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Abstract. For Agent Based Models, in particular the Voter Model (VM), a general framework of
aggregation is developed which exploits the symmetries of the agent network G. Depending on the
symmetry group Autω(N) of the weighted agent network, certain ensembles of agent configurations
can be interchanged without affecting the dynamical properties of the VM. These configurations
can be aggregated into the same macro state and the dynamical process projected onto these states
is, contrary to the general case, still a Markov chain. The method facilitates the analysis of the
relation between microscopic processes and a their aggregation to a macroscopic level of description
and informs about the complexity of a system introduced by heterogeneous interaction relations. In
some cases the macro chain is solvable.

1. Introduction

Agent–based models (ABMs) are from a formal point of view Markov chains [22, 4]. However,
there is not too much to learn from this fact alone as the state space of the chains corresponding to
those models must be conceived of as the set of all possible configurations of the entire agent system.
The resulting Markov chain is too big for a tractable analysis of a model and therefore a considerable
reduction of the state space is required.

In practice, the models are often re–formulated in terms of an aggregate variable (such as magne-
tization) so that all micro configurations with the same aggregate value are agglomerated in a single
entity. However, the dynamical process at a coarse–grained level obtained in this way is, in general,
no longer a Markov chain, because mere aggregation over agent attributes is insensitive to microscopic
heterogeneity and some information about the dynamical details are lost. In fact, as shown in [4] in
the context of opinion dynamics, Markovianity is preserved by the macro description only in the case
of uniform interaction probabilities between the agents, that is, for homogeneous mixing. In other
cases, therefore, the results are usually considered as an approximation and compared to simulations.
Another possibility, however, is to refine the aggregation procedure such that the Markov property is
not lost and try to solve the refined problem. In this paper a systematic approach to aggregation is
developed which exploits all the dynamical redundancies that have its source in the agent network on
which the model is implemented.
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Though it has often been recognized that ABMs may be conceived as stochastic dynamical systems
or Markov chains [15, 29, 22, 34, ], the aggregation techniques developed for these systems have not
yet been applied to ABMs.

On the other hand, the mathematical analysis of the relation between microscopic processes and
a their aggregation to a macroscopic level of description is at the heart of statistical mechanics and
has recently received some attention in the complex systems literature. In [38], the particular role
of Markovianity in the definition or identification of macroscopic observables is emphasized. Based
on that, [17] develops a method to derive a Markovian state space aggregation on the basis of an
information–theoretic view on time series data (typically created by some simple model). These and
related concepts for the level identification in complex dynamical systems are compared and related
in [35] that emphasize the particular role played by commutativity of aggregation and dynamics.

Moreover, there is a considerable amount of work done in Markov chain theory dedicated to lumpa-
bility. Consider a Markov chain on the state space Σ along with a partition X of that state space.
Lumpability is about whether or not the projection of original process onto X preserves Markovianity.
Notice that such a situation naturally arises if the process is observed not at the micro level of Σ, but
rather in terms of a measure φ on Σ by which all states in Σ that give rise to the same measurement
are mapped into the same aggregate set Xk ∈ X (also referred to as macro states). Notice also that
for a given chain there may be several lumpable partitions. In this paper we follow [24] and refer to
[10, 37, 36] for other seminal works on Markovian aggregation.

Most methods for the identification of lumpable partitions rely on the transition matrix of the
original chain, among them spectral methods and eigenvector conditions proposed in [5, 32, 41, 23, 18,
]. For ABMs, however, the state space of the chain becomes huge even for a relatively small number of
agents. Even in the simplest case of binary agent attributes, the size of the Markov chain scales as 2N

with the number of agents N . Therefore, another approach is developed which allows us to identify
lumpable partitions as a function of the network symmetries (size N) instead of the properties of the
Markov chain associated to the ABM (size 2N ). Deriving aggregate descriptions by starting from of
the symmetries of the agent network, our approach is related to the hierarchical approach due to [9]
and the idea of symmetric composition in [20].

2. The Voter Model Revisited

We use the Voter Model (VM) to exemplify our approach (see Refs. [25, 12, 16, 39, 40, 42]). The
VM has its origin in the population genetics literature [25], but due to its interpretation as a model
for opinion dynamics it has become a benchmark model in social dynamics. The reader is referred to
Ref. [26] for a recent review of related models in population genetics and to Ref. [11] for an overview
over the social dynamics literature.

Consider a set N of N agents, each one characterized by an individual attribute xi which takes
a value among two possible alternatives: xi ∈ {�,�}, i = 1, . . . , N . Let us refer to the set of all
possible combinations of attributes of the agents as configuration space and denote it as Σ = {�,�}N .
Therefore, if x ∈ Σ we write x = (x1, . . . , xi, . . . , xN ) with xi ∈ {�,�}. The agents are placed on a
network G = (N,E) where N corresponds to the set of N agents and E is the set of agent connections
(i, j). In the dynamic process implemented in the VM an agent i is chosen at random along with one
of its neighboring agents j according to a probability distribution ω(i, j). If the states (xi, xj) are not
equal already, agent i adopts the state of j (by setting xi = xj). Notice that sometimes there is a
probabilistic choice whether agent i or j imitates the other, but this does not affect the dynamical
behavior in the undirected case with ω(i, j) = ω(j, i). Notice also that there are two possible modes
of agent choice referred to as node or link update dynamics and that dealing with a distribution ω
encompasses the two (see Sec. 4.3).
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It is well–known that the VM has two absorbing states corresponding to the configurations with
all agents holding the same opinion (consensus). Analytical results for the mean convergence times
have been obtained for the complete graph [39, 4], for d–dimensional lattices [13, 16, 31, 27] as well
as for networks with uncorrelated degree distributions [40, 42].

2.1. Micro Dynamics. At the microscopic level of all possible configurations of agents the VM
can be seen as an absorbing random walk on the N–dimensional hypercube with the two absorbing
states (�, . . . ,�) and (�, . . . ,�). This is shown for the example of three agents in Fig. 1. Due to
the sequential update process, from one interaction event to the other, only one agent changes or the
configuration remains as it is (loops are not shown in Fig. 1). That is, non–zero transition probabilities
exist only between configurations that are adjacent in the hypercube graph. Let us therefore call two
agent configurations y, x ∈ Σ adjacent if they differ only with respect to a single agent i. We denote

this by x
i
∼ y.

h

{ {

b = 3 b = 2 b = 1 b = 0

a

b

c

d

e

f

g

Figure 1. The micro chain for the VM with 3 agents and its projection obtained by
agglomeration of states with the same number of black agents b. Only exceptionally
the projected system will be a Markov chain.

The VM belongs to a more general class of models in which the update of an agent (say i) depends
only on its local neighborhood (in this case one other randomly chosen agent j). Therefore (see [4]),

the transition probability for a pair of adjacent configurations x
i
∼ y can be written as

(1) P̂ (x, y) =
∑

j:(xj 6=xi)

ω(i, j).

That is, the probabilities associated with the arrows in Fig. 1 depend only on the probability ω
with which an agent pair (i, j) is chosen such that their opinions (xi, xj) result in the respective
transition (xi 6= xj in the VM). Different agent interaction networks have therefore a crucial effect on
the transition probabilities of the micro chain.
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Notice that, at this level, the dynamics of the model is defined in the configuration space with 2N

states, which seeks to describe the dynamics of each agent in full detail. Following [4] we refer to
this as micro dynamics. As the number of states increases as 2N with the number of agents, it is not
convenient to study the model dynamics at the micro level. It is often more convenient to reformulate
the dynamics in terms of a macroscopic aggregate variable. In the VM, the number b of black agents
i with xi = � or the respective density are natural choices. Fig. 1 illustrates how several micro
configurations with the same b are taken together to form a single macro state. Notice that in the
hypercube terminology b corresponds to the Hamming weight of a configuration.

3. Markovian Aggregation

The main question addressed by this paper concerns the conditions under which an aggregation of
micro states leads to a Markov chain at the resulting macro level. More precisely, we make use of
a theorem in Markov chain theory that gives necessary and sufficient conditions for partitioning the
state space of Markov chains in such a way that the micro process projected onto that partition is still

a Markov chain, [24] Thm. 6.3.2. Let p̂xY =
∑

y∈Y

P̂ (x, y) denote the conjoint probability for x ∈ Σ to

go to the set of elements y ∈ Y where Y ⊆ Σ is a subset of the configuration space. According to [24],

Thm. 6.3.2, the micro chain (Σ, P̂ ) is lumpable with respect to a partition X = (X1, . . . , Xr), iff, for
every pair of sets Xi and Xj, the probability p̂xXj

is the same for every x ∈ Xi, and these common
values form the transition matrix for the lumped chain. In general it may happen that, for a given
Markov chain, some projections are Markov and others not.

Based on [24], Thm. 6.3.2, we have derived in [4], Prop. 3.1, a sufficient condition for lumpability

which exploits the symmetries of the micro chain P̂ . Namely, to any partition X we can associate
a transformation group G acting on Σ the orbits of which generate X. Then, a sufficient condition
for lumpability is that the transition matrix P̂ is symmetric with respect to G, that is, P̂ (x, y) =

P̂ (σ̂(x), σ̂(y)) for any σ̂ ∈ G. This means that the identification of a lumpable partition can be based
on the symmetries of the micro chain. However, it is worth to notice that in this paper lumpability
conditions are stated in terms of the symmetries of the agent network which is much simpler than the
dynamical graph on the configuration space where the aggregation process (lump) is achieved.

Let Autω(N) be the subgroup of the permutations σ acting on the set N of agents such that
ω(σi, σj) = ω(i, j) for all i, j ∈ N. To each σ ∈ Autω(N) we associate a σ̂ which is a bijection on the
configuration space Σ. If x ∈ Σ with x = (x1, . . . , xi, . . . , xN ) then

(2) σ̂(x) = (xσ1, . . . , xσi, . . . , xσN ).

We now define a partition of Σ using Autω(N). Let us denote as Gω = {σ̂ : σ ∈ Autω(N)} the
group of transformations σ̂ associated to the σ ∈ Autω(N). The action of Gω on Σ induces a partition
Mω of the original state space. Accordingly, two configurations x, x′ ∈ Σ are in the same atom of the
partition Mω iff there is a σ ∈ Autω(N) such that x′ = σ̂(x). Clearly this is an equivalence relation
and we shall refer to two configurations x and x′ as macroscopically equivalent if they belong to the
same atom X of the partition Mω.

We then have the following:

Proposition 3.1. The partition Mω is lumpable for the agent model on Σ with agent choice based

on ω and therefore the corresponding projected process is a Markov chain.

Proof. Consider the distribution of interaction probabilities ω, its permutation group of symmetries
Autω(N) = {σ : ω(σi, σj) = ω(i, j), ∀i, j ∈ N} and the associated transformation group Gω = {σ̂ : σ ∈
Autω(N)}. Suppose we know (at least) one configuration (the generator) xk ∈ Σ for each Xk ⊂ Σ



Markov Chain Aggregation for Simple Agent-Based Models on Symmetric Networks: The Voter Model 5

and construct the partition Mω = (X1, . . . , Xk, . . .) by

(3) Xk = Gω ◦ xk =
⋃

σ̂∈Gω

σ̂(xk).

Following [4], Prop. 3.1, a sufficient condition for lumpability of (Σ, P̂ ) with respect to Mω is the

symmetry of the microscopic transition matrix P̂ with respect to Gω . That is, we have to show that

(4) P̂ (x, y) = P̂ (σ̂(x), σ̂(y)), ∀σ̂ ∈ Gω.

For the case that x
i
∼ y we know that xj = yj for all j except i and that the transition requires the

choice of an edge (i, . ). Denoting xi = s and yi = s̄ we rewrite Eq. (1) as

(5) P̂ (x, y) =
∑

j:xj=s̄

ω(i, j).

If x
i
∼ y it is easy to show that σ̂(x)

σi
∼ σ̂(y) and we know that s = σ̂(xσi) 6= σ̂(yσi) = s̄. The

transition therefore requires the choice of an edge (σi, . ). We obtain

(6) P̂ (σ̂(x), σ̂(y)) =
∑

k:σ̂(xk)=s̄

ω(σi, k).

Given an arbitrary configuration x, for any j with xj = s̄ we have a corresponding k = σj with
σ̂(xk) = s̄ because xj = s̄ ⇔ σ̂(xσj) = s̄. That is, the summations in Eq.(5) and (6) are equal (i.e.,
the symmetry condition (4) is satisfied) for any σ for which ω(i, j) = ω(σi, σj). This is true by the

definition of Autω(N) for all permutations σ ∈ Autω(N). Since the transition matrix P̂ is symmetric
with respect the associated transformation group Gω, the partition Mω generated by the action of Gω

on Σ is lumpable. �

The reason for which the Markov property is preserved by the projection of the micro chain onto the
partition Mω is that micro configurations in the same macro state Xk ∈ Mω contribute in precisely
the same way to the evolution of the macroscopic process on Mω. Namely, all micro states within
the same macro set lead to the same assignment of probabilities for a transition to all other macro
sets and therefore no additional information is gained about the future evolution by considering the
probabilities of being in the specific micro states or, respectively, the histories that led to them. This
is the main idea of Thm. 6.3.2 in [24] and captured by the notion of macroscopic equivalence.

4. Examples

4.1. Complete Graph. We have shown in previous work [4] that the aggregation illustrated in
Fig. 1 is lumpable only if the interaction probabilities are uniform. This corresponds to the VM
implemented on the complete graph in which ω(i, j) = 1/N(N − 1) (or 1/N2 if self–choice is allowed).
It is, of course, well–known that the macro model obtained in terms of b fully describes the evolution
of the micro model on the complete graph, but not on other topologies (cf. e.g., [39]:3 or [11]:601).
Nevertheless, our method sheds light on the (probabilistic) reason for this. Namely, the complete
graph and respectively homogeneous mixing is the only topology for which the automorphism group
is the group SN of all permutations of N agents. In this case, for any two configurations x, x′ with
equal b there is a σ ∈ SN such that x = σ(x′). Hence, an equivalent aggregate value b implies
macroscopic equivalence. The fact that this is only true for complete graph and homogeneous mixing,
underlines how restrictive these conditions are.

The associated macro process on the partition X = (X0, . . . , Xb, . . .XN ) is a simple birth–death

random walk with P (Xb±1|Xb) =
b(N−b)

N2 , P (Xb|Xb) =
b2+(N−b)2

N2 also known as Moran process [33].
In [4] we have derived a closed–form expression for the fundamental matrix of that Markov chain for
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arbitraryN . Encoding the recurrence and hitting times of the system, this provides all the information
to characterize the distribution of convergence times. For instance, for the VM starting in a state
with b black agents the mean time to reach consensus is given by

(7) τb = N





b−1
∑

j=1

(N − b)

(N − j)
+ 1 +

N−1
∑

j=b+1

b

j



 ,

and the respective variance by

υk = 2N2(N − k)
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1
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i−1
∑

j=1

(N − i)
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i
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∑
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2

We also considered in [4] the VM with more opinions and confirm by lumpability arguments that the
convergence times are as in the binary case, which was shown previously in Ref. [39].

Markov chain theory allows for the evaluation of certain properties that are not easily computed
with mean–field approaches. To make one example we computed the mean convergence times to the
two consensus states b = 0 and b = N independently. This method is described in [24]:64-65 and the
basic idea is to ”compute all probabilities relative to the hypothesis that the process ends up in the
given absorbing state” (ibid:64). This then leads to a new absorbing chain with the specified state as
the only absorbing state. For convergence to b = 0 from an initial configuration with b agents in �

we obtain

(9) τ̃0b = bN +

N
∑

j=b+1

bN(N − j)

j(N − b)

and for convergence to b = N

(10) τ̃Nb = (N − b)N +
b−1
∑

j=1

jN(N − b)

b(N − j)

For a system of 100 agents these times are shown in Fig. 2. The more the initial situation departs
from a fifty–fifty configuration b = N/2 = 50, the larger the difference between the two convergence
times. This is also visible in the probability distribution of convergence times shown in Fig. 3 for an
initial configuration with b = 33. This shows how the overall convergence behavior is a composite of
the two different convergence trends to the two consensus states independently.

4.2. Further Refinement. Going beyond the complete graph let us first consider again the initial
example of three agents shown in Fig.1. Let us assume the following interaction probabilities: ω(1, 2) =
ω(2, 1) = ω(1, 3) = ω(3, 1) = ω, but ω(2, 3) = ω(3, 2) = 0 (see Fig. 4). That is, we introduce
a slight amount of heterogeneity by cutting the edge between agent 2 and 3. Let us consider the
transitions from X2 to X3. The probability (1) of a transition form configuration ”e” to ”h” is

P̂ (e, h) = ω(1, 2) + ω(1, 3) = 2ω, from ”f” to ”h” we have P̂ (f, h) = ω(2, 1) + ω(2, 3) = ω and for

”g” to ”h”, P̂ (g, h) = ω(3, 1) + ω(3, 2) = ω. While all these probabilities are equal for the complete
graph (as ω(i, j) = ω : ∀i, j) they are not all equal if one or two connections are absent and so the

lumpability condition is violated (in our example P̂ (e, h) 6= P̂ (f, h) = P̂ (g, h)).
Deriving a partition Mω such that the micro process projected onto it is a Markov chain requires

a refinement of the aggregation procedure. We use Proposition 3.1 to identify bundles of micro con-
figurations that can be interchanged without changing the hypercubic micro chain. The interaction
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Figure 2. Mean convergence times to X0 (red) and XN (blue) for N = 100 as a
function of the initial number of black agents b.
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Figure 3. Probability distribution of convergence times forN = 100 and initial state
with b = 33. Its computation is based on the powers P t of the transition matrix.
Convergence to b = 0, τ0, is considerably faster than convergence to b = N , τN .

network has a symmetry such that the agents 2 and 3 can be permuted without affecting the connec-
tivity structure, that is, Autω = (1)(23). This symmetry imposes a symmetry in the hypecubic graph
associated to the micro process such that the configurations ”f” and ”g” with b = 1 and respectively
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”b” and ”c” with b = 2 can be permuted without affecting the transition structure. In this simple
example, therefore, the previous macro atoms X2 (and X1) must be refined such that configurations
”g” and ”f” (”a” and ”b” ) on the one hand and ”e” (”c”) on the other form different sets in Mω.

1

2 3

1

2 3

1

2 3

Figure 4. The 3 different configurations ”g”, ”f” and ”e” of length 3 with one agent
in � and two in � (b = 1). Only the first two configurations (”f” and ”g”) are
macroscopically equivalent.

1

2 3

ω ω
ω

2ω

ω

ω

ω

2ω

ω

Figure 5. Probabilistic structure of the model with three agents if the connection
between 2 and 3 is absent.

4.3. The Two–Community Model. Consider a population composed of two sub-population of
size L and M such that L + M = N and assume that individuals within the same sub-population
are connected by strong ties whereas only weak ties connect individuals that belong to different
communities. We could think of that in terms of a spatial topology with the paradigmatic example
of two villages with intensive interaction among people of the same village and some contact across
the villages. This is similar to the most common interpretation in population genetics where this
is called the island model [43]. In another reading the model could be related to status homophily
[30] accounting for a situation where agents belonging to the same class (social class, race, religious
community) interact more intensively than people belonging to different classes.

Let us adopt the perspective of a weighted graph and say that an edge with weight wij = 1 connects
agents of the same community whereas edges across the two communities have a weight wij = 1/r.
Therefore, r is the ratio between strong and weak ties. For the VM run on such a network, notice
that there may be subtle differences in the resulting interaction probabilities ω(i, j) depending on how
the agent choice is performed. First, in the case of link update dynamics a link (i, j) is chosen out of
the set of all links and so the ω(i, j) are proportional to the edge weight. Namely, let γ denote the
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Figure 6. A two–component graph with two homogeneous sub–populations.

interaction probability between agents of the same community and α the respective probability across
communities, then

γ =
r

2LM + ((L − 1)L+ (M − 1)M)r
(11)

α =
1

2LM + ((L − 1)L+ (M − 1)M)r
,(12)

where the divisor is the sum over all edge weights and establishes that
∑

(i,j) ω(i, j) = 1. A second

mode of agent choice is to first choose an agent i and then choose a second agent j out of its neighbor
set. In the case that M 6= L, the interaction probabilities become different from (12). In the following
we will concentrate on the example with M = L = 50 so that Eq. (12) gives the right interaction
probabilities for node and link update dynamics.

Notice, moreover, that independent of M and L both update modes give rise to the same symmetry
group Autω(N) = (1 . . .M)(M + 1 . . . N). Autω(N) is composed of the symmetric group SL and SM

acting on the two subgraphs and it means that ω is invariant under permutations of agents within
the same community. Let us denote by m and l the number of �–agents in M and L. It is then clear
that all configurations x and y with [m(x) = m(y)] ∩ [l(x) = l(y)] are macroscopically equivalent.
As 0 6 m 6 M and 0 6 l 6 L the aggregation defines a Markov chain with (M + 1)(L + 1) states
which is still very small compared to the number of 2(M+L) micro configurations. Notice that this
generalizes naturally to a larger number of subgraphs. Notice also that the multipartite graphs studied
in [40] fall into this category and that the authors used the respective sub–densities in their mean–field
description.

The structure of the Markov chain associated to the VM on the two–community graph is shown
on the l.h.s. of Fig. 7. For the system of size M and L the transition probabilities for the transitions
leaving an atom X̃m,l are given by

P (X̃m+1,l|X̃m,l) = γ(m(M −m)) + α(M −m)l

P (X̃m−1,l|X̃m,l) = γ(m(M −m)) + αm(L − l)

P (X̃m,l+1|X̃m,l) = γ(L− l)l+ α(L − l)m

P (X̃m,l−1|X̃m,l) = γ(L− l)l+ α(M −m)l

In what follows, we study a system with M = L = 50. This gives a Markov chain of size (M +1)(L+
1) = 2601. Notice that the computations (matrix inversion and powers) needed in the analysis of that
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Figure 7. L.h.s.: The structure of the chain for L = M = 10. The consensus
states X̃0,0, X̃M,L as well as the states of inter–community polarization X̃0,L, X̃M,0 are
highlighted. The quasi–stationary distribution is mapped into node colors from blue
(low values) to red (high values). R.h.s.: Mean convergence times τ for M = L = 50

for all initial configurations X̃m,l for r = 1/100. The disordered initial configuration

X̃M/2,L/2 and the two partially ordered configurations X̃M,0 and X̃0,L are highlighted
by +.

chain bear already some computational cost and that a further increase in system size will increase
these costs greatly.

On the r.h.s. of Fig.7 the mean convergence times are shown for all initial states X̃m,l and a
coupling ratio of r = 1/100. In comparison to the homogeneous mixing case (Eq. 7) the mean number
of steps before absorption τ̃m,l increases considerably for all initial configurations. For m+ l = k = 50
the complete graph will order in average after 6880 steps whereas this number increases to 9437 for
m = 25, l = 25. Notably, it increases further to 11921 for the initial configurations with consensus
within the communities but disagreement across the two islands (inter–community polarization).

We compare these two situations (namely initial disorder X̃25,25 and initial order in form of inter–

community polarization X̃50,0) by considering the distribution of convergence times for two configu-
rations with m + l = N/2 = 50. The respective cumulative distributions for r = 1/100 is shown on
the l.h.s. of Fig. 8 and on the r.h.s. the respective probability of absorbency at time t is shown.

In the case of initial disorder (red curves), where the states � and � are distributed equally over
the two islands, there is a certain number of realizations that approaches one absorbing consensus
state without entering the states of partial order (X̃M,0 and X̃0,L). The probability of absorbency
reaches a peak after a relatively short time of around t ≈ 3000 steps whereas the highest absorbency
probability lies around t ≈ 5000 for the ordered initial condition (blue curves). At around t ≈ 5000
already 40 % of realizations have converged for the disordered case, but only 20 % in case of initial
polarization. This shows that there is a strong influence of the interaction topology leading to a high
heterogeneity in the behavior for different initial configurations with the same global magnetization
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Figure 8. Distribution of convergence times τ for M = L = 50, α/γ = 1/100 for

initial disorder XM/2,L/2 (red curves) and initial polarization X̃M,0 and X̃0,L (blue
curves) with consensus among agents of the same island, but disagreement across the
two islands. L.h.s.: cumulative probability of being absorbed after t steps- R.h.s.:
probability of absorbency at time t.

k = m + l. The ordered configurations X̃M,0 and X̃0,L function as dynamical traps and it may take
a long time to escape from them, especially when the coupling across communities r becomes very
weak. On the other hand, however, Markov chain theory tells us that the probability for very long
waiting times decays exponentially.

In Fig. 9, a more detailed picture of how convergence times increases as r = α/γ decreases is
provided. For the two initial situations considered previously the mean convergence times are shown
as a function of the ratio r = α/γ between strong and weak ties. Notice again that these extreme
configuration are highlighted by + in Fig. 7. It is clear that the mean times to absorbency diverge
as r approaches zero, lim

r→0
τ = ∞. This is due to the fact that the interaction topology becomes

disconnected in that extreme case, and therefore, the non-consensus configurations X̃M,0 and X̃0,L

become absorbing. In other words, to go from (say) X̃0,L to (say) X̃0,0 requires an infinite number
of steps. In fact, we then deal with a completely new chain that has four absorbing states, or more
precisely, with two chains one for each island. However, as long as α > 0 the possibility to escape
from X̃0,L remains, even if it takes very long.

Finally, to characterize the long–term transient behavior, let us look at the quasi–stationary distri-
bution of the VM. This distribution contains the probabilities to be in the different transient states
for realizations that are not absorbed after a certain time. It corresponds the normalized left eigen-
vector associated to the largest eigenvalue of the transient sub–matrix Q of P (just as the stationary
distribution of a regular chain is the normalized left eigenvector of the transition matrix P ). See, for
instance, [14] (pages 91 - 93 in particular) for a description of the quasi–stationary distribution.

Fig. 10 shows the quasi-stationary distribution for the two–community VM with r = 1/100 (l.h.s.)
and r = 1 (r.h.s). Notice that the latter corresponds to the homogeneous mixing case. If r is small
there is a high (conditional) probability that the process is trapped in one of the states of local order.

Also the states X̃m,0 and X̃0,l with one uniform sub-population have a relatively high probability
indicating that convergence to complete consensus out of local order does not happen via a transition
through complete disorder. This is in stark contrast to the homogeneous mixing situation, which is
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Figure 9. Mean convergence times τ as a function of the ratio r = α/γ between
strong and weak ties for the ordered initial configuration XM,0 (blue curves) and the
disordered initial configuration XM/2,L/2 (red curves).

Figure 10. Quasi-stationary distribution for the VM on two islands with r = 1/100
(l.h.s.) and r = 1 (r.h.s.).

shown on the r.h.s. of Fig. 10. In this case states of inter–community polarization (m = M, l = 0 and
m = 0, l = L) and states close to that become in effect extremely rare random events.1

1The reason for this is clear. The number of micro configurations x ∈ Σ mapped into the state X̃m,l is
(

M
m

)(

L
l

)

which

is a huge number for m ≈ M/2, l ≈ L/2 but only 1 for m = M, l = 0 and m = 0, l = L. Because under homogeneous
mixing there is no favoring of particular agent configurations with the same k = m + l the stationary probability at
macro scale is proportional to the cardinality of the set X̃m,l.
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4.4. The Ring. Prop. 3.1 generalizes to networks with arbitrary automorphisms which we illustrate
at the example of the ring graph. When the model on the ring with nearest neighbor interactions is
defined by ω(i, i+ 1) = 1

N : i mod N , it possesses an invariance with respect to translations. That is,
the automorphism group Autω(N) consists of all cyclic shifts of agents generated by σ : (1, 2, . . . , N) →
(N, 1, 2, . . . , N − 1). Notice that translational symmetries of this kind also play an important role in
the determination of the relevant dimensions of spin rings [6] and that there are interesting parallels
in between the two problems.

1 2

3

4

5

1 2

3

4

5

Figure 11. Two configurations with an equal number of black agents (b = 2) which
are not macroscopically equivalent for the ring with N = 5.

Consider a ring of five agents (N = 5) with 25 = 32 micro states. For x = (�����) it is clear that
σk(x) = x for all k. That is, x = (�����) with b = 5 constitutes a class of its own. For b = 4, we
may use x1 = (�����) as a generator for its class, Eq.(3). As all 5 configurations with b = 4 can be
obtained shifting x1, all of them are in the same equivalence class. The 10 configurations with b = 3
cannot be lumped into the same macro state. There are two classes differentiated by the distance of
zero or one in between the two black agents (see Fig. 11). Using the two configurations shown in Fig.
11 as generators yields two equivalence classes each containing five micro states. The cases b = 2, 1, 0
follow by symmetry so that all in all the dimension X of macro chain is reduced to 8.

In the general case of N agents we can in principle proceed in the same way. However, the
number of macro states will increase considerably with the system size. We finish this section with
a quantification of this number for the ring for which we can use a well–known enumeration theorem
due to Pólya (see [19]:35-45, Eqs.(2.2.10) and (2.4.15) in particular). According to this, the number
of macro states is

(13) |X| =
1

N

∑

k|N

ϕ(k)2
N
k

where ϕ(k) is the Euler ϕ–function and the sum is over the divisors k|N of N . As an approximation
(in fact, a lower bound) we have |X| ≈ 2N/N . Hence, an explicit solution of the macro chain will be
possible only for very small systems.

5. Scope and Limitations

The method described in this paper applies not only to the VM. In fact, the micro formulation
and Prop. 3.1 can be applied without modification to any interacting particle system in which the
local transition probabilities are a function solely of the local neighborhood configuration, as defined
by an unchanging graph.2 As shown in [4], the method is not restricted to binary agent attributes
xi ∈ {�,�}, but can in principle be applied to any agent model with a finite set of agent attributes.

2We thank one anonymous reviewer for this comment.
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It has been used in [2] in the context of evolutionary processes to compare different update schemes
and analyze their effects on adaptation and speciation. Possible future application examples include
stochastic cellular automata on graphs with asynchronous update, other models of opinion and socio–
cultural dynamics (e.g., [1, 3]), as well as spin–based models of market dynamics ([8, 28]).

However, the more complex the internal structure of the agents and the more heterogeneous their in-
teraction behavior, the lower our chances to derive a loss–less coarse–graining that leads to a tractable
Markov chain. It is clear that in heterogeneous networks with a small number of automorphisms the
coarse–graining is limited because only a few micro states are macroscopically equivalent and can be
lumped. The ring graph (with invariance to cyclic shifts) gives an idea about the limitations of the
approach. As there are N non-trivial automorphisms for a ring of size N , the number of macro states
in a Markovian coarse-graining is bound by 2N/N . This certainly reduces the problem and may be
useful for small systems, but its practical use for large N is limited. As this method is based on exact
graph automorphisms it is more suited for stylized situations as the two–community model discussed
in Section 4. We envision the application of Prop. 3.1 to some interesting hierarchical compositions
of sub-populations such as a relatively small number of communities placed on a ring or a lattice.

On the other hand, the method informs us in this way about the complexity of a system introduced
by non–trivial interaction relations. Even in a model as simple as the VM, the behavior of whole
system is not completely described by summation over its elements (aggregation in terms of b), because
non–trivial dynamical and spatial effects may emerge at the macro level. In this sense, our work is
related to key concepts in the area of computational emergence ([7, 21]) dealing with criteria and
proper definitions of emergence. Thereafter ”an emergent phenomenon is one that arises from a
computationally incompressible process” ([21]: 425/26). Markov projections as discussed here in the
context of the VM provide explicit knowledge about the (in)compressibility of computational models
and may therefore help to operationalize these rather abstract definitions.

For its relation to emergence and complexity, the case in which Markovianity is lost in the transition
from micro to macro is, in some sense, even more interesting than the lumpable case. Namely because
it is more relevant in the setting of general ABMs where Markovianity is usually lost in the transition
to the desired level of observation. In order to apply Markov chain aggregation in such a more
general setting, a first crucial step consists of a rigorous characterization of the macro-level effects
that are introduced by aggregation without sensitivity to microscopic details. This could be based on
information-theoretic measures that quantify deviations from Markovianity (see [17] and [44], Chapter
5, in particular). Such a characterization of ”macroscopic complexity” – understood as a quantification
of deviations from Markovianity – might provide a suitable framework to evaluate approximate macro
descriptions and enable a systematic analysis of order parameters and their adequateness to describe
the respective model dynamics. It may also help to identify the role of certain micro-structural
patterns in the creation of complex macroscopic outcomes such as non-trivial temporal correlations.

Let us finally note that in general there may be many partitions M of the state space that are
lumpable and here no statement is made here about optimality of the partition Mω generated by the
application of Prop. 3.1. On the other hand, a simple answer is provided by a closer inspection of
the VM with homogeneous mixing telling us that Mω = X is not optimal in that case. Namely, we
have for any b, P (Xb±1|Xb) = P (X(N−b)∓1|X(N−b)) which means that the pairs {Xb, X(N−b)} can be
lumped into the same state. In other words, the macro chain on X is lumpable with respect to an
even coarser description. The reason for this is that the VM update rule brings about an additional
symmetry that is not accounted for in Autω and therefore not in Mω. More generally, the micro
structure of the VM is always symmetric with respect to the simultaneous flip of all agent states
xi → x̄i, ∀i and therefore, independent of the interaction topology, P̂ (x, y) = P̂ (x̄, ȳ).
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6. Conclusion

In conclusion, this paper describes a way to reduce the state space of the VM by exploiting all the
dynamical redundancies that have its source in the agent network. In the aggregation of micro states
into macro atoms following this proposal no information about the details of the dynamical process
is omitted. However, in heterogeneous interaction substrates with a small number of automorphisms
exact coarse–graining is limited because only a few micro states are macroscopically equivalent and
can be lumped. On the other hand, whenever it is possible to derive a tractable Markov chain at the
macro level, Markov chain theory provides us with tools that allow for a complete understanding of
the model dynamics.

The probabilistic setting we adopt allows to relate microscopic agent dynamics to the macro evo-
lution of aggregate observable variables and shows how network heterogeneities translate into hetero-
geneities in the dynamical structure of the model. A characterization of the dynamical effects that
may emerge at the macro level will be addressed by future work.
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