production model
on the distribution of user activity lifespans of existing Wikipedia communi-
ties. The calibration technique we propose is inspired by the indirect infer-
ence method (see Section 4.2), but it differs from the classic indirect inference
methodology in a few details.

Traditional indirect inference assumes that model evaluations are computa-
tionally cheap. On the other hand, depending on the value of the parameters,
simulation of an ordinary agent-based model may take minutes up to hours.
Therefore, in order to apply the framework of indirect inference, we need to
speed up the evaluation phase of the computer model. Our approach is to com-
bine indirect inference with the use of a surrogate model, based on a Gaussian
process (from now on gp), to approximate the computer model code.

Application of surrogate models is straightforward when the output of the
computer model is univariate or multivariate but with few variables. With high-
dimensional outputs, for example time series, one can first use a dimensionality
reduction technique on the data. For example, Dancik et al. use principal
component analysis (pca) to reduce a time series output [20].

In our case, direct application of gp is not possible because the output of
the model is a full sample drawn from an unknown, multimodal distribution of
lifespan observations. Therefore, direct application of a gp is not feasible. We
use a Gaussian mixture model (from now on gmm; see Section 4.3) to perform
the pre-processing step.

Figure 1 summarizes our method. We first simulate from the computer model
(gray circle, top row) using a design with N points θ1, . . . ,θN , ∀i θi ∈ Rp. The
points are chosen using Latin Hypercube Sampling (from now on lhs; see Sec.
4.4). From the simulation step we obtain synthetic lifespan samples τ 1, . . . , τN ,
where each sample contains a variable number of observations Mi = |τ i|. We
then fit a gmm (blue rectangle, top row) to each sample τ i and obtain the
corresponding auxiliary parameters vector β̂i. Taken together, the N auxiliary
parameter vectors form the training set Bknown for the gp.

We then apply the gp approximation (blue circle, middle row). Given
an untested computer model parameter vector θ, the gp gives β̂GP (θ) =
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 θ1
...
θN

 Computer
model {τ 1, · · · , τN}

Mixture
model (EM)

 β̂1
...
β̂N

 = Bknown

space-filling
design

N synthetic
user activity

lifespan datasets
auxiliary

parameters

θ

untested pa-
rameter vector

Gaussian
Process
(GP)

β̂GP (θ) = E [β (θ) |Bknown]

auxiliary model

τ

empirical data

Mixture
model (EM) β̂

empirical
mixture

parameters

Figure 1: Indirect inference model calibration. The gray circle in the top row corresponds
to the agent-based simulation step, while blue rectangles correspond to estimation steps. See
main text for explanation.

E [β (θ) |Bknown]. This is an approximation of the unknown mapping β (θ)
between the agent-based model parameters θ and the parameters of the gmm
β.

Separately, we fit the empirical dataset τ to the gmm, and obtain the es-
timated parameters β̂ (bottom row). Indirect inference then compares this
information with β̂GP (θ), to find the value of the agent-based model parameter
θ that gives the best description of the empirical data.

4.2 Indirect inference for model calibration
Let us consider a generative modelM with p unknown parameters θ = (θ1, θ2, . . . , θp),
and n independent, identically distributed observations from an empirical pro-
cess x = (x1, x2, · · · , xn). The IID assumption is required by indirect inference,
and for the case of activity lifespan data from different individuals, like in our
case, is easily satisfied. We assume that maximum likelihood estimation ofM
is either intractable or that the likelihood function L is unavailable in analytic
form – a common case for agent-based models. However, M is generative and
thus we can simulate from it. How can we estimate this model then? Indirect
inference proposes an ingenious way to solve this problem.

Let us consider an auxiliary model Ma with parameters β. The auxiliary
model must foremost be easy to fit to the data x. Intuitively, if the auxiliary
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model Ma is able to capture the main feature of the data, that is, if it is
sensitive enough to changes of θ, then it induces an invertible function β (θ) of
the parameters of our model. Estimation then amounts just to inverting this
function, so that we find the value of θ associated to the estimate β̂. Under the
assumption that the empirical data have been generated by a ‘true’ value θ0,
this is the estimate θ̂ of the parameter θ0 under modelM.

There are different ways to do this. The one we use in this paper is the
so-called “Wald approach” to indirect inference, which minimizes the following
quadratic form:

θ̂ii = arg min
θ

(
β̂ − β̂ (θ)

)T
W
(
β̂ − β̂ (θ)

)
(5)

whereW is a positive definite matrix that is used to give more or less weight to
the auxiliary parameters [65]. If the asymptotic distribution of β̂ is normal, a
common trick to enhance convergence is to generate via simulation S different
realizations of the data x(θ)

1 , . . . ,x
(θ)
S for a given θ, fit each of them to the

auxiliary model, and then take the sample average.
The choice of a good auxiliary modelMa is critical here. In the calibration

of our peer production model we performed several diagnostic checks in order
to ensure that the required condition on β (θ) is satisfied.

4.3 Gaussian mixture models for dimensionality reduction
In this paper, we use gmm for two purposes: first, we want a general-purpose
auxiliary model that is good at summarizing the salient features of the lifetime
distribution. Second, we want to reduce the dimensionality of the model output
so that we can apply the gp emulator.

Formally, the density of mixture model with k components is given by a
weighted average of the densities of each component:

p (x) =
k∑
j=1

πjpj (x;θj) (6)

where
∑
j πj = 1. When pj ∼ N

(
µj , σ

2
j

)
for all j we speak of a Gaussian

mixture model. The vector of auxiliary parameters has dimensionality 3k − 1:

β = (µ1, . . . , µk, σ1, . . . , σk, π1, . . . , πk−1) . (7)

As we said, we measure lifespan as the time elapsed between the first and
the last edit of a user. This means that our data (both the empirical and
the synthetic ones, see Section 3.3) are simultaneously right-censored and left-
truncated. The right censoring is a natural consequence of the finitude of the
observation window. The left-truncation is instead due to physical constraints
of the speed at which humans can interact with a computer interface.6

6For example Malmgren et al. attempted an estimation of the minimum time it takes a
human to send two emails consecutively [47].
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For ease of analysis, before estimating the gmm on our data we can transform
them to a fully truncated sample; that is, both right- and left-truncated. We
can in fact assume that after τmax days of inactivity a user will be permanently
so and focus only on the inactive users. Of course, we do the same also for
the synthetic data produced by the simulator. Following the literature, we took
τmax = 6 months [69].7

For each Wikipedia, we tested both a regular gmm and a truncated one – that
is, a model that assigns zero probability to data outside the observation window.
The window was estimated from the minimum and maximum observations. For
the number of components K, we tried models with k = 2, 3.

4.4 Latin Hypercube Sampling
The indirect inference technique requires us to perform simulations from the
model. To do so, we need to choose a design, which is the sites of the parameters
space at which we want to evaluate or agent-based model.

Following the literature on computer code emulation [51, 20] we use a max-
imin Latin Hypercube design, an efficient, space-filling, block design. A maximin
design Θ = (θ1, . . . ,θN ) maximizes the minimum distance between any pair of
points; that is:

max
Θ

min
i<i′

∥∥θi − θi′∥∥. (8)

In practice, for each community we sampled 104 designs with N = 32 and
chose the one that maximized Eq. (8). For the Italian, French, and Portuguese
wikis, simulations of each site of the hypercube were repeated 10 times.

With the exception of the parameters on which we are going to perform the
indirect inference, all other input variables of the model must be set to some
value that allows the response of the model to be compared with the empirical
data in the best possible way – we see how in the next section.

4.5 Estimation of additional parameters
The model presented in Section 3 contains several parameters. Table 2 summa-
rizes them. For the purpose of estimation, we can identify three types of pa-
rameters: those related to the editing cascades model (Na, λa, λe), parameters
that can be directly estimated from the raw data (see Table 1), and parameters
that need to be estimated via calibration.

The first group of parameters is not going to affect the distribution of τ
too much, provided that a non-pathological choice is taken (e.g. a pathological
choice would be Na = 0, which would recover the original Poisson process). In
particular, we need that users do at least two edits per session; that is, Na ≥ 1.
Provided this is the case, by the definition of τ any additional edit will not
affect the final lifespan of the users. Thus we can set Na = 1 to save cpu

7Results from a simple sensitivity test suggest that the choice of τmax does not impact on
the result of the fit if taken large enough, e.g. 1 month or more.
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Table 2: Parameters for the simulations of the agent-based model of peer production. The
column entitled “Values” may indicate the sampling interval used in the calibration procedure,
or its value.

Parameter Symbol Values Unit

Popularity dampening const. cp (0, 100)
Initial motivation cs (0, 100)
Confidence bound ε (0, 1/2)
Rollback probability prollback (0, 1)
Speed µ (0, 1/2)
Daily sessions rate λa 1 1/day
Session editing rate λe 1 1/min
Additional session edits Na 1
Daily rate of new pages ρp see Tab. 3 1/day
Daily rate of new users ρu " 1/day
Long-term time scale τ0 " day
Short-term time scale τ1 " day
Simulation time T " year

Table 3: Estimated parameters and uncertainties (s.d.) from raw data (see sec. 2) used in
the calibration simulations.

Language ρu ρp τ0 τ1 T
(d−1) (d−1) (min) (d) (d)

Portuguese 9.40± 0.14 6.55 ± 0.61 17.12± 23.61 1.01± 8.70× 103 3.03× 103

Italian 4.06± 0.07 6.4 ± 0.13× 102 15.43± 23.67 1.35± 7.67× 103 2.96× 103

French 2.19± 0.04 1.11 ± 0.03× 103 15.81± 25.67 1.32± 5.72× 103 3.04× 103

cycles. Similarly, we need users to make at least one edit session per day (i.e.
λe = 1 day−1), and that the rate of activity within a session is set to a plausible
value, such as one edit per minute.

The parameters of the second group govern the microscopic dynamic of the
model; for example, the parameters for the update rules Eq. (1) and Eq. (2), or
the popularity dampening factor of the page selection model (cp). These cannot
be readily estimated from the data on user activity and thus are calibrated with
the indirect inference technique showed before. For these parameters, Table 2
reports the intervals used in the Latin Hypercube Sampling scheme.

The parameters from the third group can be estimated from the raw data
(see Section 2). In particular, the simulation time interval T can be set to the
obvious choice T = t1−t0 where t0 and t1 are the earliest and the latest recorded
time stamp in the data, respectively. In the following we cover the estimation
of the remaining parameters (ρu, ρp, τ0, and τ1). Table 3 reports the results of
their estimation.

4.5.1 Time scales of user lifespan

Perhaps the most important parameters we fit separately are the two time scales
τ0 and τ1. These are used to compute the activity lifespan of any user during
the simulations and, as we saw from the factor screening, have an important
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Figure 2: Test simulation for the estimation of the user lifespan scales τ0,1. Histograms:
empirical data from the Portuguese Wikipedia. Black bottom vertical lines: simulated obser-
vations. Red line: nonparametric (i.e. kernel) density estimate of simulated data. Simulation
was performed with mean of clustered data and τt = 3h. Confidence ε = 0.24. Other param-
eters estimated from data of the Portuguese Wikipedia.

impact on the overall lifespan statistics.
The approach we took was to estimate these two values directly from the

data that we wished to fit via indirect inference. Ideally, given a clustering of the
user in two classes, the short-term users and the long-term users, both τ0 and
τ1 should be computable from the observed user lifespans τ and the information
of group membership given by the latent variable computed by em – the so-
called “responsibilities”. In practice, instead of running em we can take a much
simpler approach and just define a hard threshold τt for the lifespan of a user:
observations of τ that are less than τt are assigned to the cluster of short-lived
users, while observations of τ > τt are assigned to the long-lived one.

Once we have performed this (rather crude) form of hard clustering, we
compute suitable descriptive statistics that we take as the estimates for our two
parameters, that is, τ̂0 and τ̂1. We tested several values of τt and eventually
settled for τt = 3h. As for the statistics we used, we computed both median
and mean activity lifespan of each log-normal component. Our objective was
to match the user activity lifespans produced by our model, and therefore we
performed some simulations with both values, adjusting the value of ε by hand,
and found that the mean provided a more reasonable estimate (see Fig. 2).
Larger values of the threshold produce poor-quality estimates both for the mean
and the median.

4.5.2 Activity rates

Here we want to quantify the rates of activity for two processes: the arrival of
new users and the creation of new pages. In our model these two processes are
Poisson processes with a homogeneous rate of activity. Thus, our objective here
is to quantify the average activity rate for both processes, so that we set the
right scale of both processes for our calibration simulations. We estimate both
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Figure 3: Auxiliary parameters as a function of ε. Auxiliary model: gmm with 2 components.
Implicit and explicit parametric plots of parameter ε. Left: µ1 versus µ2; center: σ1 versus
σ2; and right: π1 versus ε.

rates from data.
To compute the rate of new users joining the community, we would need

the daily rate of new account creation. Unfortunately, the time stamps for
the creation of the accounts are not released to the public for obvious privacy
reasons. As an approximation, we use the time stamp of the first edit. The
daily volume of new users is then simply obtained by binning by date. Once we
have the daily volumes, we just compute ρ̂u = ρ. A similar method was used
for estimating ρp using the time stamp at which the page was created. This is
simply the time stamp of the first contribution, which can be obtained from our
raw data (see Section 2) by grouping by page id instead of by user id.

5 Results
For each Wikipedia in our dataset we sampled a maximin lhs design with
50 points, estimated the auxiliary parameters of the gmm, and estimated the
parameters of the GP emulator. For the choice of the auxiliary model, we tested
both mixtures of k = 2, 3 components, with and without data truncation. Before
performing the final step in Eq. (5), we computed several diagnostic measures
for each step of the calibration technique outlined in Figure 1.

5.1 Approximation of auxiliary parameters via Gaussian
process

The choice of a good auxiliary model is important because β (θ) must be able to
capture the features of the data well enough to be able to discriminate between
different choices of the parameters of the agent-based model θ.

Identifiability may be hindered if multiple values of θ result in similar values
of β. A quick way to check this is to plot β, parametrized by θ, and see if the
curve crosses over itself at one or more points, that is, if ∃θ′,θ′′,θ′ 6= θ′′ s.t.
β
(
θ′
)

= β
(
θ′′
)
.
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For illustrative purpose, we assessed the identifiability of the gmm model on
our model of peer production. Figure 3 reports the result of the test. We let
ε range in the interval (0, 1) and used the original (i.e. without edit cascades)
peer production model to produce parametric plots of the parameters of the
auxiliary model β (ε), as a function of ε. The auxiliary model used in Fig. 3
was a simple gmm with two components, for a total of five parameters: two
means (µ1 and µ2), two variances (σ1 and σ2), and one weighting coefficient
(π1). We produced graphs only for the three most meaningful combinations of
the ten possible pairwise choices of these parameters. The first two plots (µ1
vs. µ2 and σ1 vs. σ2) are parameterized implicitly by ε, while the last one
reports the behavior of π1 versus ε explicitly. Close inspection of Figure 3 does
not show any evident cross-overs. Cusps like the one present in the center plot
(circled red), are less critical for identifiability, but may still cause computational
problems if a local optimization technique to estimate the auxiliary parameters
is used. Other cusps may be present in the plots for the other combinations,
which we did not produce for this simpler model; our estimation technique for
the auxiliary model, however, is based on Expectation Maximization and thus
the presence of cusps should not present significant problems.

The next step is to assess the gp approximation. We fit one Gaussian pro-
cess for each parameter of the gmm. In Figure 4 we show the result the gp
approximation based on a learning set of 50 vectors of gmm parameters ob-
tained from as many runs of the agent-based model. In the figure, the blue area
represents the 95% confidence interval of the approximation, which shows a very
tight approximation. Note that there is no change in the lifespan distribution
for ε ≥ 0.5, which is due to the bounded confidence dynamics: in [0, 1] the
dynamics of agreement always result in a full consensus case when ε ≥ 1/2, and
thus the average lifespan of the population is τ0 regardless of the value of ε [28].

5.2 Sensitivity analysis of auxiliary parameters
For a more quantitative assessment of the gmm model as an auxiliary model, we
saw how sensitive each auxiliary parameter was to changes in the inputs of the
agent-based model. This is essentially a factor screening exercise. Moreover,
sensitivity indices can also be used to define the matrix W of eq. (5). We per-
formed a global sensitivity analysis of the auxiliary parameters. We computed
main and total interaction effect indices using a decomposition of variance based
on the winding stairs method [14, 61].

We performed the sensitivity analyses for each type of gmm and for each
dataset. For convenience here we report only the results for the choice of the
auxiliary model that we effectively used later in the calibration (tables 4–6), but
found nonetheless similar results for the other combinations. Small negative
indices near zero were due to the sampling uncertainty in the winding stairs
method.

The result of the sensitivity analysis shows that the auxiliary parameters
with the highest variance were the locations µ of the mixture components (i.e.
the means) and, to some extent, the variances σ. A truncated model seemed
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Table 4: Decomposition of variance, gmm, k = 3. Portuguese Wikipedia. Top panel: main
effects. Lower panel: total interaction effects.

Variable Variance prollback µ ε cs cp

µ1 1.503 0.023 0.038 0.389 0.095 0.020
µ2 16.618 0.036 0.012 0.709 0.022 0.018
µ3 11.331 0.031 0.028 0.698 0.055 0.027
σ1 0.970 0.014 0.029 0.369 0.153 0.026
σ2 1.288 0.016 0.044 0.309 0.125 0.068
σ3 0.071 0.041 0.025 0.499 0.055 0.018
π1 0.015 0.118 0.012 0.145 0.050 0.089
π2 0.039 0.054 0.014 0.304 0.232 0.038

µ1 1.503 0.148 0.227 0.608 0.378 0.096
µ2 16.618 0.115 0.084 0.845 0.138 0.078
µ3 11.331 0.124 0.150 0.780 0.116 0.086
σ1 0.970 0.151 0.186 0.585 0.399 0.109
σ2 1.288 0.264 0.337 0.465 0.272 0.306
σ3 0.071 0.168 0.157 0.733 0.241 0.122
π1 0.015 0.290 0.259 0.506 0.288 0.382
π2 0.039 0.202 0.228 0.492 0.363 0.236

Table 5: Decomposition of variance, truncated gmm, k = 2. Italian Wikipedia. Top panel:
main effects. Lower panel: total interaction effects.

Variable Variance prollback µ ε cs cp

µ1 1.312 0.075 0.073 0.270 0.133 0.060
µ2 2.845 0.037 0.032 0.771 0.043 0.014
σ1 0.533 0.077 0.076 0.281 0.139 0.057
σ2 0.018 0.019 0.088 0.138 0.097 0.073
π1 0.042 -0.006 0.009 0.779 0.105 0.007

µ1 1.312 0.209 0.384 0.477 0.377 0.088
µ2 2.845 0.107 0.048 0.866 0.108 0.054
σ1 0.533 0.214 0.355 0.479 0.375 0.085
σ2 0.018 0.188 0.423 0.435 0.489 0.182
π1 0.042 0.032 0.068 0.805 0.171 0.041

Table 6: Decomposition of variance, gmm. French Wikipedia. Top panel: main effects. Lower
panel: total interaction effects.

Variable Variance prollback µ ε cs cp

µ1 0.511 0.012 0.037 0.294 0.127 -0.014
µ2 2.323 -0.001 -0.002 0.819 0.007 -0.014
σ1 0.470 0.018 0.044 0.295 0.144 -0.008
σ2 0.020 0.001 0.037 0.165 0.043 0.010
π1 0.041 -0.009 -0.013 0.793 0.090 -0.002

µ1 0.511 0.152 0.317 0.534 0.449 0.081
µ2 2.323 0.065 0.034 0.925 0.102 0.049
σ1 0.470 0.161 0.280 0.521 0.458 0.070
σ2 0.020 0.187 0.328 0.570 0.573 0.114
π1 0.041 0.030 0.057 0.846 0.166 0.034
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Table 7: Results of leave-one-out cross-validation. Coefficient of determination R2. For each
language, the best R2 attained over parameter ε is shown in bold.

µ ε prollback cs cp

Portuguese

gmm, k = 2 0.02 0.73 0.00 0.13 0.02
gmm, k = 3 0.03 0.86 0.16 0.02 0.01
tgmm, k = 2 0.01 0.70 0.01 0.36 0.01
tgmm, k = 3 0.04 0.85 0.00 0.28 0.01

Italian

gmm, k = 2 0.00 0.91 0.01 0.66 0.09
gmm, k = 3 0.02 0.90 0.01 0.30 0.03
tgmm, k = 2 0.02 0.93 0.03 0.75 0.01
tgmm, k = 3 0.00 0.85 0.00 0.42 0.03

French

gmm, k = 2 0.00 0.91 0.01 0.61 0.04
gmm, k = 3 0.01 0.90 0.03 0.33 0.01
tgmm, k = 2 0.01 0.76 0.00 0.69 0.08
tgmm, k = 3 0.08 0.86 0.16 0.35 0.09

to decrease the difference in variability between the mixture means. Most im-
portantly, main effect indices show that the confidence parameter (ε) was re-
sponsible for most of the variability of the auxiliary parameters. In summary,
the auxiliary model was especially sensitive to changes in ε, weakly sensitive to
changes in cs, and almost insensitive to other parameters.

5.3 Cross-validation
Finally, we used leave-one-out cross-validation to quantify the accuracy of in-
direct inference in reconstructing the parameters of the model. Using lhs we
sampled N vectors of parameters and simulated from the agent-based model
to obtain as many samples of user activity lifespans. We then set aside one
pair (θh, τh) as test set (the holdout) and used the remaining N − 1 pairs as
a learning set for the indirect inference technique, which we used to estimate
θ̂h from the synthetic lifespan data τh. Repeating this exercise for h = 1 . . . N ,
we can the plot the estimated abm parameters as a function of the true ones,
and compute coefficient of determination R2 to assess the performance of the
calibration.

We performed several cross-validations, for each language and auxiliary
model combination. For each of those, we tested both a weighted and an un-
weighted indirect inference technique. In the weighted case, the diagonal of the
matrix W from Eq. (5) was set to the variances of the parameters from the
global sensitivity analysis (see Tables 4–6), while in the unweighted caseW = I.
Surprisingly, the best results were those with no weighting, which are those we
choose to report here. Table 7 reports the results.

While accuracy, as determined by the R2, varied sometimes appreciably
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Figure 5: Leave-one-out cross validation. x-axis: observed holdout parameter values obtained
by lhs. y-axis: indirect inference estimates based on remaining data. Simulations were carried
out with the parameterization for the Italian Wikipedia (see Table 3); the auxiliary model
was a truncated gmm, k = 2. The red line has slope equal to 1 and serves a guide to the eye.
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Table 8: Calibrated parameters with standard errors.

wiki prollback µ ε cs cp

pt 0.52 ±0.01 0.46 ±0.00 0.39 ±0.00 70.78 ±0.80 51.56 ±0.79
it 0.36 ±0.00 0.21 ±0.00 0.49 ±0.00 53.81 ±0.61 58.31 ±0.57
fr 0.02 ±0.01 0.02 ±0.00 0.49 ±0.00 3.79 ±0.86 89.37 ±0.77
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Figure 6: Comparison between empirical data (histograms) and simulated data (kernel density
estimate, red line), obtained from the calibrated model.

across flavors of the auxiliary model and languages, it seemed consistent with the
results of the global sensitivity analysis. The best-performing auxiliary model
for each language was selected looking at the R2 for the confidence parameter
(in bold in the table). As a graphical companion to the table, Figure 5 shows the
cross-validation plot for the Italian case. As expected, the accuracy is excellent
for the confidence parameter ε and good for the initial motivation cs, while for
other parameters no clear linear trend can be discerned.

5.4 Indirect inference
Having tested the accuracy of the indirect inference technique and selected the
best auxiliary models for each language, we finally applied it to the empirical
data to get estimates of the parameters of our model. Table 8 reports the
results of the calibration; standard errors were computed on a bootstrapped
sample with 1000 observations.

With these, we simulated from the calibrated model. As a way to check
the model fit visually, we plotted in Figure 6 a kernel density estimate of the
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synthetic data together with histograms of empirical data.

6 Discussion
Indirect inference is a promising framework for calibrating computational mod-
els, but its application requires some care and is not as straightforward as classic
inference techniques such as maximum likelihood. In particular, it is important
to assess independently the performance of the auxiliary model in capturing the
salient aspects of the model. This is especially useful for assessing the accuracy
of the model in estimating the various model parameters.

Useful diagnostic tests include parametric plots for assessing potential prob-
lems with identification (Fig. 3) and diagnostic plots of the gp emulator (Fig.
4). Moreover, the results of the cross-validation (Section 5.3) were consistent
with those of the global sensitivity analysis of the auxiliary model (Section 5.2),
which shows exactly how multiple independent methods can provide a compre-
hensive diagnostic picture of a calibration method before one sets out to apply
it to a model.

Using the global sensitivity analysis and cross-validation we learned that
the gmm model could capture well two parameters out of the five we tried to
calibrate, namely the confidence bound ε and the initial motivation cs (see Fig
5). While the result for ε is expected, that for cs comes a bit as an interesting
surprise, and can be explained by noting that this parameter is able to influence
the location of the short-term component of lifespan distribution, a feature that
the mixture model is indeed able to detect, albeit partially.

The method is not reliable at reconstructing the other three parameters,
namely the speed µ, the rollback probability prollback, and the popularity damp-
ening factor cp, as evidenced by the coefficient of determination of the leave-
one-out cross-validation. This means that we gained little by calibrating these
parameters, and could have set them to the mid-range of their intervals before
running the calibration simulations, thus calibrating a simpler model. The low
sensitivity of the auxiliary model to these parameters may be due to the inabil-
ity of the auxiliary model in capturing the patterns in the data, or to the norm
formation model itself; that is, the model may be underdetermined by the data.

Because the Gaussian mixture model is generally regarded as a versatile
model for complicate data, such as the user activity lifespan [17], we deem the
latter a more likely explanation than the former.

Taken together, these results highlight how the choice of a good auxiliary
model is critical to the successful application of indirect inference, and how
factor screening via global sensitivity analysis can be leveraged to assess the
quality of an auxiliary model. Conversely, one could also argue that the cali-
bration exercise, as outlined here, is useful for assessing whether, and especially
where, a model is underdetermined by the data, and thus it could point to an
effective methodology for identifying the parts that may be simplified. Thus in-
direct inference could become a valuable tool in the toolbox of every agent-based
modeling practitioner.
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If, however, one would be interested in estimating their value, then the
question remains open as to which approach should be used for calibrating
reliably the remaining three parameters mentioned above. A different auxiliary
model could be used, but the possibility of incorporating data variables other
than the activity lifespan should be taken into account, since it would alleviate
the under-determination problem. This is most pressing for a parameter like
prollback, which is supposed to play an important role in the mechanism of norm
emergence, while it seems less critical for parameters like µ and cp; in the first
case, this parameter is considered less important for the dynamics of the bc
model [12], while in the other the corresponding mechanism (page selection)
may be just too complicated and thus could be dropped in favor of a simpler
model.

Comparison of the prediction of the calibrated model with the empirical
data (Fig. 6) shows discrepancies at a range of very short time scales (≈
10−8 log (d)), and a degree of overestimation of ε, resulting in a distribution
that gives too much probability at large lifespan scales. Moreover, the esti-
mates for the confidence bound ε parameter (Tab. 8) are very close to the full
consensus value ε = 0.5; this is the value past which consensus is always the
case, suggesting an over-estimation of this parameter. This would be in fact
counter-intuitive, considered the general opinion that Wikipedia is a conflict-
laden arena, and one straightforward implication would also be the absence of
minority groups in the community of Wikipedia users, which seems also in con-
trast with general observation. Table 8 also shows large differences among the
estimates for cs. The calibration accuracy for this parameter is lower than for
ε, which might explain these big differences.

For such a simplistic model, the results are nonetheless encouraging. Better
fits could be attained with more sophisticate estimation of parameters such as
the time scales τ0 and τ1, as well as by introducing a more sophisticated model of
the distribution of the time between consecutive edits of users [57, 72]. The new
parameters, if any, introduced by such models could be estimated separately, or
possibly included in the indirect inference.

Evaluation of the model inadequacy, of the uncertainty in the predictions
due to use of a surrogate model and parameter estimation and goodness of fit
measures are of course all desirable improvements on the methods presented
here [43, 40]. Statistical tests for goodness of fit exist for the classic indirect
inference technique [32]; thus it would be interesting to see how to apply them
when an additional layer of emulation is required, as it is in our case with the
Gaussian Process.

7 Conclusions
We have presented a method for calibrating an agent-based model of the activity
lifespan of users in a community of peer production. The method is especially
suited for models with high-dimensional outputs and long simulation times, as
is often the case in social simulation.
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Peer production communities provide a unique opportunity to study the
emergence of social norms. Norms, including social production norms, con-
tribute to the distinctive culture of an online community and thus the process
of community formation can be regarded more broadly as a process of cultural
dynamics. Several agent-based models have been proposed to explain various
aspects of the process of cultural formation in a generic setting [3, 56, 44, 13, 27].
It would be interesting to know whether these models could be empirically val-
idated in some way, and calibration techniques such as the one presented here
could prove useful to this end.
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