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With the widespread of social networks on the Internet, community detection in social

graphs has recently become an important research domain. Interest was initially limited

to unipartite graph inputs and partitioned community outputs. More recently bipar-
tite graphs, directed graphs and overlapping communities have all been investigated.

Few contributions however have encompassed all three types of graphs simultaneously.

In this paper we present a method that unifies community detection for these three
types of graphs while at the same time merges partitioned and overlapping communi-

ties. Moreover, the results are visualized in a way that allows for analysis and semantic

interpretation. For validation purposes this method is experimented on some well-known
simple benchmarks and then applied to real data: photos and tags in Facebook and Hu-

man Brain Tractography data. This last application leads to the possibility of applying

community detection methods to other fields such as data analysis with original enhanced
performances.

1. introduction

Thanks to the growth of online social networks, community detection has become

an important field of research in computer sciences. Many algorithms have been

proposed (see several surveys on this topic in [8, 28, 34, 29]). Most of them take

unipartite graphs as inputs and produce partitioned communities. In unipartite

graphs any node may share an edge with another node. Other contributions have

also explored bipartite graphs and directed graphs. In bipartite graphs, nodes are

separated in two sets and there are only edges between nodes of different sets. In

directed graphs each link has a start node and an end node. These authors generally

introduce community detection methods which are specific for each type of graphs,

and sometimes for two types of graphs. In this paper we present a method that

encompasses all three types of graphs simultaneously in a unique bipartite graph

model.

With this respect we consider Newman’s modularity [25] and apply it to bipartite

graphs. We show that this modularity model can be directly applied to bipartite

graphs with the side effect of structurally linking objects of both node sets in the

same communities. This structural property is formally demonstrated in Annex 1.

In a second step this model is transformed into a unipartite graph model. As

a result any community detection algorithm for unipartite graph may be applied.
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We chose for experiments the so-called Louvain algorithm [3] which is known for its

efficiency in producing partitioned communities from extensive data sets. It is also

applicable to weighted and unweighted graphs. Our method extracts communities

where both types of nodes are associated. We show that this result is semantically

pertinent although it has been criticized by some authors [20, 13, 1] who think

that there should not be the same number of communities in both sets. Moreover

associating both types of nodes in the same communities opens up new issues.

It is possible to merge partitioned and quantified overlapping communities in a

unique view and then analyze their structure with different perspectives. Indeed

most community detection algorithms such as Louvain use heuristics which lead to

local optima. With our approach we can identify and explain the final organization

and possibly correct some unwanted node assignments.

In the following we use the term ”‘semantics”’ for qualifying entities which are

described by properties or attributes. Community detection is driven by properties

that are shared between entities and consequently the resulting communities are

semantically described by these properties.

For validation and comparison with other authors the whole method has been

experimented on small traditional unipartite and bipartite benchmarks. We have

generated interesting insights which extend beyond known results. We can then

apply our method on real medium-sized bipartite graphs, in a step that reveals

significant properties such as overlapping communities, community compactness

and the role of inter-community objects. These results are valuable when observed

in data like people-photo data sets targeted by our experiments.

Beyond community detection, our method has also been applied to brain data

extracted through ’tractography’ by a team of neurologists and psycho-neurologists

seeking to extract macro connections between different brain areas. Our results were

compared with those they obtained when applying spectral clustering, a traditional

data analysis method. Although they were very similar, our method provided new

insights in the analysis. In conclusion we observe that after having borrowed algo-

rithms from data analysis methods, community detection may in return offer new

tools to these techniques. We also successfully applied our method to most standard

unipartite and bipartite graph benchmarks.

The next section will present a state-of-the-art on community detection methods

using different types of graphs. Section 3 will follow by focusing on a new method

to unify all types of graphs; it uses a definition of modularity for bipartite graphs

directly derived from modularity for unipartite graph which is presented in Annex

1 (section 8). Section 4 will then demonstrate how our unifying method is particu-

larly valuable in computing, visualizing and analyzing partitioned and overlapping

communities. Section 5 presents several practical results on different types of graph

data sets. The conclusion in section 7 discusses the pros and cons of our method in

the light of these experimental results.
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2. State of the art

As stated above, several state-of-the-art assessments have already addressed the

community detection problem: [28, 29, 34, 8]. They are mainly focused on uni-

partite graph partitioning. The calculation performed is based on maximizing a

mathematical criterion, in most cases modularity [25], representing the maximum

number of connections within each community and a minimum number of links

with external communities. Various methods have been developed to identify the

optimum, e.g. greedy algorithms [23, 26], spectral analysis [24], or a search for the

most centric edges [25]. One of the most efficient greedy algorithm for extracting

partitioned communities from large (and possibly weighted) graphs is Louvain [3].

In a very comprehensive state-of-the-art report [8] other new partitioned community

detection methods are described.

The partitioning of communities, despite being mathematically attractive, is

not satisfactory to describe reality. Each individual has ’several lives’ and usually

belongs to several communities based on family, professional, and other activities.

As such other methods more recently take into account the possibility for overlap-

ping communities. The so-called k-clique percolation method [27] detects overlap-

ping communities by allowing nodes to belong to multiple k-cliques. A more recent

method adapted to bipartite networks, and based on an extension of the k-clique

community detection algorithm is presented in [31]. Several methods use local fit-

ness optimization [16][14]. The ’Label Propagation Algorithms’ (LPA) are reported

to be particularly efficient [12]. [16] uses a greedy clique expansion method to de-

termine overlapping communities via a two-step process: identify separated cliques

and expand them for overlapping by means of optimizing a local fitness criteria.

[7] derives n order clique graphs from unipartite graphs to produce partitioned and

overlapping communities using Louvain algorithm. Some research has provided re-

sults in the form of hypergraph communities such as in[6, 5]. Other methods are

found in scientific papers, yet most of these are prone to major problems due to

computational complexity. More recently Wu [33] proposed a fast overlapping com-

munity detection method for large real-world unipartite networks. The method in

[7] presents some common features with ours, albeit with a different strategy, since

it uses traditional partitioning algorithm to extract overlapping communities.

When considering semantics it becomes necessary to focus on bipartite or “multi-

partite” graphs i.e. graphs whose nodes are divided into several subsets, and whose

edges only link nodes from different subsets. One example of this type of graph is

the set of photos from a Facebook account along with their ’tags’ [19] or else the

tripartite network of epistemic graphs [30] linking researchers, their publications

and keywords in these publications. Traditional methods transform the multipar-

tite graph into a unipartite graph by assigning a link between two nodes should

they share a common property. In doing so however semantics is lost. Hence many

researchers retain the multiparty graph properties by extending the notion of mod-

ularity to these types of graphs and then apply algorithms originally designed for
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unipartite graphs [32, 22, 1, 20, 7][18].

3. Unifying bipartite, directed and unipartite graphs

3.1. Bipartite graphs partitioning

3.1.1. Turning bipartite graphs into unipartite graphs.

In formal terms, a bipartite graph G = (U, V,E) is a graph G′ = (N,E) where node

set N is the union of two independent sets U and V and moreover the edges only

connect pairs of vertices (u, v) where u belongs to U and v belongs to V .

N = U ∪ V , U ∩ V = ∅, E ⊆ U × V .

Let r = |U | and s = |V |, then |N | = n = r + s

The unweighted biadjacency matrix of a bipartite graph G = (U, V,E) is a r× s
matrix B in which Bi,j = 1 iff(ui, vj) ∈ E and Bi,j = 0 iff(ui, vj) /∈ E.

It must be pointed out that the row margins in B represent the degrees of nodes

ui while the columns’ margins represent the degrees of nodes vj . Conversely, in Bt,

the transpose of B, row’s margins represent the degrees of nodes vj and columns’

margins represent the degrees of nodes ui. Let’s now define the off-diagonal block

square matrix A′ :

A′ =

(
0r B

Bt 0s

)
where 0r is an all zero square matrix of order r and 0s is an all

zero square matrix of order s.

This symmetric matrix is the adjacency matrix of the unipartite graph G ′ where

nodes’ types are not distinguished. It is possible to apply to G ′ any algorithm for

extracting communities from unipartite graphs. A′ is also the off-diagonal adjacency

matrix of bipartite graph G . Consequently the communities which are detected in

G ′ are also detected in G . The question is to determine the validity of this side effect

result: what is the quality of partitioning for G when applying an unipartite graph

partitioning algorithm on G ’? Barber [1] and Liu/Murata [18] have also introduced

the block matrix as a way of detecting communities in bipartite graphs. However

we see below that they do not take all consequences of this approach.

3.1.2. Extending modularity to bipartite graphs

Modularity is an indicator often used to measure the quality of graph partitions [25].

First defined for unipartite graphs, several modularity variants have been proposed

for bipartite graph partitioning and overlapping communities. More recently several

authors introduced modularity into bipartite graphs using a probabilistic analogy

with the modularity for unipartite graph which will be discussed below. However

when applying unipartite graph modularity optimization algorithms to bipartite

graphs, it is another expression of probabilistic modularity presented hereafter.

Let G = (U, V,E) be a bipartite graph with its biadjacency matrix B and the

unipartite graph G ′ with the adjacency off-diagonal block matrix A′. Let’s consider

Newman’s modularity [25] for this graph G′. It is a function Q of both matrix A′
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and the communities detected in G′ :

Q =
1

2m

∑
i,j

[
A′ij −

kikj
2m

]
δ(ci, cj) (1)

where A′ij represents the weight of the edge between i and j, ki =
∑

j A
′
ij is the

sum of the weights of the edges attached to vertex i, ci denotes the community to

which vertex i is assigned, the Kronecker’s function δ(u, v) equals 1 if u = v and

0 otherwise and m = 1/2
∑

ij A
′
ij . Hereafter we only consider binary graphs and

weights are equal to 0 or 1.

After several transformations we show (see Annex 1, Section 8) that this mod-

ularity can also be written using the biadjacency matrix B of the bipartite graph

G = (U, V,E):

QB =
1

m

∑
ij

[Bij −
(ki + kj)²

4m
]δ(ci, cj) (2)

where ki is the margin of row i in B, kj the margin of column j in B and

m =
∑

ij Bij = 1
2 ×

∑
ij A

′
ij = m in (1).

Another interesting formulation to be used is the following (Appendix 1, Section

8):

QB =
∑
c

[
|ec|
m

–(
(du|c + dv|c)

2×m
)²] (3)

where |ec| is the number of edges in community c, and dw|c is the degree of node

w belonging to c.

This formulation of modularity is the same as Newman’s modularity with more

detailed information: it explicitly shows that both sets of nodes are structurally

associated in the same communities.

Since in the general case B is not symmetric, this definition thus character-

izes modularity for bipartite graphs after their extension into unipartite graphs. It

then becomes possible to apply any partitioning algorithm for unipartite graphs to

matrix A′ and obtain a result where both types of nodes are bound in the same

communities, except in the case of singletons (i.e. nodes without edges). This def-

inition from unipartite graph modularity given that it is able to bind both types

of nodes, is compared in Section 3.2 with other authors’ modularity models for

bipartite graphs.

3.1.3. Turning oriented graphs into bipartite graphs.

A directed graph is of the form Gd = (N,Ed) where N is a set of nodes and Ed is a

set of ordered pairs of nodes belonging to N : Ed ⊆ N ×N . From the model in (1)
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Leicht [17] use probabilistic reasoning ’insights’ to derive the following modularity

for directed network:

Q =
1

m

∑
ij

[
Aij −

kini k
out
j

m

]
δ(ci, cj) (4)

where kini and koutj are the in - and out- degrees of vertices i and j, A is the asym-

metric adjacency matrix, and m =
∑

ij Aij =
∑

i k
in
i =

∑
i k

out
j . Symmetry is then

restored and spectral optimization applied to extract non-overlapping communities.

This model leads to a node partition that does not distinguish between the in and

out roles; the nodes are simply clustered within the various communities.

To compare these authors’ method to ours, we transformed directed graphs into

bipartite graphs (this transformation was also suggested in Guimera’s work [13]

when applying their method for bipartite networks to directed graphs, as will be

seen below). At this point, let’s differentiate the nodes’ roles into N×N . Along these

lines, we duplicate N and consider two identical sets Nout and N in. The original

directed graph Gd is transformed into a bipartite graph G = (Nout, N in, E) in

which nodes appear twice depending on their ’out’ or ’in’ role and moreover the

asymmetric adjacency matrix A plays the role of biadjacency matrix B in bipartite

graphs. We can now define modularity for directed graphs as follows:

QB =
1

m

∑
ij

[Aij −
(kini + koutj )²

4m
]δ(ci, cj) (5)

After applying any algorithm for a unipartite graph on the corresponding adja-

cency matrix A′ we obtain a partition where some nodes may belong to the same

community twice or instead may appear in two different communities. Each model

has its pros and cons. Leicht’s model [17] is preferable when seeking a single parti-

tion with no role distinction. Our model is attractive when seeking to distinguish

between ’in’ and ’out’ roles, e.g. between producers and customers where anyone

can play either role. The brain data example that follows will demonstrate that our

model is particularly well suited for analyzing real data.

3.1.4. Turning unipartite graphs into bipartite graphs

In the above presentation, we introduced modularity for bipartite graphs as a formal

derivative of unipartite graph modularity. It is dually possible to consider unipartite

graphs as bipartite graphs, and extract communities as if unipartite graphs were

bipartite graphs. To proceed, we must consider the original symmetric adjacency

matrix A as an asymmetric biadjacency matrix B (with the same nodes on both

dimensions) and build a new adjacency matrix A′ using the original adjacency

matrix A twice on the off-diagonal, as if the nodes had been cloned. When applying

a unipartite graph partitioning algorithm, we then obtain communities in which

all nodes appear twice. This method only works if we add to A the unity matrix
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I (with the same dimensions as A) before building A′. The first diagonal in A in

fact only contains 0s since no loops are generally present in a unipartite graph

adjacency matrix. Semantically adding I to A means that all objects will be linked

to their respective clones in A′. This is a necessary step in that when extracting

communities, the objects must drag their clones into the same communities in order

to maintain connectivity. In practice therefore, for unipartite graphs, we build A’

with A+ I.

It may seem futile to perform such a transformation from a unipartite graph

to a bipartite one in order to find communities in unipartite graphs given that for

computing bipartite graph partitioning, we have already made the extension into

unipartite graphs using their (symmetric) adjacency matrix. This transformation

is nonetheless worthwhile for several reasons. First, when appearing twice, nodes

should be associated with their clones. If the resulting communities do not display

this property, i.e. a node’s clone lies in another community, then the original matrix

is not symmetric and can be considered as the adjacency matrix of a directed graph.

This conclusion has been applied to the human brain tractography data clustering,

which will be described in the experimental section below.

Conversely, if we are sure that the original adjacency matrix is symmetric, then

a result where all nodes are associated with their clones in the same communities

would be a good indicator of the quality of the clustering algorithm and moreover

provides the opportunity to compare our bipartite graph approach with other uni-

partite graph strategies. This is also a method we introduced into our experiment

(see the karate and other applications below) for the purpose of verifying the validity

of results.

Lastly, the most important benefit consists of building overlapping communities

and ownership functions for unipartite graphs using the method explained in Section

4 below. Although transforming unipartite graphs into bipartite graphs requires

more computation, it also provides considerable information opening the way to

semantic interpretation, which justifies its application in a variety of contexts.

3.2. Comparison with other modularity models and partitioning

algorithms for bipartite graphs

Most modularity models which have been proposed in the literature for bipartite

graphs are inspired by Newman’s modularity for unipartite graphs. In some of them

the objective is to distinguish the number of communities in each type of nodes [13]

[21][32]. However there is a recent consensus on a probability null model introduced

by Barber [1] which is very close to the original Newman’s modularity null model

for unipartite graphs [18]. Although these authors introduce the same block matrix

as we do, their modularity model differs from ours.

After small transformations for unifying notation, Barber’s model ( see [2] equa-

tion 19) is the following:
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QB
b =

1

m

∑
i,j

[Bij −
kikj
m

]δ(ci,cj) (6)

This model is slightly different from our model:

QB =
1

m

∑
ij

[Bij −
(ki + kj)²

4m
]δ(ci, cj) (7)

The formal difference is obvious and deserves some comments. Our modularity

expression is formally derived from Newman’s unipartite modularity model (see

appendix).

As was shown in equation 3, it is equivalent to considering bipartite graphs as

unpartite graphs with both types of graphs behaving the same.

We are therefore inclined to directly apply unipartite graph algorithms which

are based on this model and expect modularity optimization. Conversely [1][18],

although they consider the same block matrix as we do, they specify a different

null model which is conceptually sound but not the result of a direct mathemat-

ical derivation from the unipartite model. Therefore either these two definitions

are equivalent in terms of final optimization, or, if they are not, Barber’s model

should be used with specific algorithms for bipartite graphs, or with algorithms for

unipartite graphs adapted to bipartite graphs.

If their interpretation is different, the effects of using either this formula or the

other can be observed according to two perspectives: 1) the number of communities

in each set, 2) the node distribution of each type in the communities. According

to our definition of modularity, both types of nodes are explicitly bound. Conse-

quently when applying any unipartite graph algorithm for detecting communities,

both types of nodes should have the same number of communities and, except for

singletons, they should be regrouped into the same communities (a type of node

should not be isolated in a community). This side effect is not explicit in Equation

6. However since in this equation δ(ci, cj) specifies that the summation is applied to

both types of objects belonging to the same community, the side effect is the same:

optimizing the standard bipartite graph modularity should yield a partitioning of

both types of nodes in the same communities (this analysis is also found in [21] :

“This definition implicitly indicates that the numbers of communities of both types

are equal”). Both modularities should then produce the same results in terms of

node type distribution.

As far as the number of communities and node ownership are concerned, it is

more difficult to compare the results of both these models, in particular if vari-

ous algorithms are applied depending on the selected model. For instance, in the

Southern Women experiment described below, we found 3 communities when ap-

plying Louvain, while Murata in [18] found four communities using their original

LPAb+ algorithm. These authors however only provided a quantitative evaluation
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via comparison with other algorithms on computation performance and modularity

optimization; in contrast, we provide hereafter qualitative analysis as well, which

allows for semantics justification on the partitioning as will be showed in next sec-

tion.

4. Detection and analysis of community overlapping

4.1. Adding semantics to communities

The fact that both types of nodes are bound in their communities yields several

important results. First, in considering one type of nodes, a community can be

defined by associating a subset of nodes from the other type. In other words, nodes

from one set provides sense and semantics for the grouping of nodes from the other

set and moreover may qualitatively explain regroupings, as will be seen below. This

semantic perspective has not been considered by any of the other authors, a situation

due to the fact that in other contributions, either the number of communities differs

for both types of nodes (e.g. [20], or else when both types of nodes contain the same

number of communities they are not bound in each community [13, 1].

Binding both types of nodes into the same communities yields other pertinent

results. For one thing, it is possible to define belonging functions and consequently

obtain quantified overlapping communities. In the following discussion, we will con-

sider three possible belonging functions, which may expose community overlapping

in a different light.

4.2. Probabilistic function

Let’s adopt the Southern Women’s benchmark, which will be more thoroughly de-

scribed in Section 5.3 below. Applying the Louvain community detection algorithm

for unipartite graphs yields a partition where Women and Events are regrouped

into three exclusive communities. Let’s call these communities c1 , c2 and c3. Now,

let’s suppose the fictitious case in which woman w1 participated in events e1, e2, e3
and e4 . furthermore, w1, e1 and e2 are classified in c1, while e3 is classified in c2
and e4 is classified in c3. We can then define a probability function as follows:

P (ui ∈ c) =
1

ki

∑
j Bijδ(cj) (8)

where c is a community, ki =
∑

j Bij and δ(cj) = 1 if vj ∈ c or δ(cj) = 0 if

vj /∈ c
In P (ui ∈ c) the numerator includes all edges linking ui to properties vj ∈ c

and the denominator contains all edges linking ui to all other nodes. With this

function in the present example the probability of w1 being classified in community

e1 equals 2
4 , and her probabilities of being classified in c2 and in c3 are 1

4 each. The

probability a node belongs to a given community is the percentage of its links to

this community as a proportion of the total number of links to all communities. In
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other words, the greater the proportion of links to a given community, the higher

the expectation of belonging to this community.

4.3. Legitimacy function and overlapping communities

It is possible to add more meaning in order to decide which community a given node

should join. The legitimacy function serves to measure the node involvement in a

community and other results to show community overlapping. The more strongly a

node is linked to other nodes in a community, the greater its legitimacy to belong

to the particular community. In the Southern Women’s example, let’s assume that

after partitioning, c1 contains 7 events, c2 5 events and c3 2 events (which is actually

the case in the experiment presented below). Then, w1 would have a 2
7 legitimacy

for c1, 1
5 for c2 and 1

2 for c3. The legitimacy function can thus be formalized as

follows:

L(ui ∈ c)f =

∑
jBijδ(cj)

|{v ∈ c}|
(9)

where c is a community, δ(cj) = 1 if vj ∈ c or δ(cj) = 0 if vj /∈ c
The numerator in this expression is the same as the probabilistic function nu-

merator. Only the denominator is different.

4.4. Reassignment Modularity function

Reassigning node w from C1 to C2 either increases or decreases the modularity

defined in Equation (2). Such a change is referred to as Reassignment Modularity

(RMw:C1→C2
).

The full development about this expression is exposed in Annex 2 (cf section 9).

After simplification this expression yields to:

RMw:C1→C2 =
1

m
(lw|2 − lw|1)− 1

2m2
[d2w + dw(dC2 − dC1)] (10)

Reassignment is a very interesting measure. It allows detection of nodes that are

not properly assigned to a community. Since most community detection algorithms

are greedy algorithms some nodes may not be in a stable situation. The RM value

reveals unstable nodes and the community to which they should be assigned.

5. Experimentation

This section will consider several benchmarks from various sources. We begin by

applying our method to two simple graphs: the so-called ”karate club” unipartite

graph from [35] shows friendship relations between members of a karate sport club;

and the ”Southern Women” bipartite graph depicts relations between southern

American women participating in several events. Our method is then applied to
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a medium-sized dataset extracted from a real-world situation. For this purpose,

we consider a bipartite graph (people tagged on photos) drawn from a student’s

”Facebook” account containing an average number of photos and people. Lastly, this

same method will be applied to human brain data in order to derive dependencies

between several areas in the brain. We also applied our method on several well

known unipartite and bipartite graph benchmarks as well as on big size benchmarks.

5.1. Unipartite graph: Karate club

The karate club graph [35] is a well-known benchmark showing friendship relations

between members of a karate club; it is a unipartite graph on which many partition-

ing algorithms have been experimented. Consequently, this set-up makes it possible

not only to verify that our method for bipartite graphs when applied to unipartite

graphs meets expected results, but also to assess the additional knowledge extracted

from overlapping.

We began by directly applying the Louvain algorithm to the original unipartite

graph, represented by its adjacency matrix A. which yielded four separate commu-

nities (as shown in 2). These are the same communities extracted by other authors,

e.g. [25]. During a second experiment, we considered that the adjacency matrix A

is in fact a biadjacency matrix B which is representative of a bipartite graph whose

corresponding objects are the club members and whose properties are also club

members. An edge exists in the bipartite graph between a club member-object and

a club member-property provided an edge is present between the two club members

in the original unipartite graph. The new A′ adjacency matrix is A′ =

[
Or B

Bt Os

]
,

where B = A+ I. and where I is the identity matrix (as explained in section 3.1.4).

We once again apply the Louvain algorithm to A′.

Results. As expected, these same four communities identified in the unipartite

graph have been extracted from the bipartite graph, with the same individuals

appearing twice in each community (see Figure 2). This initial result confirms the

absence of bias when transforming a unipartite graph into a bipartite one. The

second result is more pertinent because it reveals an overlap between communities

when considering legitimacy values. If we were to consider just the cell colorings

in the figure, an overlap would be observable whenever at least one node from a

community is linked to other nodes in another community. The legitimacy values

that indicate the involvement of each node in each community offer an effective tool

for identifying and analyzing new features. Some slight differences have been noted

in works by other authors: for example, in page 2, Porter [29] placed node number

10 in the second community. In our case, this node has been placed in the first

community, though the legitimacy value suggests that it should have been placed

in the second one, in which case the situation would be reversed in the second

community and node 10 would have a legitimacy value that alters its placement

in the first community. Node 10 is thus in a hesitation mode between the two
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Fig. 1. Karate club graph with partitioned communities

Fig. 2. Karate club communities and legitimacy measures

communities.

To the best of our knowledge, this experiment represents the first time Karate

communities are shown as separate and overlapping. Partitioning provides a prac-

tical way to observe communities; however, overlapping reveals the extent to which

partitioning reduces the amount of initial information. With our method for exam-

ple, it can be seen that some nodes actually straddle several communities, e.g. node

10 in our experiment.

5.2. Unipartite graphs: other known benchmarks

We have applied our method on several other well known unipartite graphs, such

as Dolphins and other benchmark graphs such as those in [11]. As for the “Karate”

case, we get the same community partitions as Newman algorithm [25]. [15] pro-

posed a well known algorithm to generate benchmark graphs (also used by [29, 8,

12] and others) where communities are well identified. We used this algorithm to

generate 30, 128, 500 and 1000 node such graphs to test our algorithms and show the

efficiency of our method. We do find the same number of communities as Newman’s

algorithm since the modularity formula we use is directly derived from Newman’s

one and we get the same analysis and results as in [15]. However we provide a

very interesting knowledge with supplementary data to observe node overlapping

on these communities.

The modularity has a limited resolution that depends on the number of edges in

the network [9]. We observed a main consequence of the resolution limit: the modules

in large networks may have hidden substructures that require deeper investigations
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to reveal.

5.3. Bipartite graph: Southern Women

This benchmark has been studied by most authors interested in checking their par-

titioning algorithm for bipartite graphs. The goal here is to partition, into various

groups, 18 women who attended 14 social events according to their level of par-

ticipation in these events. In his well-known cross-sectional study, [10] compared

results from 21 authors, most of whom identified two groups.

Results. In Figure 3, the bipartite graph is depicted as a bi-layer graph in the

middle with women at the top and events below; moreover, the edges between

women and events represent woman-event participations. Three clusters with asso-

ciated women and events have been found and eventually shown with red, blue and

yellow colorings. This result is more accurate than the majority of results presented

in [10]; only one author found three female communities. Beyond mere partitioning,

Figure 3 presents overlapping communities using two overlapping functions, namely

legitimacy and reassignment modularity (RM). Legitimacy and RM for women are

placed just above female partitioning; for events, both are symmetrically shown be-

low event partitioning. As expected, reassignment in the same community produces

a zero RM value. The best values for legitimacy and RM have been underscored.

Only the values of woman 8 and event 8 indicate that they could have been in an-

other community. This is the outcome of early assignment during the first Louvain

phase for entities with equal or nearly equal probabilities across several commu-

nities. It can be observed in [10] that woman 8’s community is also debated by

several authors; our results appear to be particularly pertinent in terms of both

partitioning and overlapping.

The fact that women and events are correlated may be considered to cause a

bias, such as in the number of communities. When comparing our results to those

of other authors however, the merging of our blue and yellow communities produces

their corresponding second community. In their trial designed to obtain a varying

number of communities in both sets, Suzuki [32] found a large number of singletons.

Their results were far from those presented in [10], while ours were compatible and

more highly detailed.

In conclusion, results on the Southern Women’s benchmark are particularly rel-

evant. Moreover, our visualization enables observing community partitioning, over-

lapping and possible assignment contradictions. The application of reassignment for

better modularity optimization will be tested in a subsequent work.

5.4. Bipartite graph: Facebook account

In a Facebook (FB) account, several types of informations may be extracted. We

extracted and evaluated only data coming from FB photo albums with its tags. We

did not use friendship relations. Three Facebook photo files were downloaded from

various Facebook (FB) accounts. All these files were extracted with the consent
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Fig. 3. Women Events communities with legitimacy and Reassignment modularity measures

of their owners, none of whom were members of the research team. A person was

considered to be linked to a photo if he/she had been tagged in the photo. We

then have a bipartite graph composed of two type of nodes : persons and photos.

Community extraction using our method reveals some common features among the

datasets. These features are shown in Figure 4 for one FB photo file, in which 274

people could be identified in a total of 644 photos.

Results. Communities are seldom overlapping, which supports the notion that

the photos were taken at different times in the owner’s life (this is to be confirmed in

a forthcoming study). When the owner was asked to comment on the communities,

two main observations were submitted. The various groups of people were indeed

consistent, yet with one exception. The owner was associated in the partition with

a group she had met on only a few occasions and not associated with other groups

of close friends. An analysis of the results provided a good explanation, which is

partially displayed in Figure 4. From this view, the FB account owner is in the first

community on the left, yet she is also present in most of the other communities (see

grey color levels in the first column). Although at first glance it might be assumed

that she is not part of other communities, our visualization indicates that such is not

the case. She is present in most communities, even though she is mainly identified

in the first one. Three types of photos can be distinguished in this first community.

More than 200 photos only contain the owner’s tag, plus a few photos with unique

tags of another community member; for every other person, at least one photo tags

him/her with the owner. This first community has in fact been built from the first

group with photos of unique owner’s tags associated with the owner. The owner’s

tag thus encompasses photos containing two people, one of whom is the owner. It

turns out that this group is predominantly the owner’s group.

In conclusion, partitioning only the bipartite graph would have produced a major

pitfall: the owner would have been isolated in a community that is not his/her top

preference. With our method, merging partitioning and overlapping exposes better

multiple regroupings with broader affinities. Other communities also showed high

consistency when considering the photos: each community was associated with some

particular event responsible for gathering a group of the FB account owner’s friends.
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Fig. 4. Facebook account communities with overlapping

5.5. Bipartite graph: Brain Data

Our method was initially designed for human community detection and analysis.

In this experiment, we have demonstrated how it can be applied to other data

analysis techniques as well. The brain dataset was collected on a single patient by

a research team affiliated with the ”Human Connectome” project working on brain

tractography techniques [4]. These techniques use Magnetic Resonance Imaging

(MRI) and Diffusion Tensor Imaging (DTI) to explore white matter tracks between

brain regions. Probabilistic tractography produces ’connectivity’ matrices between

Regions Of Interest (ROI) in the brain. For the case we studied, ’seed’ ROIs were

located in the occipital lobe and ’target’ ROIs throughout the entire brain. The

goal here was to detect possible brain areas in the occipital lobe through ROI

clustering on the basis of similar track behavior. In [4], the research team used

Spectral Clustering (SC) to combine ROIs. It is interesting to note that SC is one

of numerous techniques that have traditionally been applied in social community

detection, e.g. by Bonacich on the Southern Women’s benchmark [10]. SC results

are limited to community partitioning (though in theory overlapping could also

be computed). The goal was to experiment with our method and produce both

partitioning and overlapping analyzes of brain areas.

The original matrix contained 1,914 rows and 374 columns, with cells denoting

the probabilities of linkage between ROIs. We considered this matrix as a bipartite

graph biadjacency matrix with weighted values and then applied our community

detection method. Figure 5 presents the results of ROI community partitioning and

overlapping. Each color in the first row is associated with a community that gathers

several ROIs. Each ROI is represented by a column that indicates its belonging to

the other communities. When a cell is highlighted with a color, a nonzero overlap-

ping value exists for both this ROI and the corresponding community (with commu-

nity numbers being plotted on the left-hand side of the figure). This value has been

computed with the legitimacy function, which has been extended to the weighted

edges, i.e. the weighted sum of values from cerebral hemisphere zones (ELF) within

the selected community. Each community is associated with a threshold value corre-

sponding to the maximum weighted legitimacy above which the community would

lose a full member. For each community, this threshold value is automatically com-
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Fig. 5. Brain data communities with overlapping

puted in order to include all ROI members of the community.

Results. We found 7 communities when neurologists selected 8 clusters with SC

and after choosing the most significant eigenvectors on a scree test. Let’s observe

that two communities overlap heavily on all others, which thus overlap to a lesser

extent. Figure 5 confirms the strong interest in this set-up that simultaneously

exhibits overlapping and non-overlapping data. These results have been taken into

account by a team of neurological researchers as different observations recorded on

brain parcellation.

5.6. Bipartite graphs: others known benchmarks

Bipartite graph datasets are not easy to find in litterature. We also tested our

algorithms with bipartite networks used as benchmark networks in [1]. One of them

is the network benchmark describing corporate interlocks in Scotland in the early

twentieth century. The data set characterizes 108 Scottish firms during 1904-5,

detailing the corporate sector, capital, and board of directors for each firm. The data

set includes only those board members who held multiple directorships, totaling

136 individuals. Barber found “roughly” (sic) 20 communities, whereas we find 15

communities and provide very interesting knowledge about overlapping for these

communities. We obtained a global modularity of 0.71038 whereas Barber found a

smaller value of 0.56634.

To evaluate scalability on our method we tested a rather big co-authorship

bipartite dataset to detect scientific communities extracted from the well known

PubMed (http://www.ncbi.nlm.nih.gov/pubmed) biomedical scientific litterature

online library. Our dataset was composed of 30,000 persons and more than 80,000

scientific papers. We extracted 184 communities of average 670 members in about 3

seconds, with interesting overlapping information. Regarding resolution limit men-

tionned earlier, the modularity method applied to bipartite graphs has a similar

limit, with similar consequences.

6. Discussion and new perpectives

The above experiments show that our method is able to find overlapping com-

munities in different types of graphs. Moreover, it is able to measure the degree of

membership for each node to each community. We then get a first semantic interpre-

tation of each node in terms of community membership. These results are obtained

http://www.ncbi.nlm.nih.gov/pubmed
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through the use of the off-diagonal block square matrix A
′
. Several other methods

may compute modularity by using directly a graph structure without building any

off-diagonal block matrix. For example LPA based methods [12, 18] which use Bar-

ber’s modularity definition for bipartite graphs may work directly with the graph

structure. However the results that are presented in these papers are different. They

find 4 communities for the Women Events dataset instead of 3 in our case. Since

Barber’s modularity expression is different from ours, it is difficult to compare these

different results.

Louvain algorithm which uses Newman’s modularity formula is adapted to

monopartite graphs. Since the approach with the block matrix requires more data

and computation, we also tried applying Louvain algorithm directly on to the biad-

jacency matrix B. We tested it on the same two bipartite data sets: Women Events

and Facebook. Surprisingly, we got the same results as those with the block square

matrix A
′
. This experiment suggests the possibility of directly applying unipartite

graph models onto bipartite graph models with unipartite graph modularity. More-

over our method with the block matrix A
′

could be a good means for validating

this possibility.

This counter intuitive conclusion needs more experiments and more theoreti-

cal proof. Particularly since other authors use Barber’s model which is specifically

adapted for bipartite graphs. Future work will deeper investigate this possibility of

directly applying unipartite graph methods to bipartite graphs.

7. Conclusion

In this paper, we have demonstrated the feasibility of unifying bipartite graphs, di-

rected graphs and unipartite graphs under a common unipartite graph model. It was

then proved that any unipartite graph partitioning algorithm aiming at optimizing

the standard unipartite modularity model leads to a bipartite graph partitioning,

wherein both types of nodes are bound in the communities. In the special case of

directed graphs, nodes appear twice in potentially different communities depending

on their roles; for unipartite graphs, nodes are cloned and appear with their clones

in the same communities.

We also introduced the possibility of unifying in a single view, the partition-

ing and the overlapping communities. This development is possible thanks to as-

sociating both types of nodes in the communities. Moreover, overlapping can be

characterized through several functions presenting different interpretations. For in-

stance, it is possible to identify those nodes that define the community cores, i.e.

those who belong exclusively to just one community and, conversely, those who

serve as bridges between different communities. We also introduced reassignment

values which open up the possibility of improving partitioning results. Practically

speaking, when applying our method to various benchmarks and datasets, we are

able to extract meaningful communities and display surprising overlapping proper-

ties when other authors limit their goal to identifying communities. We extend far
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beyond this point and provide tools for analyzing and interpreting results.

Lastly, we introduced an essential result after experimenting on real brain

datasets, supplied by a research team from the Connectome project. Historically

authors dealing with community detection problems used to borrow their meth-

ods from data or graph analysis such as hierarchical clustering, clique enumeration

or spectral analysis. Recent community detection approaches based on modularity

optimization use original methods (Louvain, label propagation). We showed that

these methods could also be applied to data analysis with good results. Moreover

these results can be obtained without the need to choose parameters such as the

number of clusters, or a threshold value. It is of particular interest to note that

after borrowing their methods from other scientific domains, community detection

techniques are now enough mature for providing these domains with new original

performing methods.

In the future we will continue exploring cross fertilization between community

detection techniques and other scientific domains. In particular we will use Nash

equilibrium for studying community stability through the reassignment value we

introduced in this paper. Indeed we think that community stability could be an-

other quality criteria along with modularity optimization for driving and assessing

community detection algorithms’ performances.
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8. Annex 1

8.1. New use of Newman modularity

In this Annex, we will provide full details of the demonstration that yielded Equation

(2).

For the sake of convenience, let’s use the definition of unipartite graph modu-

larity offered in Newman [17]. It is a function Q of matrix A
′

and the communities

detected in G [25]:

Q =
1

2m

∑
i,j

[
A

′

ij −
kikj
2m

]
δ(ci, cj) (11)

where A
′

ij denotes the weight of the edge between i and j, ki =
∑

j A
′

ij is the

sum of the weights of edges attached to vertex i, ci is the community to which

vertex i has been assigned, the Kronecker’s function δ(u, v) equals 1 if u = v and 0

otherwise and m = 1/2
∑

ij A
′

ij .

In our particular case (i.e. where A
′

is the off-diagonal block adjacency matrix

of a bipartite graph), we apply the following transformations:

Let’s rename i1 as index i when 1 ≤ i ≤ r and i2 when r < i ≤ r+s. Conversely,

let’s rename j1 the index j when 1 ≤ j ≤ r and j2 when r < j ≤ r + s.

To avoid confusion between the A
′
’s indices and B’s indices let’s rename B

indices ib and jb : 1 ≤ ib ≤ r and 1 ≤ jb ≤ s (see a representation of A matrix

below (Figure 12))
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A′ =

A
′
indexes ↓→ ....j1.... ....j2....

... ...

i1 Or B ib r rows

... ...

... ...

i2 Bt Os jb s rows

... ...

....ib.... ....jb.... ←↑ B indexes

r columns s columns

(12)

Let’s call kib the margin of row ib in B and kjb the margin of column jb in B.

kib =
∑
jb

Bibjb =
∑
j2

A
′

i1j2 =
∑
i2

A
′

i2j1 , where ib = i1 = j1 (13)

kjb =
∑
ib

Bibjb =
∑
i1

A
′

i1j2 =
∑
j1

A
′

i2j1 , where jb = i2–r = j2–r (14)

kib is the degree of node uib , kjb is the degree of node vjb . Let’s define ki/j1 =∑
j1A

′

ij1
and ki/j2 =

∑
j2
A

′

ij2
. Conversely : kj/i1 =

∑
i1
A

′

ji1
and kj/i2 =

∑
i2
A

′

ji2
.

Hence : ki =
∑

j A
′

ij = ki/j1 + ki/j2 , kj =
∑

iA
′

ij = kj/i1 + kj/i2 .

By taking into account the structure and properties of A′ in (13) and (14) for

the indices we derive the following properties :

ki/j1 has non-zero values only for i = i2, with kjb the degree of node vjb :

ki/j1 = ki2/j1 =
∑
j1

A
′

i2j1 =
∑
i1

A
′

i1j2 = kj2/i1 = kjb (15)

ki/j2 has non-zero values only for i = i1, with kib the degree of node uib :

ki/j2 = ki1/j2 =
∑
j2

A
′

i1j2 =
∑
i2

A
′

i2j1 = kj1/i2 = kib (16)

Moreover and more directly: kj/i1 offers values only for j = j2: kj/i1 = kj2/i1 =

ki2/j1 = kjb , the degree of node vjb . kj/i2 offers values only for j = j1: kj/i2 =

kj1/i2 = ki1/j2 = kib , the degree of node uib .

8.2. Analyzing second part of Q in equation (11)

Using these properties of matrix A
′
, it is now possible to analyze

∑
ij kikj . in

equation (11).

Next, by developing ki and kj in A
′

we obtain:
∑

ij kikj =
∑

ij(ki/j1 +

ki/j2)(kj/i1 + kj/i2)
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=
∑

ij ki/j1kj/i1 +
∑

ij ki/j2kj/i2 +
∑

ij ki/j1kj/i2 +
∑

ij ki/j2kj/i1

=
∑
i2j2

ki2/j1kj2/i1 +
∑
i1j1

ki1/j2kj1/i2 +
∑
i2j1

ki2/j1kj1/i2 +
∑
i1j2

ki1/j2kj2/i1 (17)

Let’s note that
∑

ij ki/.kj/. =
∑

i ki/.
∑

j kj/. where the dot may take any value

in i1, i2, j1, j2.

Let c be a community, in equation (11) summations
∑

ij kikj on indices i and

j may only be applied under the condition δ(ci, cj) = 1. Where an edge is present

between two nodes u and v belonging to c: δ(ci, cj) = 1 and δ(cj , ci) = 1. Conse-

quently for each row i representing a node belonging to c, a corresponding column

j represents this same node belonging to c and vice versa.

From (15), (16) and the above observations:∑
ij ki/j1kj/i1δ(ci, cj) =

∑
i ki/j1

∑
j kj/i1δ(ci, cj) =∑

i2
ki2/j1

∑
j2
kj2/i1δ(ci2 , cj2) =

∑
jb
kjb
∑

jb
kjb = [

∑
jb
kjb ]2∑

ij ki/j2kj/i2δ(ci, cj) =
∑

i ki/j2
∑

j kj/i2δ(ci, cj) =∑
i1
ki1/j2

∑
j1
kj1/i2δ(ci2 , cj2) =

∑
ib
kib
∑

ib
kib = [

∑
ib
kib ]2∑

ij ki/j1kj/i2δ(ci, cj) =
∑

i ki/j1
∑

j kj/i2δ(ci, cj) =∑
i2
ki2/j1

∑
j1
kj1/i2δ(ci2 , cj1) =

∑
jb
kjb
∑

ib
kib∑

ij ki/j2kj/i1δ(ci, cj) =
∑

i ki/j2
∑

j kj/i1δ(ci, cj) =∑
i1
ki1/j2

∑
j2
kj2/i1δ(ci2 , cj1) =

∑
ib
kib
∑

jb
kjb

where jb = i2–r = j2–r , ib = i1 = j1, uib ∈ c and vib ∈ c these last two

conditions can also be formalized with δ(cib , cjb) = 1 if uib and vib belong to the

same community c and δ(cib , cjb) = 0 otherwise.

This development yields :∑
ij kikj = [

∑
jb
kjb ]2 + [

∑
ib
kib ]2 + 2[

∑
jb
kjb ][

∑
ib
kib ] =

∑
ibjb

(kib + kjb)2 and:∑
ij

kikjδ(ci, cj) =
∑
ibjb

(kib + kjb)2δ(cib , cjb) (18)

Equation (18) can be rewritten using the degrees of nodes:∑
ib
kib is the sum of the degrees of nodes uib belonging to c under the condition

δ in equation (18). We denote this du|c .∑
jb
kjb is the sum of the degrees of nodes vjb belonging to c under the condition

δ in equation (18) and has been called dv|c.

Then
∑
ij

kikjδ(ci, cj) = (du|c + dv|c)
2 (19)

8.3. Analyzing first part in equation (11)

First part in Q is
∑

ij A
′

ij . Let’s examine what it represents in terms of B. It is

possible to identify matrix B in A
′

using indices i1 and j2. Conversely Bt can be

identified with indices i2 and j1:
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For i = i1 A
′

ijs only produce values for j = j2, moreover for i = i2, A
′

ijs only

produce values for j = j1 with A
′

i1j2
= Bibjb and A

′

i2j1
= Bt

ibjb
under typical

conditions regarding indices.

Then
∑

ij A
′

ij =
∑

i1j2
A

′

i1j2
+
∑

i2j1
A

′

i2j1

And
∑

ij A
′

ijδ(ci, cj) =
∑

i1j2
A

′

i1j2
δ(ci1 , cj2) +

∑
i2j1

A
′

i2j1
δ(ci2 , cj1)

The left-hand side of the sum equals the number of edges from nodes u to nodes

v inside c. The right-hand side is the number of edges from these same nodes v and

u inside c. This set-up then leads to:∑
i1j2

A
′

i1j2
δ(ci1 , cj2) =

∑
i2j1

A
′

i2j1
δ(ci2 , cj1) with i1 = j2 and i2 = j1

Then
∑
ij

A
′

ijδ(ci, cj) = 2
∑
i1j2

A
′

i1j2δ(ci1 , cj2) = 2
∑
ibjb

Bibjbδ(cib , cjb) (20)

This value can also be formalized using the number of edges:

∑
ibjb

Bibjbδ(cib , cjb) = |(uib|c , vjb|c)| = |eib|c,jb|c | where eib|c,jb|c ∈ E & uib|c , vjb|c ∈ c

(21)

For the entire matrix A
′

:
∑

ij A
′

ij = 2
∑

ibjb
Bibjb

From equation (11), m = 1/2
∑

ij A
′

ij

Let’s now define mb =
∑

ibjb
Bibjb = |eibjb | where eibjb ∈ E

Then m = 1
2 ×

∑
ij A

′

ij = 1
2 × 2×

∑
ibjb

Bibjb = mb

8.4. Modularity for all graphs

Lastly, by removing sub-index b, which had only been introduced to distinguish

indices i and j when applied to A
′

or B, we can redefine the A
′

modularity in terms

of B:

QB =
1

m

∑
ij

[Bij −
(ki + kj)²

4m
]δ(ci, cj) (22)

In terms of edges, by simplifying eib|c,jb|c as ec (whereec has both ends in c) and

by dropping sub-index b Equation (22) becomes:

QB =
∑
c

[
|ec|
m

–(
(du|c + dv|c)

2×m
)²] (23)

This definition of modularity may be used for bipartite graphs since both types

of nodes are bound. In previous sections, we have validated the above results on

the basis of another author’s graph modularity models. It can thus be concluded

that equation (22) offers a good candidate for bipartite graph modularity that takes

some specific characteristics into account.
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9. Annex 2: Reassignment Modularity function

In this Appendix, we will provide full details of the demonstration that yielded

Equation 10.

Reassigning node w from C1 to C2 either increases or decreases the modularity

defined in Equation (2). Such a change is referred to as Reassignment Modularity

(RMw:C1→C2
).

Let w be a node u or v. If w is withdrawn from C1 and reassigned to C2, then

we can define RMw:C1→C2
=QB

w∈C2
-QB

w∈C1

where QB is the modularity value in:

QB =
∑
c

[
|ec|
m

–(
(du|c + dv|c)

2×m
)²]. (24)

Let lw|i = lw,w′|w′∈Ci
be the number of edges between a node w and all other

nodes w′ where w′ ∈ Ci,

Let dw be the degree of w, |ei| the number of edges in Ci and dCi= du|ci +dv|ci .

We consider that the node w which belongs to C1 is bound to be withdrawn

from this community and assigned to the community C2.

QB
w∈C2

is QB
w∈C1

with correction after w is reassigned. Then

QB
w∈C1

= [ 1
m |e1| −

(dC1
)²

(2m)2 + 1
m |e2| − (

(dC2
)²

(2m)2 )] + Kothers where Kothers is the

contribution to modularity brought by other communities than C1and C2. This last

value does not change when reassigning a node from C1 to C2.

QB
w∈C2

= [ 1
m (|e1| − lw|1) + 1

m (|e2|+ lw|2)− (
(dC1

−dw)2

(2m)2 +
(dC2

+dw)2

(2m)2 )] + Kothers,

then

QB
w∈C2

-Qw∈C1
= [ 1

m (|e1| − lw|1) + 1
m (|e2| + lw|2) − (

(dC1
−dw)2

(2m)2 +
(dC2

+dw)2

(2m)2 )] −
[ 1
m |e1| −

(dC1
)²

(2m)2 + 1
m |e2| − (

(dC2
)²

(2m)2 )]

and after simplification,

RMw:C1→C2 =
1

m
(lw|2 − lw|1)− 1

2m2
[d2w + dw(dC2 − dC1)] (25)

This equation can be partly validated if after withdrawing w from C1 we put it

back into C1 and expect no change for QB , i.e. RMw:C1→C1
= 0. Considering that

C2 is in fact C1 without w, we get dC2 = dC1 − dw, replacing dC2 in equation (25)

by its value yields RMw:C1→C1
= 0.

A second validation can be performed with Equation 5 in [33]. Although the

authors’ demonstration is limited, it can still be noticed that their final formula

resembles ours with a slight difference (i.e. division by 2 in their case) due to their

definition of modularity for overlapping communities. Moreover, in arguing that the

right part of their equation is not meaningful for large graphs, the authors only con-

sidered dEQ = l2−l1
2m which is the equivalent of 1

m (lw|2 − lw|1) in our Reassignment

Modularity definition. In our case, we do not limit reassignment to large graphs and

we keep the whole value in Equation (25).
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