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Abstract

Because the dynamics of complex systems is the result of both de-
cisive local events and reinforced global effects, the prediction of such
systems could not do without a genuine multilevel approach. This pa-
per proposes to found such an approach on information theory. Start-
ing from a complete microscopic description of the system dynamics,
we are looking for observables of the current state that allows to effi-
ciently predict future observables. Using the framework of the Infor-
mation Bottleneck method, we relate optimality to two aspects: the
complexity and the predictive capacity of the retained measurement.
Then, with a focus on Agent-based Models, we analyse the solution
space of the resulting optimisation problem in a generic fashion. We
show that, when dealing with a class of feasible measurements that are
consistent with the agent structure, this solution space has interesting
algebraic properties that can be exploited to efficiently solve the prob-
lem. We then present results of this general framework for the Voter
Model with several topologies and show that, especially when predict-
ing the state of some sub-part of the system, multilevel measurements
turn out to be the optimal predictors.

Keywords: Information Theory, Information Bottleneck, Efficient Prediction, Mul-
tilevel Systems, Agent-based Models, Voter Model.

∗This paper has been submitted in September 2015 to Advances in Complex Systems.
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Table of Notations

N ∈ N number of agents
Ω = {1, . . . , N} agent set
A ⊂ Ω agent subset
A = {A1, . . . , Ak} ⊂ 2Ω collection of agent subsets

S agent state space
Σ = SN system state space
Sφ state space of measurement φ

Xi ∈ S state of agent i
X = (X1, . . . , XN ) ∈ SN system state
XA = (Xi)i∈A ∈ S|A| state of agents in subset A
T (Xt+1|Xt) Markov kernel
t ∈ N current time
τ ∈ N prediction horizon
X0 ∈ Σ initial system state
Xt ∈ Σ current system state
Xt+τ ∈ Σ future system state

φ : Σ→ Sφ pre-measurement (used for prediction)
ψ : Σ→ Sψ post-measurement (to be predicted)
{µA : Σ→ Sµ}A⊂Ω generic measurement: a family of feasible

measurements parametrized by an agent subset A
{ηA : Σ→ N}A⊂Ω the aggregated-state generic measurement
µA feasible measurement: µ applied to agent subset A
µA = (µA1

, . . . , µAk) combination of feasible measurements: µ applied to
a collection A = {A1, . . . , Ak} of agent subsets

µ{i} agent measurement: µ applied to agent i
(µ{1}, . . . , µ{N}) microscopic measurement: µ applied to each agent

of the agent set Ω
µΩ = µ{1,...,N} macroscopic measurement: µ applied to the agent

set Ω
µ∅ empty measurement: no measurement is actually

performed

β ∈ R+ trade-off parameter of the IB-variational

IBβ(X; X̂;Y ) ∈ R IB-variational

βt,τφ1,φ2
∈ R+ (if it exists) unique value of the trade-off parameter

β for which the two pre-measurements φ1 and φ2

are IB-equivalent
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1 Introduction

Because the dynamics of complex systems is the result of both decisive local events
and reinforced global effects, the analysis, control and prediction of such systems
could not do without a genuine multilevel approach. Typically complex systems can
be observed at various scales and levels, but it is usually not obvious which of these
observation levels is the most powerful to anticipate the system’s dynamics. In the
economy, for instance, one might rely on macro-economic observables like the GDP
or its growth rate in order to anticipate the future performance of a country, but
one might obtain a more differentiated picture by taking into account more refined
information such as sectoral data, the current political situation, business climate
indices or likewise information about the development of the most important trad-
ing partners. In weather forecast, the current atmospheric conditions are nowadays
measured by a distributed web of weather stations harvesting micro-data regarding
wind, temperature, humidity, etc. and this information is further complemented
by macro-data from weather satellites and sounding balloons with the aim to make
accurate predictions less expensive. How to decide how to combine such micro- and
macro-data in an optimal fashion in order to provide a clear picture of future dy-
namics while avoiding the curse of complexity at the microscopic level? This paper
addresses such questions related to multiscale measurements of complex systems in
a theoretical setting. More precisely, it aims at emphasising the need for multilevel
prediction in canonical examples of dynamical systems, and at founding such an
approach on information theory.

Our general framework is the following: We start with a microscopic description
of the system that is complete in the sense that it contains all available information
about the system and its future. This means in particular that we assume the micro-
dynamics to be Markovian. An example would be the phase space for classical
particles consisting of their locations and velocities together with the Newtonian
equations of motion. Another class of examples are models of interacting agents –
also known as Agent-based Models (ABMs) – which typically implement a Markov
chain on the state space defined by all possible agent configurations [5]. In this
paper, we shall use a model of this latter type in order to present and elaborate
the proposed prediction framework. Notice, that we consider only systems with
discrete state spaces for this paper.

We are then interested in predicting a certain observable of the system which
is determined by its future state via a stochastic map – called “post-measurement”
in the following. In this paper, we will study both microscopic and macroscopic
post-measurements. We are now asking for an observable of the current state –
via a stochastic map called “pre-measurement” – which allow to most efficiently
predict the target post-measurement. In this context, optimality is related to two
aspects of the pre-measurement: (1) its predictive power and (2) its complexity.
If one is only interested in predictive power the answer is trivial: The microscopic
state would be the best pre-measurement because we assumed it being “complete”.
However, if complexity is also an issue one has to deal with a trade-off between
these two competing aspects: How much predictive power does one is willing to
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lose in order to reduce the cost of measurement? We address this question in
the framework of the Information Bottleneck (IB) method [30]. Here, predictive
power is quantified by the mutual information between the pre- and the post-
measurement, while complexity is quantified by the mutual information between
the pre-measurement and the current micro-state. This choice hence relates the
complexity “cost” directly to the channel capacity that is required between the
micro-state and the pre-measurement. Then, we define the Optimal Prediction
Problem (OPP) as a constraint optimisation problem aiming at optimising a trade-
off between measurement complexity and predictive capacity. The solution space
is hence the set of all possible pre-measurement of the current system state.

Note that this choice of “model costs” does not take into account the difficulty
of estimating the model from data. This aspect is not relevant for the current paper
because we start here with the microscopic dynamics being known. Moreover, we
also do not take into account neither the computational complexity of the predic-
tion algorithm nor the real world costs of actually doing the “pre-measurements”,
i.e. the cost of data acquisition. The trade-off between prediction accuracy and
computational costs is also addressed in the State Space Compression (SSC) frame-
work developed in [31]. In particular several possibilities for information theoretic
cost functions for both aspects are discussed. A principle difference between the
SSC framework and the OPP formulated above is that the latter only asks for the
mutual information between the pre-measurement and the post-measurement, but
does not consider the construction of an explicit predictor, for instance by using
an approximate dynamics for the pre-measurement. The latter is done in the SSC
which in contrast to the OPP requires to consider also the computational costs for
iterating this dynamics. The IB method applied to questions of prediction efficiency
is clearly related to other information-theoretic approaches developed in the context
of multilevel complex systems, and most importantly to predictive efficiency, intro-
duced in [28] to characterise emergent levels. The intuition of this approach is that
a coarse-grained description should be considered as a proper observational level
if it informs about the dynamics that can be observed within this scale while, at
the same time, being not too complex. Shalizi [28] introduced predictive efficiency
as the ratio between excess entropy and statistical complexity [11], also known as
effective measure complexity [16] and forecasting complexity [32]. The formulation
as a variational of one-step mutual (prediction) information and the entropy of the
description used in [24] renders the relation between predictive efficiency and the
Information Bottleneck method visible.
There is also a strong relation of the OPP to the problem of level identification as
for instance discussed in [25]. For level identification one asks for aggregations of
the micro-state that give rise to a self-sufficient description on the aggregated level.
In our formalism this mean that the post-measurement is pre-defined externally
but varied together with the pre-measurement. In the context of Markov chains
the existence of closed aggregated descriptions is denoted as “lumpability” of the
Markov chain [18].

Our approach also relies on another essential feature of efficient prediction,
that is, when dealing with a particular dynamical system, not all measurements are
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meaningful and/or feasible in practice. Indeed, when observing a system, one might
have at her disposal a determined collection of observation devices that one would
like to use for optimal prediction: e.g., a thermometer to measure the temperature
of a gas, weather stations to get data about atmospheric conditions, or some well-
defined economic indicators to estimate the performance of countries. The OPP
should fit with these practical constraints to find, given such a collection of devices,
the optimal way to position them within the system in order to retrieve informative
data. Therefore, in this paper, we propose to constraint the solution space of the
OPP by expressing the classes of pre-measurements that are both meaningful for
the observer and feasible in practice. To focus on ABMs, we propose the concept
of “generic measurement”, that is an observation device that one can generically
apply to any subset of agents in order to observe the system at different levels, from
the agent microscopic level to the system macroscopic level through any interme-
diate mesoscopic level. A generic measurement hence defines a structured family
of multilevel feasible measurements that can be used as a solution space for the
OPP. Moreover, we show that such families are partially ordered by a so called “re-
finement relation” and that the IB-measures are monotonous with respect to this
partial order, such that one always reduce the complexity and predictive capacity
by moving upward within the solution space. Generic measurements hence prove
to be extremely useful to explore the solutions of the optimisation problem.

A main result of the present investigation is that, depending on the weight
of the measurement complexity in the IB trade-off, the optimal pre-measurement
can be macroscopic, mesoscopic, microscopic, or multilevel, i.e. a combination of
observables from different levels. In ABMs, for instance, we might ask (and we
will in Section 4) what is the most efficient measurement that one can perform on
the current system state (at time t) in order to predict observables of the future
system state (at time t + τ) that can be (1) global observables of the whole agent
population, (2) observables focusing on a subset of this population, or just as well
(3) observables of the state of one particular agent of interest. The aim of the
framework we propose is to identify pre-measurements that are optimal in the sense
that they provide the best predictive power at a certain level of allowed complexity.
To make this illustration a bit more explicit, for the prediction of the state of an
individual agent at time t+τ , knowledge of its state at time t is often the best choice
for short-term prediction (small τ). Indeed, this local observable is of rather low
complexity, since the number of possible values is equal to the number of states the
agent may adopt, while the predictive information concerning the future state of
this agent is relatively high in every ABM in which agents are updated sequentially
so that only a fraction of agents changes from one time step to the next. As the
prediction horizon increases (larger τ), however, other measurements – capturing
mesoscopic or macroscopic information, or even combinations of both – become
optimal, since for longer timescales the dynamics are governed by processes on
larger spacial scales.

These different effects are already visible in the Voter Model (VM) [7,8,19,21,23]
that we use as a paradigmatic ABM example, simple enough to compute the in-
volved information measures in an explicit way on the basis of the microscopic
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transition matrices. For this model, we define and compute “IB-diagrams” showing
pre-measurements that are optimal according to the IB objective function within
regions of a three-parameter space, spanned by the current observation time t, the
prediction horizon τ , and the trade-off parameter β between measurement com-
plexity and predictive capacity. We present results for the VM on the complete
graph, on a two-community graph, and on the ring. These three experiments show
that, depending on the prediction horizon, higher-level and even multilevel mea-
surements turn out to be the optimal predictors maximising information for a given
complexity.

The rest of this paper is organised as follows. Section 2 presents the Informa-
tion Bottleneck (IB) method, the Optimal Prediction Problem (OPP), the concept
of “generic measurement”, and its application to Agent-based Models (ABMs).
Section 3 presents general results regarding the solution space of the OPP: poset
structure of feasible measurements, monotonicity of IB measures, optimality con-
ditions for some subsets of the solution space. Section 4 applies our framework
to the Voter Model (VM) and provides a complete solution of the OPP in a very
simple case: predicting the macroscopic “aggregated-state” measurement in the
case of a complete and uniform interaction graph. Section 5 presents more complex
experiments where a multilevel measurement becomes necessary for optimal pre-
diction. We show how by introducing heterogeneity in the interaction graph of the
VM affects the prediction problem by creating a dependence between the system’s
temporality and the optimal levels for prediction. Section 6 discusses these results
and proposes some application and generalisation perspectives.

2 Applying the Information Bottleneck Method to
Optimal Prediction of Agent-based Models

First, this section formalises the Optimal Prediction Problem (OPP) by apply-
ing the Information Bottleneck (IB) method to the measurement and prediction
of Markov chains (Subsection 2.1). We then define IB-diagrams as solutions to
the OPP, partitioning the tridimensional parameter space (current time, prediction
horizon, and trade-off parameter) into disjoint optimality regions for each possi-
ble pre-measurements (Subsection 2.2). We apply this general framework to the
prediction of ABMs by defining the concept of generic measurement, that is a
family of pre-measurements that are consistent with the agent structure of the sys-
tem (Subsection 2.3). More precisely, they are consistent in the sense that such a
generic measurement can be virtually applied to any subset of agents while satis-
fying two essential algebraic properties : independence of measurements relatively
to the state of non-observed agents, and additivity of observables of disjoint agent
subsets. Section 3 will then show that, under these conditions, the set of feasible
pre-measurements has an interesting poset structure that is consistent with the IB
framework.
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Current State
Xt ∈ Σ

Future State
Xt+τ ∈ Σ

Markovian Kernel
T : Σ→ Σ

Current Observation
φ(Xt) ∈ Sφ

Future Observation
ψ(Xt+τ ) ∈ Sψ

Pre-measurement
φ : Σ→ Sφ

Post-measurement
ψ : Σ→ Sψ

Predictive Capacity
I(φ(Xt);ψ(Xt+τ ))

Measurement
Complexity
I(Xt;φ(Xt))

Figure 1: General setting of the Optimal Prediction Problem

2.1 Information Bottleneck and Optimal Prediction

Let (Xt)t∈N be a sequence of discrete random variables defined on a finite state
space Σ and representing the trajectory of a dynamical system assumed to have
the Markov property. We mark T (Xt+1 = x′|Xt = x) the transition proba-
bility at time t. A measurement φ is a stochastic map that transforms X ∈
Σ into a random variable φ(X) ∈ Sφ defined on another finite state space Sφ
– called the measurement space – according to a conditional probability distribution
Pr(φ(X) = sφ|X = x). A measurement hence induces a soft partitioning sφ ∈ S of
the system state space x ∈ Σ. We assume in the following that both the transition
kernel and the measurements are time-independent. Now, given a post-measurement
ψ that will be performed at time t+τ , we would like to perform a pre-measurement φ
at time t that efficiently predicts the result of the future measurement (see Fig. 1
for a graphical representation of this general setting).

The IB-method [30] is an information-theoretic framework generalising rate
distortion theory [10] to build lossy statistics while controlling the information
loss. It consists in solving the following optimisation problem: given two random
variables X and Y – respectively the input and the output of the IB method, find a
third bottleneck variable X̂ that is a (possibly stochastic) function of X extracting
and compressing the information its contains that is relevant to predict Y . The
bottleneck variable X̂ is thus a model of X that is adequate to explain Y . In
our setting the input X corresponds to the current state Xt, the output Y to the
post-measurement ψ(Xt+τ ) and the bottleneck X̂ to the pre-measurement φ(Xt).
Interpreting the bottleneck variable as a model of the output, the complexity of this
model is quantified by the mutual information I(Xt;φ(Xt)), that is the amount of
information that the compressed variable contains about the data it summarises.
The predictive capacity of the model is quantified by I(φ(Xt);ψ(Xt+τ )), that is the
amount of information captured by φ(Xt) that can be used to predict ψ(Xt+τ ).
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The IB method is thus actually dealing with a constrained optimisation prob-
lem: Build a bottleneck variable that optimally predicts the output without exceeding
a given complexity ; or its dual version: Build a bottleneck variable with minimal
complexity that guarantees a given predictive capacity. Usually, both conditions are
expressed by the following variational problem [30]:

min
φ
IBβ(Xt;φ(Xt);ψ(Xt+τ ))

� where φ is a stochastic map from Σ to any discrete space Sφ,

� where IBβ(Xt;φ(Xt);ψ(Xt+τ )) = I(Xt;φ(Xt)) − β I(φ(Xt);ψ(Xt+τ )),

� and where β ∈ R+ expresses the trade-off between the two competing goals.

As β → 0, one focuses on compression against prediction whereas, as β → +∞,
predictive capacity prevails. In this paper, we are hence interested in the following
class of optimisation problems.

Definition 1 (Optimal Prediction Problem). Given an initial distribution Pr(X0 =
x), a transition kernel T (Xt+1 = x′|Xt = x), and a post-measurement ψ defined
by Pr(ψ(X) = sψ|X = x), an Optimal Prediction Problem (OPP) is an instance
of the following optimisation problem:

� Given a time t ∈ N, an horizon τ ∈ N, and trade-off parameter β ∈ R+,

� Find a pre-measurement φ defined by Pr(φ(X) = sφ|X = x) that minimises
the IB-variational IBβ(Xt;φ(Xt);ψ(Xt+τ )).

2.2 Computing Information Bottleneck Diagrams

An instance of a prediction problem – as hereabove defined – is characterised by
three parameters: the current time of pre-measurement t ∈ N, the prediction
horizon before post-measurement τ ∈ N, and the trade-off parameter β ∈ R+.
Hence, for a given dynamical system and a given post-measurement ψ, a complete
solution to the OPP consists in finding an optimal measurement for each triple
(t, τ, β) ∈ N × N × R+ or, conversely, in identifying the optimality region of each
possible pre-measurement φ, that is the subset of N × N × R+ where φ is opti-
mal. We call the resulting partitioning of the tridimensional parameter space an
IB-diagram.

To build and analyse such diagrams, we actually look for the borders between
optimality regions, that is the values of (t, τ, β) where the IB-variational is equal for
two given pre-measurements φ1 and φ2, thus delimiting two regions of N×N×R+,
one where φ1 is more efficient than φ2, and the other where φ2 is more efficient
than φ1. Given a finite set of pre-measurements {φ1, . . . , φk}, and assuming that
one can easily determine such border for each pair (φi, φj), then one can deduce,
for any triple (t, τ, β), which of these pre-measurements is optimal (by pairwise
comparison).
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The β-border is... When...
Optimality
region of φ1

Optimality
region of φ2

(1) strictly positive
H1 < H2 and I1 < I2 [0, βt,τφ1,φ2 ] [βt,τφ1,φ2 ,+∞[

H1 > H2 and I1 > I2 [βt,τφ1,φ2 ,+∞[ [0, βt,τφ1,φ2 ]

(2) null
H1 = H2 and I1 < I2 {0} [0,+∞[

H1 = H2 and I1 > I2 [0,+∞[ {0}

(3) infinite
H1 < H2 and I1 = I2 [0,+∞[ {+∞}
H1 > H2 and I1 = I2 {+∞} [0,+∞[

(4) defined nowhere
H1 < H2 and I1 > I2 [0,+∞[ ∅
H1 > H2 and I1 < I2 ∅ [0,+∞[

(5) defined everywhere H1 = H2 and I1 = I2 [0,+∞[ [0,+∞[

where Hi = I(Xt;φi(X
t)) is the complexity of φi,

Ii = I(φi(X
t);ψ(Xt+τ )) is the predictive capacity of φi,

βt,τφ1,φ2 = H2−H1
I2−I1 is the strictly positive border between φ1 and φ2 in

case (1).

Table 1: Characterising the optimality regions of two pre-measurements φ1

and φ2 along the dimension of the trade-off parameter β in the IB-variational

Table 1 provides an exhaustive list of the five possible types of β-borders – that
is the values of the trade-off parameters where φ1 and φ2 are IB-equivalent, for a
fixed t ∈ N and a fixed τ ∈ N – depending on the complexity and the predictive
capacity of the two competing measurements φ1 and φ2. In the following, we are
essentially interested in case (1), that is when, for a fixed t ∈ N and a fixed τ ∈ N,
there is a unique and strictly positive value β > 0 of the trade-off parameter for
which the two measurements are IB-equivalent:

∃!β ∈ ]0,+∞[, IBβ(Xt;φ1(Xt);ψ(Xt+τ )) = IBβ(Xt;φ2(Xt);ψ(Xt+τ )).

In this case, we say that the border between the two optimality regions is strictly
positive, and we mark βt,τφ1,φ2

∈ ]0,+∞[ the corresponding value, delimiting the
two optimality regions. It is easy to show that this case arises if and only if the
complexity and the predictive capacity of one measurement are both strictly larger
than those of the other measurement, and that

βt,τφ1,φ2
=

I(Xt;φ2(Xt))− I(Xt;φ1(Xt))

I(φ1(Xt);ψ(Xt+τ ))− I(φ2(Xt);ψ(Xt+τ ))
.

In the experiments of Sections 4 and 5, we use this formula to compute and analyse
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several such IB-diagrams.
For other cases, one measurement is never less efficient than the other one,

meaning that one can safely chose this measurement for any value of the trade-
off parameter. In this case, the two measurements can however be equivalent for
extreme values of β (cases (2) and (3)) or for all values of β (case (5), which only
arises when φ1 and φ2 have the same complexity and the same predictive capacity).

Remark on the Optimality Region of Deterministic Measurements.
Since the complexity of any deterministic measurement φd is actually equal to its
entropy:

I(Xt;φd(X
t)) = H(φd(X

t))−H(φd(X
t)|Xt) = H(φd(X

t)),

and since the entropy is an upper bound of the predictive capacity:

I(φd(X
t);ψ(Xt+τ )) ≤ H(φd(X

t)),

then the predictive capacity of any deterministic measurement is always lower than
its complexity:

H(φd(X)|X) = 0 ⇒ I(φd(X
t);ψ(Xt+τ )) ≤ I(Xt;φd(X

t)).

Hence, ∀β < 1, IBβ(Xt;φd(X
t);ψ(Xt+τ )) > 0.

Moreover, any “constant measurement” φc(X) = c ∈ Sφ has a null complexity
and null predictive capacity: ∀β ∈ R+, IBβ(Xt;φc(X

t);ψ(Xt+τ )) = 0. Hence,
such a constant measurement is always more efficient than any deterministic mea-
surements for β < 1.

2.3 Application to Agent-based Models via the Concept of
Generic Measurement

Seeking for a pre-measurement that optimises the IB-variational might result in any
kind of stochastic map. However, when measuring and predicting a dynamical pro-
cess modelling a particular physical system, such an optimal solution might appear
quite abstract or quite artificial in practice. In fact, one may not be able to physi-
cally implement the corresponding observation device. Hence, the solution space of
the OPP, that is the set of all possible stochastic maps, should be redefined in order
to fit with the practical measurement feasibilities. Given a set Φ = {φ1, . . . , φk} of
measurements that are actually feasible in practice, we would like to find the one
that optimises the IB trade-off:

min
φ∈Φ

IBβ(Xt;φ(Xt);ψ(Xt+τ )).

We now consider the case of ABMs. Given a set Ω = {1, . . . , N} of N agents
indexed by integers, the state of agent i at time t is represented by a discrete random
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variable Xt
i ∈ S, where S is the agent state space1. The state of the whole system is

hence represented by the multivariate random variable Xt = (Xt
1, . . . , X

t
N ) defined

on the Cartesian product of the agent state spaces Σ = SN . In the following,
we introduce the concept of generic measurement to express the feasibility of pre-
measurements as their consistency with this agent dimension.

Generic Measurement. Intuitively, a generic measurement is an observation
procedure that can be independently applied to any agent subset. It thus defines a
family of feasible measurements parametrized within the power set 2Ω of the agent
set Ω. For example, any statistic – that is any measure of some attribute of the
agents (mean, variance, maximum, etc.) – is a generic measurement in the sense
that it is a standard aggregating operation that one can generically apply to any
sample of agents. For more applied examples, the sum of the incomes of individuals
is a generic measurement in economy and, if one identifies gas particles with agents,
then the mass, kinetic energy, and other classical physical properties of particles
are also generic measurements. Note that most of these examples are also additive
measurements, as defined further in this section.

Definition 2 (Generic Measurement). A generic measurement µ is a family of
feasible measurements (µA : Σ → Sµ)A⊂Ω parametrized by an agent subset A ⊂
Ω that all take values into a common measurement space Sµ and that each is a
(possibly stochastic) functions of the states of the agents in A only:
∀A ⊂ Ω, ∀x = (x1, . . . , xN ) ∈ SN , ∀sµ ∈ Sµ,

Pr(µA(X) = sµ | X = (x1, . . . , xN )) = Pr(µA(X) = sµ | (Xi = xi)i∈A).

For any collection of agent subsets {A1, . . . , Ak} ⊂ 2Ω, a generic measurement
also defines a feasible measurement consisting in the combination of several mea-
surements (µA1 , . . . , µAk) and taking values into the k-dimensional measurement
space (Sµ)k. In particular, a generic measurement µ defines (see Fig. 2 for a
graphical representation of the following measurements):

� a set of agent measurements µ{i} : Σ→ Sµ, with i ∈ Ω, each corresponding
to the measurement of the state of a single agent;

� a microscopic measurement (µ{1}, . . . , µ{N}) : Σ → (Sµ)N corresponding to
the combination of all agent measurements;

� a macroscopic measurement µΩ : Σ→ Sµ corresponding to the measurement
of the macroscopic state of the whole population;

� an empty measurement µ∅ : Σ → Sµ for which no observation is actually
performed ( i.e., this measurement is constant in Sµ).

1 In this setting, we assume that all agents have a common state space S, thus assuming
that they are somewhat homogeneous. However, one can always come down to this case
by modelling the common state space S as the union S1 ∪ . . . ∪ SN of the particular
state spaces for each agent in Ω (possibly inducing a very sparse transition matrix for the
dynamical system).

12



As an example, consider agents accumulating and sharing a given resource such
that the state of agent i ∈ Ω represents the current amount of resources it owns:
Xi ∈ S = N. A canonical generic measurement would consists in associating to
each agent subset A ⊂ Ω the total amount of resources owned within the subset:
µA(X) =

∑
i∈AXi ∈ Sµ = N. Within this setting:

� an agent measurement µ{i}(X) = Xi simply gives the amount of resources
owned by agent i;

� the microscopic measurement (µ{1}, . . . , µ{N})(X) = (X1, . . . , XN ) provides
a complete description of the system state by specifying the amount of re-
sources owned by each agent separately;

� the macroscopic measurement µΩ(X) =
∑
i∈ΩXi gives the total amount of

resources owned within the system;

� and the empty measurement µ∅(X) = 0, as in any other setting, do not
provide any information regarding the current system state.

More generally, given a generic measurement µ, a feasible measurement φ can
be expressed with respect to a feasible collection of agent subsets {A1, . . . , Ak} ⊂
2Ω – that is a collection of agent subsets to which the generic measurement µ
can be applied in practice. In other words, the feasibility constraints regarding
measurements are now fully expressed in terms of the agent space. For example, in
the case of agents spatially located in an environment, the environment’s topology
might impose practical constraints for measurement (a thermometer for example
measures a local property of the system and is hence sensitive to its topology).

Additive Generic Measurements. Intuitively, a generic measurement is
additive if, when measuring the state of groups of agents at a given level, one can
directly derive the measures of the states of groups of agents appearing at higher-
levels. For example, one can derive any mesoscopic measurement from the micro-
scopic one. This important property implies that measurements can be somehow
ordered according to the information they provide about the system, as formalised
in next section.

Definition 3 (Additivity). A generic measurement µ is additive if the measure-
ment of two disjoint agent subsets fully determine the measurement of their union,
and the measurement of two nested agent subsets fully determine the measurement
of the corresponding complement. Formally, ∀A1 ⊂ Ω, ∀A2 ⊂ Ω, we have:

A1 ∩A2 = ∅ ⇒
{
H(µA1∪A2(X) | µA1(X), µA2(X)) = 0
H(µA1

(X) | µA1∪A2
(X), µA2

(X)) = 0.

This is the case in particular when, given a commutative, symmetric, and in-
vertible operator ? on the measurement space Sµ, this operator is preserved by the

13
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Figure 2: Poset of feasible measurements where arrows represent the refine-
ment relation (in case of an additive generic measurement)

union of disjoint agent subsets. Formally, ∀A1 ⊂ Ω, ∀A2 ⊂ Ω, ∀sµ1 ∈ Sµ, and
∀sµ2 ∈ Sµ, we have:

A1∩A2 = ∅ ⇒
{

Pr(µA1∪A2
(X) = sµ1 ? sµ2 | µA1

(X) = sµ1, µA2
(X) = sµ2) = 1

Pr(µA1(X) = sµ1 | µA1∪A2(X) = sµ1 ? sµ2, µA2(X) = sµ2) = 1.

In this case, the probability distribution of µA1∪A2
(X) is fully determined by the

joint probability distribution of µA1
(X) and µA2

(X).
In our previous example regarding the amount of resources own by agents, with

Sµ = N, feasible measurements µA(X) =
∑
i∈AXi are additive with respect to the

addition + in N:

A1 ∩A2 = ∅ ⇒ µA1∪A2
(X) = µA1

(X) + µA2
(X).
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Higher-order Generic Measurements. The definition of generic measure-
ments provided above is rather general and comprises a plethora of observables.
There are, however, already relatively common cases for which this definition be-
comes problematic, because the measurement will not be additive. Examples would
be observables that measure properties of pairs of agents such as the energy in the
Ising Model or the number of active links in the Voter Model. The microscopic
measurements as defined above would become meaningless in these cases. A simple
solution for this problem is the definition of higher-order generic measurements that
are defined not on subsets of agents but on a subsets of all pairs (2nd order) – or in
general k-tuples (kth order) – of agents. The energy of an Ising system would then
be an additive second-order generic measurement. In this paper, however, we only
survey and use first-order generic measurements.

Deterministic Generic Measurements. To conclude this section, we also
define deterministic generic measurements.

Definition 4 (Determinism). A generic measurement µ is deterministic if each
feasible measurement µA with A ⊂ Ω is a deterministic function of the states of the
agents in A only:

H(µA(X)|XA) = 0,

where XA = (Xi)i∈A is the microscopic state of agents in A.

Observation 1. If µ is additive and deterministic, then the microscopic state can
be used instead of the measurement in the additivity property. Formally, ∀A1 ⊂ Ω,
∀A2 ⊂ Ω, we have:

A1 ∩A2 = ∅ ⇒
{
H(µA1∪A2(X) | µA1(X), XA2) = 0
H(µA1

(X) | µA1∪A2
(X), XA2

) = 0,

where XA = (Xi)i∈A is the microscopic state of agents in A.

Proof. Since µ is deterministic, we have

H(µA1∪A2
(X)|µA1

(X), µA2
(X), XA2

)

= H(µA1∪A2
(X), µA2

(X)|µA1
(X), XA2

) − H(µA2
(X)|µA1

(X), XA2
)︸ ︷︷ ︸

=0

= H(µA1∪A2(X)|µA1(X), XA2) + H(µA2(X)|µA1∪A2(X), µA1(X), XA2)︸ ︷︷ ︸
=0

and since µ is additive, we also have

H(µA1∪A2
(X)|µA1

(X), µA2
(X), XA2

) = 0.

The same reasoning also leads to H(µA1
(X)|µA1∪A2

(X), XA2
) = 0.
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3 Theoretical Results regarding the Solution Space
of the Optimal Prediction Problem

This section present some general properties of the solution space of the OPP – as
defined in the previous section – that is the set of feasible measurements that can
be derived from a generic measurement. First, we show that this solution space can
be partially ordered by a “refinement relation” and that the complexity and the
predictive capacity (see Subsection 2.1) are monotonous with respect to this poset
structure. Second, we show that, under some additional assumptions, the solution
space can be significantly reduced by a priori removing a subset of non-optimal
measurements, thus reducing the computation cost of the optimisation problem.

3.1 The Poset of Feasible Measurements

Measurements can be partially ordered according to their relative information con-
tent. Intuitively, a measurement φ1 “precedes” a measurement φ2 if all the in-
formation contained in φ2(X) regarding the system’s state X is also contained in
φ1(X). In the case of deterministic measurements, this partial order corresponds to
the classical refinement relation [12] between the two partitions of the state space
induced by φ1 and φ2. In this context, a partition refines another partition if each
part of the first partition is a subset of a part of the second partition. In the follow-
ing definition, we keep the name of this partial order relation while generalising to
any (stochastic or deterministic) measurement. Note that this generalised relation
is more commonly known as the Blackwell order [6].

Definition 5 (Refinement Relation). A measurement φ1 refines a measurement φ2

(we mark φ1 ≺ φ2) if and only if X → φ1(X)→ φ2(X) is a Markov chain for any
random variable X in Σ. In other words, φ1 refines φ2 if and only if φ2(X) is a
(possibly stochastic) function of φ1(X) only.

For any time t ∈ N and horizon τ ∈ N, we hence have the following Bayesian
network [14]:

Xt

Xt+τ

φ1(Xt) φ2(Xt)

ψ(Xt+τ )

Any collection of measurements hence forms a poset that can be represented
by a Hasse diagram (see the example in Section 4). Moreover, this poset structure
is consistent with the IB-measures as stated in the following theorem.

Theorem 1. The measurement complexity and the predictive capacity are monotonous
regarding the refinement relation:

φ1 ≺ φ2 ⇒
{

I(Xt;φ1(Xt)) ≥ I(Xt;φ2(Xt))
I(φ1(Xt);ψ(Xt+τ )) ≥ I(φ2(Xt);ψ(Xt+τ ))
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For any µ,

X1
X2

X3X4

X5 ≺
X1
X2

X3X4

X5 ≺
X1
X2

X3X4

X5

Figure 3: Combining measurements generates refinements (see Observa-
tion 2)

Proof. These two inequalities are obtained by exploiting the conditional indepen-
dences implied by the Bayesian network presented in Definition. 5. First, φ2(Xt)
is conditionally independent from Xt given φ1(Xt), because of the Markov chain
Xt → φ1(Xt) → φ2(Xt). Due to this conditional independence the conditional
mutual information vanishes:

I(Xt;φ2(Xt)|φ1(Xt)) = 0.

Now we can apply the chain rule to the following mutual information:

I(Xt;φ1(Xt), φ2(Xt)) = I(Xt;φ1(Xt)) + I(Xt;φ2(Xt)|φ1(Xt))︸ ︷︷ ︸
=0

= I(Xt;φ2(Xt)) + I(Xt;φ1(Xt)|φ2(Xt)).

Thus,

I(Xt;φ1(Xt))− I(Xt;φ2(Xt)) = I(Xt;φ1(Xt)|φ2(Xt)) ≥ 0,

which proves the upper inequality.
Second, ψ(Xt+τ ) is conditionally independent from φ2(Xt) given φ1(Xt), be-

cause φ1(Xt) d-separates [14] ψ(Xt+τ ) and φ2(Xt). Using the chain rule for
I(ψ(Xt+τ );φ1(Xt), φ2(Xt)) analogously to the first case proves the second inequal-
ity. Note that these inequalities are the Data Processing Inequalities [9] of the
corresponding Markov chains.

In the case of (possibly additive) generic measurement of agent-based systems,
the following observations also apply (see Fig. 2, 3, 4 and 5).

Observation 2. For any generic measurement µ, combining two feasible measure-
ments generates a refining measurement:

∀A1 ⊂ Ω, ∀A2 ⊂ Ω, (µA1
, µA2

) ≺ µA1
.

Proof. Indeed, (µA1 , µA2)(X) contains all the information needed to determine
µA1

(X).
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µ is additive ⇒
X1
X2

X3X4

X5 ≺
X1
X2

X3X4

X5 ≺
X1
X2

X3X4

X5

Figure 4: When additive, measurements of partitions refines measurements
of covered agent subsets (see Observation 3)

X1
X2

X3X4

X5µ is additive ⇒ and are equivalent

X1
X2

X3X4

X5

Figure 5: When additive, measurements of nested agent subsets can be
equivalently defined as measurements of disjoint agent subsets (see Obser-
vation 4)

Observation 3. For any additive generic measurement µ, the measurement of a
partition refines the measurement of the covered subset:

∀A1 ⊂ Ω, ∀A2 ⊂ Ω, A1 ∩A2 = ∅ ⇒ (µA1
, µA2

) ≺ µA1∪A2
.

Proof. This directly follows the definitions of additive measurements and of the
refinement relation (see Definitions 3 and 5).

Observation 4. For any additive generic measurement µ, the joint measurement
of two nested agent subsets is equivalent to the measurement of the corresponding
disjoint subsets:

∀A1 ⊂ Ω, ∀A2 ⊂ Ω, A1 ⊂ A2 ⇒ (µA1 , µA2) ≺ (µA1 , µA2\A1
)

(µA1
, µA2

) � (µA1
, µA2\A1

).

Proof. Since H(µA2
(X)|µA2\A1

(X), µA1
(X)) = 0 (additivity), then

(µA1 , µA2\A1
)(X) fully determines (µA1 , µA2)(X) and conversely, since

H(µA2\A1
(X)|µA2

(X), µA1
(X)) = 0 (additivity), then (µA1

, µA2
)(X) fully deter-

mines (µA1
, µA2\A1

)(X).

Observation 5. For any additive generic measurement µ, any feasible measure-
ment (µA1 , . . . , µAk) refines the empty measurement µ∅ and is refined by the mi-
croscopic measurement (µ{1}, . . . , µ{N}). Hence, the empty measurement is the top
element of the measurement poset (it has the lowest complexity and the lowest pre-
dictive capacity) and the microscopic measurement is the bottom element of the
measurement poset and (it has highest complexity and the highest predictive capac-
ity).
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Proof. First, since ∀A ⊂ Ω we have H(µ∅(X)|µA(X)) = 0 (additivity), then any
feasible measurement (µA1

, . . . , µAk)(X) fully determines the empty measurement
µ∅(X). Second, since ∀A ⊂ Ω, we have H(µA(X)|(µ{i}(X))i∈A) = 0 (additiv-
ity), then any feasible measurement (µA1 , . . . , µAk)(X) is fully determined by the
microscopic measurement (µ{1}, . . . , µ{N})(X).

3.2 A General Result on Optimality of Nested Measure-
ments

Under some hypotheses – presented in further details below – one can avoid eval-
uating all feasible measurements when solving the OPP. In this subsection, we
indeed present some results allowing to only consider a subset of the solution space
and thus considerably reducing the computation cost of the optimisation problem.
Intuitively, (1) if the generic measurement µ is additive and deterministic, (2) if
we know that some pre-measurement µA contains all the information available at
the microscopic level that is relevant to predict some post-measurement ψ, and
(3) if the probability distribution Pr(Xt

A|µA(Xt
A)) of the microscopic state given

this pre-measurement is uniform, then, for any pre-measurement µB such that B is
“nested” in A, one does not increase the predictive capacity of µB by considering a
partition of B instead of B itself. Hence, all partitions of collections of agent subsets
that are “nested” in A can be removed from the solution space.

In Subsection 4.3, we apply this result to one of our case study: the prediction
of the macroscopic aggregated-state of the Voter Model in the case of a complete
interaction graph and a uniform initial distribution. Hence, thanks to this result,
we are able to give a complete characterisation of the IB-diagram for this case study,
that is a complete solution of the OPP for the parameter space (t, τ, β) ∈ N×N×R+.

1

5

43

2

6

10

98

7

A = {A1 = {1, 2}, A2 = {3, 4, 5}, A3 = {6, 7, 8, 9, 10}}
B = {B1 = ∅, B2 = {3, 4}, B3 = {7, 8, 9, 10}}

∪iBi = {B2,1 = {3}, B2,2 = {4}, B3,1 = {7, 8}, B3,2 = {9, 10}}
C = {C1 = {1, 2}, C2 = {5}, C3 = {6}}

Figure 6: Example of setting for Theorems 2, 3 and 4 with ten agents and
four collections of agent subsets A, B, C and ∪iBi as described in Subsec-
tion 3.2.2

3.2.1 Definitions and Notations

The following objects are illustrated in Fig. 6 by an example of feasible measure-
ments satisfying these definitions.

� Given a generic measurement µ and a post-measurement ψ that one wants
to predict;
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� Given a collection of agent subsets A = {A1, . . . , Ak} that are pairwise dis-
joint2: ∀i 6= j, Ai ∩Aj = ∅;

� Given a collection of agent subsets B = {B1, . . . , Bk} that are each included
in an agent subset in A: ∀i, Bi ⊂ Ai.

� Given k collections of agent subsets Bi = {Bi,1, . . . , Bi,li} that are each a
partition of an agent subset in B:

∀i, Bi,1 ∪ . . . ∪Bi,li = Bi and ∀i, ∀j1 6= j2, Bi,j1 ∩Bi,j2 = ∅.

In the following, we also mark:

� ∀i, Ci = Ai\Bi the subset of agents covered by Ai but not by Bi, and
C = {C1, . . . , Ck} the collection of these subsets;

� A = A1 ∪ . . . ∪Ak the set of agents covered by A;

� B = B1 ∪ . . . ∪Bk the set of agents covered by B;

� C = A\B the set of agents covered by A but not by B;

� XA ∈ S|A|, XB ∈ S|B|, and XC ∈ S|C| the microscopic state of the corre-
sponding agents at time t. For example, XA = (Xt

i )i∈A. Hence, we have
XA = XB ∪XC .

3.2.2 Assumptions and General Reasoning

(A1) If µ is additive and deterministic;

(A2) If the feasible pre-measurement µA = (µA1
, . . . , µAk) resulting from collec-

tion A contains all the information that is available at the microscopic level
to predict ψ:

∀t ∈ N, ∀τ ∈ N, I(Xt;ψ(Xt+τ )|µA(Xt)) = 0;

(A3) If the microscopic Markov chain has the uniform micro-state property with
respect to µA, that is that, at any time, the probability distribution of Xt

A

given µA(Xt
A) is uniform: ∀t ∈ N, ∀xA ∈ S|A|, ∀x′A ∈ S|A|, ∀sµ ∈ (Sµ)k,

Pr(Xt
A = xA|µA(Xt

A) = sµ) = Pr(Xt
A = x′A|µA(Xt

A) = sµ),

and, because µ is deterministic: ∀t ∈ N, ∀xA ∈ S|A|, ∀x′A ∈ S|A|,

µA(xA) = µA(x′A) ⇒ Pr(Xt
A = xA) = Pr(Xt

A = x′A);

(Result) Then, the feasible pre-measurement µB = (µB1
, . . . , µBk) resulting from

collection B is always more efficient than the feasible pre-measurement µ∪iBi =
(µB1,1

, . . . , µB1,l1
, . . . , µBk,1 , . . . , µBk,lk ) resulting from collection ∪iBi.

2Note that, when µ is additive, this hypothesis can also be applied to collections of
nested agent subsets (with possible Ai ⊂ Aj) by defining the corresponding collection of
disjoint agent subsets (see Observation 4).
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3.2.3 Theorems

Given that the previous assumptions hold, then we have the three following theo-
rems.

Theorem 2. At any time, µB has a lower complexity than µ∪iBi :

∀t ∈ N, I(Xt;µB(Xt)) ≤ I(Xt;µ∪iBi(X
t)).

Theorem 3. At any time and for any horizon, µB and µ∪iBi have the same pre-
dictive capacity:

∀t ∈ N, ∀τ ∈ N, I(µB(Xt);ψ(Xt+τ )) = I(µ∪iBi(X
t);ψ(Xt+τ )).

Theorem 4. At any time and for any horizon, the β-border between the optimality
region of µB and the optimality region of µ∪iBi is either infinite or defined every-
where. Hence, for any value of the trade-off parameter, µ∪iBi is never more efficient
than µB:

∀t ∈ N, ∀τ ∈ N, ∀β ∈ R+,

IBβ(Xt;µB(Xt);ψ(Xt+τ )) ≤ IBβ(Xt;µ∪iBi(X
t);ψ(Xt+τ )).

The proof of Theorem 3 requires the following two lemmas.

Lemma 1. ∀xB ∈ S|B| and ∀x′B ∈ S|B| such that µB(xB) = µB(x′B) = b ∈ (Sµ)k

and ∀xC ∈ S|C| such that µC(xC) = c ∈ (Sµ)k, we have:

(1) Pr(Xt
B = xB , X

t
C = xC) = Pr(Xt

B = x′B , X
t
C = xC);

(2) Pr(Xt
B = xB) = Pr(Xt

B = x′B);

(3) Pr(µC(X
t
C) = c|Xt

B = xB) = Pr(µC(X
t
C) = c|µB(Xt

B) = b);

(4) H(µC(X
t
C)|Xt

B) = H(µC(X
t
C)|µB(Xt

B));

(5) I(µ∪iBi(X
t);µA(Xt)|µB(Xt)) = 0;

Lemma 2. ∀xB ∈ S|B| and ∀x′B ∈ S|B| such that µB(xB) = µB(x′B) = b ∈ (Sµ)k,
∀xC ∈ S|C| such that µC(xC) = c ∈ (Sµ)k, and ∀s ∈ Sψ, we have:

(1) Pr(Xt
B = xB , X

t
C = xC , ψ(Xt+τ ) = s)

= Pr(Xt
B = x′B , X

t
C = xC , ψ(Xt+τ ) = s);

(2) Pr(Xt
B = xB , ψ(Xt+τ ) = s) = Pr(Xt

B = x′B , ψ(Xt+τ ) = s);

(3) Pr(µC(X
t
C) = c|Xt

B = xB , ψ(Xt+τ ) = s)
= Pr(µC(X

t
C) = c|µB(Xt

B) = b, ψ(Xt+τ ) = s);

(4) H(µC(X
t
C)|Xt

B , ψ(Xt+τ )) = H(µC(X
t
C)|µB(Xt

B), ψ(Xt+τ ));

(5) I(µ∪iBi(X
t);µA(Xt)|µB(Xt), ψ(Xt+τ )) = 0.
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3.2.4 Proofs

For simplicity, in the following proofs, we omit the time index t when non-ambiguous.
For example, we mark XA instead of Xt

A.

Proof of Lemma 1.
(1) ∀i ∈ {1, . . . , k}, since µ is additive and deterministic, and since Bi ∪ Ci = Ai
and Bi ∩ Ci = ∅, we have H(µAi(XB , XC)|µBi(XB), XC) = 0 (see Observation 1).
Hence, H(µA(XB , XC)|µB(XB), XC) = 0. Therefore, if µB(XB) and XC are fixed,
then µA(XB , XC) is also fixed. So, in our case, since µB(xB) = µB(x′B), we have
µA(xB , xC) = µA(x′B , xC). Hence, because of the uniform micro-state property
(A3), we have

Pr(XB = xB , XC = xC) = Pr(XB = x′B , XC = xC).

(2) Pr(XB = xB) =
∑

xC∈S|C|

Pr(XB = xB , XC = xC)

=
∑

xC∈S|C|

Pr(XB = x′B , XC = xC) (see (1))

= Pr(XB = x′B).

(3) Pr(µC(XC) = c|XB =xB) =
∑

xC∈S|C|

µC(xC)=c

Pr(XB = xB , XC = xC)

Pr(XB = xB)

=
∑

xC∈S|C|

µC(xC)=c

Pr(XB = x′B , XC = xC)

Pr(XB = x′B)
(see (1) and (2))

= Pr(µC(XC) = c|XB = x′B).

Therefore, conditioning µC(XC) on XB is equivalent to conditioning µC(XC) on
µB(XB):

Pr(µC(XC) = c|XB = xB) = Pr(µC(XC) = c|µB(XB) = b).

(4) First, following (3), we have

H(µC(XC)|XB = xB) = H(µC(XC)|µB(XB) = b).

Second,

H(µC(XC)|XB) =
∑

xB∈S|B|

Pr(XB = xB) H(µC(XC)|XB = xB)
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=
∑

b∈(Sµ)k

 ∑
xB∈S|B|

µB(xB)=b

Pr(XB = xB)

H(µC(XC)|µB(XB) = b)

=
∑

b∈(Sµ)k

Pr(µB(XB) = b) H(µC(XC)|µB(XB) = b)

= H(µC(XC)|µB(XB))

(5) ∀i ∈ {1, . . . , k}, since µ is additive and deterministic, Bi ∪ Ci = Ai
and Bi ∩ Ci = ∅, we have H(µAi(XB , XC)|XB , µCi(XC)) = 0
andH(µCi(XC)|µAi(XB , XC), XB) = 0 (see Observation 1). Hence, H(µA(X)|XB , µC(X)) =
0 and H(µC(X)|µA(X), XB) = 0.

Then, since

I(µA(X);µC(X)|XB) = H(µA(X)|XB) − H(µA(X)|XB , µC(X))

= H(µC(X)|XB) − H(µC(X)|µA(X), XB),

we haveH(µC(X)|XB) = H(µA(X)|XB), and the same reasoning also givesH(µC(X)|µB(X)) =
H(µA(X)|µB(X)).

Hence, following (4), we have H(µA(X)|XB) = H(µA(X)|µB(X)), and then

I(XB ;µA(X)|µB(X)) = H(µA(X)|µB(X))−H(µA(X)|XB) = 0.

Hence, XB → µB(X) → µA(X) is a Markov chain and, since µ∪iBi(X) → XB →
µB(X) is a also Markov chain, then we finally have

I(µ∪iBi(X
t);µA(Xt)|µB(Xt)) = 0.

Proof of Lemma 2. The proof of Lemma 2 takes the exact same form as the one of
Lemma 1 by also considering that, because I(XB , XC ;ψ(Xt+τ )|µA(Xt)) = 0, we
have, ∀s ∈ Sψ,

Pr(ψ(Xt+τ ) = s|XB = xB , XC = xC) = Pr(ψ(Xt+τ ) = s|µA(xB , xC))

= Pr(ψ(Xt+τ ) = s|µA(x′B , xC))

= Pr(ψ(Xt+τ ) = s|XB = x′B , XC = xC).

Hence,

Pr(XB = xB , XC = xC , ψ(Xt+τ ) = s)

= Pr(XB = xB , XC = xC) Pr(ψ(Xt+τ ) = s|XB = xB , XC = xC)

= Pr(XB = x′B , XC = xC) Pr(ψ(Xt+τ ) = s|XB = x′B , XC = xC)

(also see (1) of Lemma 1)
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= Pr(XB = x′B , XC = xC , ψ(Xt+τ ) = s).

Then, one can applies the same steps as in (2), (3), (4), and (5) above to show

I(µ∪iBi(X
t);µA(Xt)|µB(Xt), ψ(Xt+τ ) = 0.

Proof of Theorem 2. Since µ is additive, and because ∪iBi is a partition of B, we
have µ∪iBi ≺ µB (see Observation 3). Then, ∀t ∈ N, I(Xt;µB(Xt)) ≤ I(Xt;µ∪iBi(X

t))
(see Theorem 1).

Proof of Theorem 3. In this proof, we simply notations as follows: we mark A
instead of µA(Xt); B instead of µB(Xt); ∪iBi instead of µ∪iBi(X

t); and ψ instead
of ψ(Xt+τ ). Then, we use the following conditional independences:

(I1) (A,B,∪iBi) → X → ψ because the future states, and so the future post-
measurements, fully depend on the current microscopic state;

(I2) X → A→ ψ according to (A2);

(I3) (B,∪iBi)→ A→ ψ directly follows from (I1) and (I2);

(I4) ∪iBi → B → A according to result (5) of Lemma 1.

(I5) ∪iBi → (B, ψ)→ A according to result (5) of Lemma 2.

The inequality holds if ∪iBi → B → ψ is a Markov chain. Indeed, in this case,
the Data Processing Inequality gives: I(B;ψ) ≥ I(∪iBi;ψ). Hence, we want to
show that I(ψ;∪iBi|B) = 0. We have:

I(ψ;∪iBi|B) = I(ψ;∪iBi, X,A|B)− I(ψ;X,A|B,∪iBi) (chain rule)

= I(ψ;A|B)− I(ψ;A|B,∪iBi) (from I2 and I3)

= I(ψ,∪iBi;A|B)− I(∪iBi;A|B, ψ)

+ I(∪iBi;A|B)− I(ψ,∪iBi;A|B) (two chain rules)

= 0 (from I4)

Moreover, since B is a partition of B, and since µ is additive, we have µ∪iBi ≺ µB
(see Observation 3). Then, ∀t ∈ N, ∀τ ∈ N, I(µB(Xt);ψ(Xt+τ )) ≤ I(µ∪iBi(X

t);ψ(Xt+τ ))
(see Theorem 1). Hence, we have an equality.

Proof of Theorem 4. Directly follows Theorems 2 and 3 (also see Table 1).
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3.2.5 Generalisation and Conjectures

In Subsections 4.3, 5.1, and 5.2, we will apply these theorems to practical cases
in order to efficiently solve the OPP by enumerating and evaluating only the pre-
measurements that are not declared “non-optimal” by Theorem 4. However, in
these practical cases, it seems that the three theorems actually apply to a broader
class of pre-measurements, thus allowing to reduce even more the list of possible
solutions. Hence, we present in this subsection a generalisation of the three theo-
rems to this broader class. As we do not have a proof yet for this generalisation,
we simply formulate three conjectures while recording no empirical violation in the
practical examples we considered.

Thus, we conjecture that Theorems 2, 3 and 4 also applies when, ∀i ∈ {1, . . . , k},
Bi is any collection of agent subsets covering Bi, and not necessarily a partition of
Bi (we might have Bi,j1 ∩Bi,j2 6= ∅). In this way, one would be able to reduce the
solution space further.

In other words, if we would replace the definition of Bi in Subsection 3.2.1 by:

� Given k collections of agent subsets Bi = {Bi,1, . . . , Bi,li} that each covers
an agent subset in B: ∀i, Bi,1 ∪ . . . ∪Bi,li = Bi,

then we would have analogous results as the ones of Theorems 2, 3 and 4.

Conjecture 1. At any time, µB has a lower complexity than µ∪iBi :

∀t ∈ N, I(Xt;µB(Xt)) ≤ I(Xt;µ∪iBi(X
t)).

Among the three conjectures of this subsection, this first one seems to be the
more difficult to prove. Indeed, it requires (1) looking in details at the way the mi-
croscopic state space is aggregated when one measures non-disjoint agent subsets,
(2) comparing the result to the case where one instead measures disjoint agent sub-
sets, (3) showing that the uniform micro-state property implies that the complexity
of the former case is always larger than the complexity of the latter case.

Conjecture 2. At any time and for any horizon, µB has a higher predictive ca-
pacity than µ∪iBi :

∀t ∈ N, ∀τ ∈ N, I(µB(Xt);ψ(Xt+τ )) ≥ I(µ∪iBi(X
t);ψ(Xt+τ )).

Indeed, Lemmas 1 and 2 would also apply in this more general case, and the
above inequality is actually proved in the first part of the proof of Theorem 3.

Conjecture 3. At any time and for any horizon, the β-border between the optimal-
ity region of µB and the optimality region of µ∪iBi is either null, infinite, defined
nowhere or defined everywhere ( i.e., it is never strictly positive). Hence, for any
value of the trade-off parameter, µ∪iBi is never more efficient than µB:

∀t ∈ N, ∀τ ∈ N, ∀β ∈ R+,

IBβ(Xt;µB(Xt);ψ(Xt+τ )) ≤ IBβ(Xt;µ∪iBi(X
t);ψ(Xt+τ )).

This result would directly follow from Conjectures 1 and 2 (also see Table 1).
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4 Application to the Voter Model

We now apply our framework on a quite simple – yet illustrative – ABM, namely
the Voter Model (VM). Originally developed in the context of population genet-
ics [19, 23] and species competition [8], the VM has today become a canonical
example for interacting particle systems [21] and a standard model in the area of
opinion and social dynamics [7]. Though it is probably too simple for drawing
direct conclusions related to real applications, the VM is completely suited for our
purposes since it entails the possibility to introduce heterogeneity and multilevel
organisation in ABMs while, at the same time, it is simple enough to work with an
explicit representation of the microscopic transition matrix and to directly compute
the IB measures defined in Section 2.

4.1 Model Presentation

In this paper, use the definitions of the VM and the corresponding microscopic
transition rates as defined in previous work [4]. Each agent can be in two possible
states S = {0, 1} and can synchronise its state with other agents according to a
directed interaction graph. The dynamics then corresponds to a sequential update:
Each step of the system’s dynamics hence consists in the random selection of a
directed edge (i, j) and the update of the state of agent j according to the state
of agent i, all other agents staying in the same state (see Fig. 7 for an example of
such dynamics):

edge (i, j) selected at time t ⇒ Xt+1
j = Xt

i and ∀k 6= j, Xt+1
k = Xt

k.

When the interaction graph is connected, the VM has two trivial attractors:
The agents all end up in state 0 or in state 1. Hence, the system converges to an
homogeneous state, and the OPP hence depends on the time t at which the pre-
measurement is performed and on the horizon τ defining the time t + τ at which
the post-measurement that one wants to predict is performed. In the following, we
assume that the system starts in a fully random state:

∀x ∈ Σ, Pr(X0 = x) = 2−N ⇒ ∀i ∈ Ω, Pr(X0
i = 0) = Pr(X0

i = 1) = 1/2.

t = 0

0
0

11
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0
1
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0
1
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Figure 7: Example of dynamics of a five-agent Voter Model
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The Aggregated-state Generic Measurement. In our experiments, we
consider the following canonical generic measurement (and the corresponding fea-
sible measurements) for the VM.

Definition 6 (Aggregated-state Measurement). The aggregated-state measure-
ment η is an additive generic measurement from {0, 1}N to (N,+) that simply
performs a summation of the agent states:

∀A ⊂ Ω, ηA(X) =
∑
i∈A

Xi.

The aggregated-state measurement thus indicates the number of agents in
state 1 within the considered agent subset. Note that it is deterministic and additive
with respect to the addition + in N:

∀A1 ⊂ Ω, ∀A2 ⊂ Ω, A1 ∩A2 = ∅ ⇒ ηA1∪A2
= ηA1

+ ηA2
.

4.2 Numerical Approximation of the IB-variational

The experiments presented in the following sections have required the develop-
ment of a dedicated numerical approximation program, implemented in C++ and
freely available on a GitHub repository [20]. Contrary to simulation-based estima-
tion methods, the IB-measures are here approximated by computing the “exact”
probability distributions of the random variables of interest (with basic matrix cal-
culus). More precisely, the program takes inputs from a directed interaction graph
(i.e., a set of N nodes and a set of edges with weights), an initial distribution
Pr(X0) over the microscopic state space {0, 1}N , a time t, an horizon τ , a pre-
measurement φ and a post-measurement ψ (i.e., two partitions of the microscopic
state space that are actually derived from a generic measurement µ and two col-
lections of agent subsets). From this input, the program computes the transition
matrix T (Xt+1|Xt) of the corresponding Markov chain on the microscopic state
space, and the following probability distributions: Pr(Xt), Pr(φ(Xt)), Pr(Xt+τ ),
Pr(ψ(Xt+τ )), Pr(φ(Xt), ψ(Xt+τ )). Finally, the program uses these probability dis-
tributions to compute the two IB-measures, that is the pre-measurement complexity
I(Xt;φ(Xt)) and its predictive capacity I(φ(Xt);ψ(Xt+τ )).

Hence, except for Subsection 4.3, our results do not rely on any analytical ex-
pression of the IB-measures, but only on numerical approximations of the transition
matrix. However, such results are numerically exact, as opposed to numerical es-
timation, since the probability distributions of random variables are not estimated
by simulation, but fully computed from the initial transition matrix. By taking
into account the accuracy of the double-precision floating-point format in C++, we
can typically guaranty 16 significant digits3.

3This guarantee holds only if the inputs are themselves within this accuracy range.
Moreover, because of the possible summation of rounding errors, this accuracy becomes
lower for large systems, large times and large horizons. In practice, we easily guarantee a
10-digits accuracy of all experiments in this paper.
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This program is generic in the sense that it can be executed on any interaction
graph. However, because the size of the state space exponentially depends on
the number of agents, we are strongly limited in the system size. In practice, we
manage to scale up to 12 agents (the transition matrix then contains 16.7 millions
cells). To overcome this limitation, we also implemented a “compact model” of
the two-community case (see Subsection 5.2). In this model, the state space is
lumped according to the multilevel measurement (AGENT+MESO1+MACRO),
as defined in Subsection 5.2 and as represented in the bottom-right corner of Fig. 12.
This measurement indeed contains all the information that is actually required to
compute the IB-variational for the feasible measurements that we consider in the
following (see the lumpable partition of the two-community VM in [4]). In this
compact model, the size of the state space linearly depends on the size of each
community (2 (N1− 1) N2 possible states, where N1 and N2 are the respective size
of the two communities) and it can easily be scaled up to 2 times 20 agents.

4.3 Predicting the Macroscopic Measurement in the Com-
plete Graph

The most simple setting of the VM corresponds to a complete and uniform inter-
action graph: all agents are connected one to another and all edges are equally
likely to be selected at each simulation step for synchronisation. The resulting
global dynamics, ∀t ∈ N, is thus the following: ∀x = (x1, . . . , xN ) ∈ SN ,∀x′ =
(x′1, . . . , x

′
N ) ∈ SN ,

T
(
Xt+1 = x′|Xt = x

)
=

x′−1
N (N−1) if ∃i, xi = 0, x′i = 1 and ∀j 6= i, xj = x′j , (case 1)

N−(x′+1)
N (N−1) if ∃i, xi = 1, x′i = 0 and ∀j 6= i, xj = x′j , (case 2)

(N−x′)2+(x′)2−N
N (N−1) if ∀j, xj = x′j , (case 3)

0 else,

with x′ =
∑
i∈Ω x

′
i.

Applying the General Result. Our first experiment deals with the optimal
prediction of the macroscopic aggregated-state measurement ηΩ in the complete
graph. In this case, we can apply the general result of Subsection 3.2 to provide an
optimal solution of the OPP for the aggregated-state measurement.

(A1) As stated above, η is both additive and deterministic.

(A2) It has been shown that the macroscopic aggregated-state measurement is
lumpable in the case of a complete and uniform interaction graph [2], meaning
in particular that it contains all the information available at the microscopic
level regarding its own dynamics:

I(Xt; ηΩ(Xt+τ )|ηΩ(Xt)) = 0.
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Hence, ηΩ is fully informative and satisfy assumption (A2) of Subsection 3.2.

(A3) Moreover, the microscopic Markov chain have the uniform micro-state prop-
erty with respect to the aggregated-state measurement. Indeed, this is true
at time t = 0 since the system’s state is uniformly distributed, and we can
easily show that, if it is true at time t ∈ N, then it is also true at time t+ 1.

∀x′ ∈ SN ,

Pr(Xt+1 = x′) =
∑
x∈SN

T (Xt+1 = x′|Xt = x) Pr(Xt = x)

=

(
x′ − 1

N (N − 1)

) ∑
case 1

Pr
(
Xt = x

)
+

(
N − (x′ + 1)

N (N − 1)

) ∑
case 2

Pr
(
Xt = x

)
+

(
(N − x′)2 + (x′)2 −N

N (N − 1)

) ∑
case 3

Pr
(
Xt = x

)
(see formula above)

=

(
x′ − 1

N (N − 1)

)
x′ Pr

(
ηΩ(Xt) = x′ − 1

)
+

(
N − (x′ + 1)

N (N − 1)

)
(N − x′) Pr

(
ηΩ(Xt) = x′ + 1

)
+

(
(N − x′)2 + (x′)2 −N

N (N − 1)

)
Pr
(
ηΩ(Xt) = x′

)
(because of the uniform micro-state property at time t)

Since Pr(Xt+1 = x′) only depends on x′ and not on x′, we hence have

ηΩ(x′1) = ηΩ(x′2) ⇒ x′1 = x′2 ⇒ Pr(Xt+1 = x′1) = Pr(Xt+1 = x′2),

and the uniform micro-state property holds at time t+ 1 (A3).

(Result) Consequently, in this setting, any measurement (ηB1 , . . . , ηBk) of a col-
lection of disjoint agent subsets is never more efficient than the measurement
ηB1∪...∪Bk of their union (see Theorem 4). Moreover, by using the conjecture
expressed in Subsection 3.2.5, we also assume that this holds when agent
subsets B1, . . . , Bk are not disjoint.

Hence, one can consider only the following measurements when trying to solve
the OPP on the complete graph (see Fig. 2 for a graphical representation of these
feasible measurements):

EMPTY The empty measurement η∅;
AGENT An agent measurement η{i};
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Figure 8: Predicting the macroscopic measurement in the complete graph
(size N = 7, fixed horizon τ = 3 and variable time t ∈ N)
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Figure 9: Predicting the macroscopic measurement in the complete graph
(size N = 7, fixed time t = 100 and variable horizon τ ∈ N)

SIZE2 The measurement of a subset of two agents η{i,j};
SIZE3 The measurement of a subset of three agents η{i,j,k};
...

MACRO The macroscopic measurement ηΩ = η{1,...,N}.

Note that, because of the uniform micro-state property (A3), for any time t,
the distribution probability Pr(Xt

i ) of the state of agent i is the same as the distri-
bution probability of the state of any other agent. Hence, the complexity and the
predictive capacity of the agent measurement η{i} is the same for any other agent.
This also holds for the complexity and the predictive capacity of any measurement
ηB with B ⊂ Ω (see SIZE above), which only depend on the number of agent in B.
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Fig. 8 and 9 present four graphs to illustrate our results on specific values of
the three parameters. To be readable, all figures correspond to the complete graph
of size N = 7. Fig. 8 corresponds to the prediction problem for a fixed horizon
τ = 3 and Fig. 9 for a fixed time t = 100. The two plots on the left give the
complexity and the predictive capacity of feasible pre-measurements depending on
the current time (Fig. 8) or depending on the horizon (Fig. 9). The two plots on
the right represent bidimensional cuts of the tridimensional IB-diagram, that is the
optimality regions of feasible pre-measurements for a fixed horizon (τ = 3 in Fig. 8)
and for a fixed time (t = 100 in Fig. 9).

Macro is Always Better than Micro. Since {{1}, . . . , {N}} is a (canon-
ical) partition of Ω, Theorems 2, 3 and 4 can be applied to the microscopic and
macroscopic measurements (η{1}, . . . , η{N}) and ηΩ.

� By applying Theorem 2, we can see in the first plots of Fig. 8 and 9 that,
at any time and for any horizon, the macroscopic measurement has a lower
complexity than the microscopic measurement.

� By applying Theorem 3, we can see in the same plots that, at any time and
for any horizon, the predictive capacities of both measurements are however
the same.

� As a result, and by applying Theorem 4, we can deduce that the microscopic
measurement will never be more efficient than the macroscopic measurement.
In fact, the microscopic measurement becomes optimal only for an infinite
value of the trade-off parameter, that is when the bottleneck variational is
actually dominated by the prediction term and the complexity term hence
becomes negligible. This is represented in the second plots of Fig. 8 and 9 by
the fact that the microscopic measurement does not appear as optimal for
finite values of β.

� The same reasoning can actually be applied to any couple of measurements
(ηB1

, . . . , ηBk) and ηB1∪...∪Bk .

Further Results. By looking at Fig. 8 and 9, one can already obtain a global
understanding of optimal measurement in the complete graph: As one increases
the complexity level (by increasing the trade-off parameter β), there is a transition
between the empty measurement (minimal complexity) and the macroscopic mea-
surement (maximal predictive capacity). This transition would be quasi-continuous
for a large system, as measurements of intermediate sizes become optimal for dif-
ferent “layers” of the parameter space. These measurements can actually be inter-
preted as measurements on samples of the agent set, controlling the complexity by
adjusting the sample size.

In the following, we provide more formal results regarding the efficiency of
feasible measurements in the complete graph.
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Observation 6. For any horizon, as time goes by, the complexity and the predictive
capacity of any non-empty measurement ηA = (ηA1

, . . . , ηAk) converge to those of
a fair Bernoulli variable predicting itself:

∀τ ∈ N, I(Xt; ηA(Xt)) −−−→
t→∞

1 bit ,

I(ηA(Xt); ηΩ(Xt+τ )) −−−→
t→∞

1 bit .

This result is illustrated in the first plot of Fig. 8 by the fact that the data points
of all non-empty measurements converge to the same data point (1 bit, 1 bit).

Proof. Since the system converges to one final state among two possible final states
(0, . . . , 0) or (1, . . . , 1), the distribution of the state space Pr(Xt) converges to a
Bernoulli distribution. Moreover, since the initial distribution Pr(X0) and the
transition matrix T (Xt+1|Xt) in the case of the complete graph are perfectly sym-
metric regarding these two possible final states, they are both equally likely. Hence,
any non-empty measurement also converge to one of the two possible final states
with equal probability.

Observation 7. At any time, as the horizon increases, the predictive capacity of
any non-empty measurement converges to a non-null value:

∀t ∈ N, lim
τ→∞

I(ηA(Xt); ηΩ(Xt+τ )) > 0.

This result is illustrated in the first plot of Fig. 9 by the fact that the data
points of all non-empty measurements are above 0 bit.

Proof. Any non-empty measurement provides information about the current mi-
croscopic state (I(ηA(Xt);Xt) > 0) and, henceforth, it conveys information about
the following steps (I(ηA(Xt);Xt+τ ) > 0). This is because, in the complete graph,
each agent has a potential impact on the system’s next global state.

Observation 8. At any time and for any horizon, the β-border between the opti-
mality region of the empty measurement and the optimality region of any non-empty
measurement is finite. This border converges to 1 from above as time goes by, and
to a finite value from below as the horizon increases:

∀t ∈ N, ∀τ ∈ N, βt,τ∅,A > 1,

∀τ ∈ N, βt,τ∅,A −−−→t→∞
β∞,τ∅,A = 1,

∀t ∈ N, βt,τ∅,A −−−−→τ→∞
βt,∞∅,A > 1,

with βt,τ∅,A =
I(Xt; ηA(Xt))

I(ηA(Xt); ηΩ(Xt+τ ))
.

Hence, ∀β ≤ 1, the empty measurement is always more efficient than any non-empty
measurement and, ∀β > 1, there is a time after which any non-empty measurement
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becomes more efficient than the empty measurement. Moreover, given a non-empty
measurement ηA, for any time t ∈ N, if β ∈ [0, βt,∞∅,A [, then the empty measurement

is more efficient than the non-empty measurement to predict the final state (τ →∞)
and, if β ∈ ]βt,∞∅,A ,+∞[, then the non-empty measurement is more efficient than the
empty measurement to predict the final state.

This result is illustrated in the second plot of Fig. 8 by the fact that the border
between the empty measurement and the non-empty measurement of size 1 con-
verges to 1 when t → ∞ and, in the second plot of Fig. 9, by the fact that this
border converges to a finite value of the trade-off parameter when τ →∞.

Proof. Since the complexity and the predictive capacity of the empty measurement
are always null, and since

I(ηA(Xt); ηΩ(Xt+τ )) = H(ηA(Xt))−H(ηA(Xt)|ηΩ(Xt+τ ))

with H(ηA(Xt)|ηΩ(Xt+τ )) > 0, we have

βt,τ∅,A =
H(ηA(Xt))

I(ηA(Xt); ηΩ(Xt+τ ))
> 1.

Moreover, H(ηA(Xt)) and I(ηA(Xt); ηΩ(Xt+τ )) converge to 1 when t → ∞ (see
Observation 6), hence βt,τ∅,A −−−→t→∞

1. Moreover, H(ηA(Xt)) does not depend on τ

and I(ηA(Xt); ηΩ(Xt+τ )) converges to a non-null value when τ → ∞ (see Obser-
vation 7). Hence, βt,τ∅,A −−−−→τ→∞

βt,∞∅,A > 1.

5 Multilevel Prediction of the Voter Model

This section presents slightly more complex settings of the VM where optimal
predictors might be multilevel predictors, that is, the joint measurement of agent
subsets of different sizes. We show that the need for such multilevel measurements
appears in two cases. First, when one wants to predict the state of a subpart of
the system. In this case, the subpart’s local dynamics and the system’s global
dynamics compete to determinate future trajectories. Second, the introduction of
heterogeneity in the interaction graph might also be responsible for the emergence
of several competing dynamics. Note that, in the following experiments, we do not
provide any formal proof, but mainly focus on the computed IB-diagrams and their
interpretation in terms of multilevel prediction.

5.1 Predicting the State of an Agent in the Complete Graph

Our first results concern the prediction of the agent measurement η{1} in the com-

plete graph4, that is the state Xt+τ
1 of agent 1 at time t + τ . By applying once

4Since the initial state is uniformly distributed and the interaction graph is uniform,
the following results do not depend on the chosen agent i ∈ Ω.
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Figure 10: Predicting the state of agent 1 in the complete graph (size N = 7,
horizon τ = 3, and variable time t ∈ N)
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Figure 11: Predicting the state of agent 1 in the complete graph (size N = 7,
time t = 0, and variable horizon τ ∈ N)

again the general result of Subsection 3.2 to the subset collection {{1}, {2, . . . , N}},
one could easily show that Theorems 2, 3 and 4 also holds in this setting. Hence,
we focus on the following measurements to solve the OPP:

EMPTY The empty measurement η∅;
AGENT The measurement η{1} of agent 1;
SIZE2 The measurement of a subset of two agents η{1,i};
SIZE3 The measurement of a subset of three agents η{1,i,j};
...

MACRO The macroscopic measurement ηΩ = η{1,...,N};

AGENT+SIZE2 The combination of η{1} and η{1,i};
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AGENT+SIZE3 The combination of η{1} and η{1,i,j};
...

AGENT+MACRO The combination of η{1} and ηΩ.

In the following, we provide a global understanding of the optimality regions of
these measurements based on the plots and IB-diagrams of Fig. 10 and 11 computed
for a complete graph of size N = 7, with fixed horizon τ = 3 in the case of Fig. 10
and fixed time t = 0 in the case of Fig. 11. As shown in Fig. 10, and contrary
to the previous case, the macroscopic measurement is never optimal for short-term
predictions (τ = 3). On the one hand, for small t, as the system state is likely to be
heterogeneous (about as much agents in state 0 than in state 1), the macroscopic
measurement conveys very few information regarding the current state of agent 1.
However, since according to the transition matrix the probability that agent 1 does
not synchronise with other agents during the next 3 simulation steps is about 0.63
(so that η{1}(X

t) = η{1}(X
t+3) in more than half of the cases), the current agent

state does provide some useful information for short-term prediction. If, to the
contrary, agent 1 does synchronise with another agent, because the system state
is heterogeneous, the result of this synchronisation is very difficult to predict and
knowing the aggregated global state ηΩ(Xt) does not help much. Hence, for small
t, the agent measurement η{1}(X

t) is more predictive (and obviously less complex)
than the macroscopic measurement ηΩ(Xt).

On the other hand, for larger t, as the system state becomes more homogeneous
(many agents in state 0 or many agents in state 1), the macroscopic measurement
becomes more efficient because (1) it conveys information about the agent current
state and (2) the result of a synchronisation of agent 1 with any other agent be-
comes easier to predict from the system’s global state. Hence, the macroscopic
measurement becomes more predictive than the agent measurement. However, in
this context, the multilevel measurement (η{1}, ηΩ)(Xt), mixing the agent state
and the global state, consists in an even more efficient short-term predictor. This is
because adding the agent measurement to the macroscopic measurement does not
increase much its complexity (especially for homogeneous states), but significantly
increases its predictive capacity by taking into account the cases where agent 1 is
not in the majority and does not synchronise during the 3 simulation steps. More-
over, this multilevel measurement becomes more efficient as time goes by (optimal
for smaller β when t increases), because the macroscopic measurement becomes
itself less complex and more predictive.

As shown in Fig. 11, three non-empty measurements might be interesting to
predict the agent state depending on the prediction horizon and the allowed com-
plexity level. If one is interested in short-term prediction (small τ), as we said
previously, the agent measurement is quite adequate since it contains only local
information regarding the agent current state (that is likely to stay the same in
the short-term). For long-term predictions (large τ), the macroscopic measurement
becomes the best predictor because the system’s final state – and hence the agent’s
final state – depends more on the initial global state than on the initial agent state.
More interestingly, the multilevel measurement is mostly adequate for intermediate-
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term prediction. This is because this measurement provides an interesting mixture
when both the agent local state and the system global state are likely to influence
the agent future state. Hence, this example shows how the need for a multilevel
prediction is really related to the temporality of prediction. It arises when the local
and global dynamics mix and generate what we can consequently call multilevel
dynamics.

5.2 Impact of Heterogeneous Interaction Patterns on Pre-
diction Efficiency

In the following experiments, we introduce some heterogeneity within the interac-
tion graph of the VM. To do so, we examine three cases of the following family of
models, that we call the two-community Voter Models: The agent set Ω is parti-
tioned into two disjoint groups Ω1 and Ω2 – or communities, which both consist in
a complete and uniform interaction graph, and such that the interaction patterns
between agents of each community are also complete and uniform (see Fig 12).
Hence, this family of models depends on 6 parameters:

� N1 ∈ N and N2 ∈ N are the number of agents in each community;

� ρ1↔1 ∈ R+ and ρ2↔2 ∈ R+ are the weights of edges between agents of the
same community;

� ρ1→2 ∈ R+ and ρ2→1 ∈ R+ are the weights of edges between agents of
different communities.

These weights are simply used to compute the probability of choosing a given edge
at each simulation step as the ratio between the weight of the edge and the sum
of all weights. The complete VM is hence a member of this more general family
for which all weights are equal (ρ1↔1 = ρ2↔2 = ρ1→2 = ρ2→1). In the following,
we present results for community sizes N1 = 10 and N2 = 10, for intra-community
weights ρ1↔1 = 1 and ρ2↔2 = 1, but for variable inter-community weights ρ1→2

and ρ2→1. Moreover, we are still interested in the prediction of η{1}, that is the
state of agent 1, which belongs in community 1.

Once again, by showing that the measurement resulting from the subset collec-
tion {{1},Ω1,Ω} (see bottom-left drawing in Fig 12) is fully informative of future
states of agent 1 and has the uniform micro-state property, one could apply the gen-
eral result of Subsection 3.2 and build a list of potentially optimal measurements.
However, for simplicity, we focus in the following on a subset of this list (see Fig 12
for a graphical representation of some of them):

EMPTY The empty measurement η∅;
AGENT The measurement η{1} of agent 1;
MESO1 The measurement ηΩ1

of the aggregated state of agents in community 1;
MESO2 The measurement ηΩ2

of the aggregated state of agents in community 2;
MACRO The macroscopic measurement ηΩ = η{1,...,N};

36



and the five possible combinations: (AGENT + MESO1), (AGENT + MESO2),
(AGENT + MACRO), (MESO1 + MACRO), and (AGENT + MESO1 +

MACRO). Note that, because η is additive, other possible combinations are actu-
ally equivalent with these ones (see Observation 4): E.g., (MESO1 + MACRO),
(MESO2 + MACRO) and (MESO1 + MESO2) are equivalent. The Hasse dia-
gram of the corresponding lattice structure is presented in Fig. 13 (see also Subsec-
tion 3.1).
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Figure 12: Example feasible measurements defined on the two-community
Voter Model (N1 = 5 and N2 = 5)

5.2.1 The Symmetric Two-community Case

The first experiment deals with what is classically understood by a “community
structure”. The system is made up of two sets of agents which are more likely to
interact with agents of the same set than with agents of the other set (see Fig. 14a).
Here, by taking ρ1→2 = 1

5 and ρ2→1 = 1
5 , an edge between two agents of the same

community is 5 times more likely to be chosen at each simulation step than an edge
between agents of different communities.
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(a) Symmetric Case
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Figure 14: Predicting the state of agent 1 in three different settings of the
two-community voter model (sizes N1 = 10 and N2 = 10, inter-community
weights ρ1↔1 = 1 and ρ2↔2 = 1, time t = 0, and variable horizon τ ∈ N)
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As a result of this heterogeneous structure, the synchronisation process within
a community is expected to be quicker than the synchronisation of the whole sys-
tem. When predicting the state of a particular agent, this implies three levels of
dynamics with different temporal scales: (1) the agent state at a microscopic level
has a short-term influence, (2) the community state at a mesoscopic level has a
intermediate-term influence, and (3) the system state at a macroscopic level has
a long-term influence. These three levels are indeed observed in the IB-diagram
of Fig. 14a where the agent measurement η{1}, the mesoscopic measurement ηΩ1

and the macroscopic measurement ηΩ are successively optimal for small values of
β as the horizon τ increases. As in the complete graph setting, the prediction of
such multilevel dynamics might also requires multilevel predictors when one allows
a higher complexity (larger values of β): (4) the agent and mesoscopic measure-
ments can be combined (η{1}, ηΩ1

) for more efficient short-term prediction, (5) the
mesoscopic and macroscopic measurements can be combined (ηΩ1

, ηΩ) for more ef-
ficient long-term prediction, and (6) combining the three levels (η{1}, ηΩ1 , ηΩ) also
becomes optimal for large values of β in the case of intermediate-term prediction.

Interestingly, there are also cases where the microscopic and macroscopic levels
should be combined for optimal prediction (η{1}, ηΩ), without taking into account
the intermediate mesoscopic level. This result for intermediate-term prediction and
intermediate complexity level is explained by distinguishing two cases. First, in the
case the agents in community 1 are highly heterogeneous at time t = 0, knowing
the initial mesoscopic state is not very relevant for prediction. To the contrary,
predicting the future state of agent 1 significantly benefits from the knowledge
of the initial macroscopic state. Second, in the case the agents in community 1
are more homogeneous at time t = 0, the initial mesoscopic state becomes highly
relevant for prediction. But, in this case, knowing only the initial state of agent 1 is
often sufficient to know the current mesoscopic state. Hence, the agent-macroscopic
measurement (η{1}, ηΩ) is quite efficient for intermediate-term prediction, that is
when the state of community 1 is likely to have converged, because it takes into
account the two different cases, contrary to the mesoscopic measurement ηΩ1

that
does not.

5.2.2 The Follower Case

In this second experiment, only the weights of the edges from community 2 to
community 1 are reduced (ρ2→1 = 1

5 and ρ1→2 = 1). We refer to this case as the
follower case, as opposed to the leader case addressed in the next subsection, since
agent 1 is 5 times more likely to be influenced by an agent of community 2 than to
influence such an agent in return.

The IB-diagram obtained with this setting (Fig. 14b) is qualitatively compa-
rable with the one of the symmetric two-community case (Fig. 14a). We indeed
rediscover 8 regions organised according to the prediction horizon and the allowed
complexity level. However, we notice two significant changes:

1. The mesoscopic measurement ηΩ1 of community 1 in Fig. 14a is systemati-
cally replaced by the macroscopic measurement ηΩ in Fig. 14b. This is not
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surprising since, in the follower case, and contrary to the two-community
case, agent 1 is as likely to be influenced by agents of community 2 than
by agents of community 1. Hence, for intermediate-term prediction, one can
efficiently take into account the macroscopic state (instead of the mesoscopic
state) to predict the future state of agent 1.

2. The macroscopic measurement ηΩ in Fig. 14a is systematically replaced by
the mesoscopic measurement ηΩ2

of community 2 in Fig. 14b. This is ex-
plained by the fact that the dynamics of the whole system are now mainly
steered by community 2. Indeed, agents of community 1 are little likely to
influence the global state on the long-term. Hence, one can efficiently avoid
to measure the global state of community 1 for long-term prediction and
focus on community 1.

This experiment shows that the ordering of levels when we talk about “multi-
level prediction” is not necessarily related to the size of the measured agent subsets,
but rather to the temporality of the interaction processes within these subsets. In
this example, the long-term dynamics, that will determine the system’s final state,
are better predicted by the current state of a “small” agent subset Ω2 that has a
high influence on the long-term, whereas the intermediate-term dynamics are better
predicted by the current state of the whole agent set Ω which influence is actually
restricted in time. Hence, because we deal with complex heterogeneous dynamics,
“high-level” measurement does not necessarily mean “many-agents” measurement.

5.2.3 The Leader Case

In this third experiment, only the weights of the edges from community 1 to com-
munity 2 are reduced (ρ1→2 = 1

5 and ρ2→1 = 1). Hence, agent 1 is five times more
likely to influence an agent of community 2 than to be influenced by such an agent
in return.

In this last case, the IB-diagram in Fig. 14c can be summarised by three cuts of
the parameter space inducing six optimality regions. First, there is one “vertical”
cut between short-term prediction (on the left of the diagram) where the optimal
measurements always include the current state of agent 1, and long-term prediction
(on the right of the diagram) where the current state of agent 1 is not taken into
account. This “vertical” cut is thus induced by the decreasing predictive capacity
of the agent measurement η{1} as the horizon increases. Second, there are two “hor-
izontal” cuts delimiting 3 prediction levels respectively characterised by the empty
measurement η∅, the mesoscopic measurement ηΩ1

, and the multilevel measurement
(ηΩ1

, ηΩ). These “horizontal” cuts thus correspond to the complexity levels that
might be allowed for prediction by successively adding measurements. Indeed, in
this case, the macroscopic measurement ηΩ is never individually optimal because
it does not take into account the heterogeneous interaction structure. Therefore,
the only optimal choice is here to avoid macroscopic observation, or to combine
it with mesoscopic observation. To conclude, in this last case, the IB-diagram is
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Figure 15: Predicting the state of agent 1 in the ring (size N = 9, time
t = 0, and variable horizon τ ∈ N)

partitioned into 2×3 regions that depend both on the prediction horizon and on
the trade-off parameter.

5.2.4 Optimal Predictor Size in The Ring

In this last experiment, we consider yet another king of interaction graph: a ring
(see Fig. 15). Each agent is able to directly interact with exactly two neighbours,
but it is also globally connected to any other agent from edge to edge in a circular
chain.

The objective here is to predict the state of agent 1 by measuring the current
aggregated state of its close or distant neighbourhoods. For example, in Fig. 15,
“NBx” designs the “neighbourhood of size x”, that is the aggregated state of agent 1
and of all agents that it can reach by x edges in the ring. In this setting, we expect
that, for any given horizon τ ∈ N, there is an optimal neighbourhood size that one
should use for prediction. This means in practice that, regardless of the allowed
complexity level, and hence regardless of the value of the trade-off parameter, one
neighbourhood size is always preferred to the others for local prediction. Moreover,
we expect that the optimal neighbourhood size is small for short-term prediction,
as including the state of far agents does not provide much information to predict
the state of agent 1 in the near future, and that, to the contrary, it is large for
long-term prediction, as all agents might participate to the system’s convergence
toward its final state.

These expectations are confirmed in the IB-diagram of Fig. 15 by relatively
sharp vertical transitions between the optimality regions of neighbourhood mea-
surements as the horizon increases. Hence, as a result, the optimal neighbourhood
size does not depend much on the trade-off parameter, and one unique size is mainly
associated to each horizon regardless of the allowed complexity level.
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Figure 16: Contrarian Case: Predicting the state of agent 1 in the contrarian
Voter Model (sizes N1 = 10 and N2 = 10, inter- and intra-community
weights ρ1↔1 = 1, ρ2↔2 = 1, ρ1→2 = 1

5 , and ρ2→1 = 1
5 , contrarian probability

q = 1
21 , and variable horizon τ ∈ N)

5.3 The Contrarian Case

The contrarian VM slightly generalises the classical VM by allowing the agents to
spontaneously desynchronise with their neighbours: given a contrarian probability
q ∈ [0, 1], at each simulation step – when a directed edge (i, j) is randomly selected
– agent j might take the opposite state of agent i with probability q, instead of
taking the same state as in the classical VM (which corresponds to the q = 0 case).
In the context of opinion dynamics, contrarian behaviour relates to the presence of
individuals that do not seek conformity in all cases or to the existence of certain
situations in which agents would not desire to adopt the opinion of their interaction
partner. It has been introduced into majority rule opinion models [13] and here we
use the contrarian version of the VM which has been previously considered in [1].
Hence, given a directed edge (i, j), we have:

Pr(Xt+1
j 6= Xt

i ) = q, Pr(Xt+1
j = Xt

i ) = 1− q, and ∀k 6= i, Pr(Xt+1
k = Xt

k) = 1.

For q > 0 this induces a dynamics with no absorbing states as the synchronised
configurations with all agents in the same state are left with probability q. It
rather leads to a Markov chain with a well-defined stationary distribution showing
an ordered phase with switching between the two consensus states for q < 1/(N +
1) and a disordered phase for larger q. For the complete graph the equilibrium
distribution is uniform for q∗ = 1/(N + 1) (see [1] for details), and we used this
contrarian rate in our analyses.

We now consider two prediction problems where in both cases the aim is to
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predict the state of a single agent. In the first case, we start at time t = 0 and try
to anticipate the system’s transient dynamic, and in the second case we consider
the prediction problem starting at time t =∞ when the system is in the stationary
regime. Fig. 16 gives the result of these two versions of the prediction problem
applied to the agent measurement η{1} in the symmetric two-community case with
10 agents in each population and inter- and intra-community weights ρ1↔1 = 1,
ρ2↔2 = 1, ρ1→2 = 1

5 , and ρ2→1 = 1
5 (see Subsection 5.2.1). In this case, the

contrarian probability q∗ is 1
21 .

A first general observation, when going from the absorbing VM to the non-
absorbing contrarian case, is that the empty measurement becomes optimal as
τ →∞ in the contrarian case. This is due to the fact that the dynamics is more and
more uncorrelated and the mutual information I(Xt;Xt+τ ) vanishes as τ increases.
Therefore, any pre-measurement ηA(Xt) will eventually loose its predictive capacity
too such that the empty measurement – being the least complex one – is optimal
from the IB point of view.

Despite this difference, the structure of the IB-diagrams shown in Fig. 16 is
fairly similar to the corresponding diagram for the classical VM in Fig. 14a. This
is especially true for the transient dynamics (notice that 0 ≤ β ≤ 2000 in Fig. 14a
whereas 0 ≤ β ≤ 1000 in Fig. 16). One interesting observation for the stationary
dynamics is that the measurement of the agent to be predicted (AGENT) and the
measurement of the community to be predicted (MESO1) both stay optimal for a
small range of relatively low β (low complexity) even when the prediction horizon
increases and exceeds τ = 100. This effect is neither observed in the absorbing case
nor in the transient regime of the contrarian VM.

6 Conclusion and Perspectives

6.1 Summary

This paper presents three main contributions regarding the general problem of
efficient prediction of dynamical systems. First, it proposes a generic formalism for
the concept of “prediction efficiency” through a constrained optimisation problem:
the Optimal Prediction Problem (OPP). More precisely, we propose to use the
Information Bottleneck (IB) framework to model the two competitive objectives of
a prediction task: (1) minimising the complexity of the measurement that is used
for prediction and (2) maximising its predictive power. We also define a solution
to the OPP as a tridimensional diagram representing the optimality regions of
pre-measurements in the parameter space (current time, prediction horizon, and
trade-off parameter). This framework seems to be quite powerful to define a sound
and generic setting from an information-theoretic perspective, that is independent
of particular considerations that would emerge from practical applications (such
as the real cost of measurement or the reward of proper prediction). However, as
described below in Subsection 6.3, we claim that our approach could be generalised
to other (more sophisticated) objective functions.
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Our second contribution is a detailed analysis of the OPP solution space in
the case of the prediction of Agent-based Models (ABMs). To this purpose, we
introduce the concept of generic measurement – that is a measurement that can be
generically applied to any agent subset, hence defining combinatorial constraints
on the solution space. We then formally describe the algebraic structure of this
constrained solution space by providing general combination rules for additive mea-
surements. We show how this structure can be exploited to solve the OPP and,
in particular, to reduce its computational complexity. These contributions can be
considered as the core of our theoretical work and we hope to generalise it to other
objective functions (assuming monotonicity with respect to the refinement relation,
see Subsection 3.1) and to other settings (such as the problem of level identification,
see Introduction).

Third, we apply this theoretical framework to a classical and well-known ABM:
the Voter Model (VM). This allows us to show how our theoretical contributions
should be used in practice, but also to provide results that could be generalised to
other diffusion processes defined under similar hypotheses. Here is a summary of
the three main results of these experiments:

1. The microscopic level is not more informative than the aggregated level when
predicting macroscopic observables of homogeneous systems, that is when
the agents in each aggregate contribute similarly to the dynamics of the
macroscopic state. In case of slightly heterogeneous behaviour, this result
could also be used as a heuristic to find efficient observation levels.

2. When predicting the state of some subpart of the system, optimality strongly
depends on the prediction horizon: local measurements are more efficient for
short-term prediction, global measurements for long-term prediction, and
multilevel measurements for intermediate-term prediction, that is when the
system’s dynamics can be efficiently described as a mixture of local and global
processes.

3. Heterogeneity in the agent behaviour might require the observer to refine
the description levels and, in particular, to introduce mesoscopic levels that
takes into account the system’s internal structure. In the future, we hope
to formalise this result in a more systematic way in order to provide general
rules to decompose a system in relevant scales given is structure.

6.2 Application Perspectives

In this paper we studied multilevel prediction only for a simple theoretical model.
An important issue for the future will concern the application to more realistic
situations. We envision two interrelated ways of how this could be achieved. On
the one hand, the analysis of efficient prediction in a real complex system could be
based on models that more accurately describe the system at question but still allow
to derive a Markovian microscopic transition kernel along with the specification of
the state space partitions induced by a set of measurements and in which it is
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therefore possible to compute the involved information measures. On the other
hand, we can also aim at adapting the framework in such a way that we can apply
it to real data, in which case, usually, no complete knowledge of the micro dynamics
is given and therefore model inference should be reflected in the cost term too.

The VM has been originally introduced as a model of spatial conflict of different
species [19]. The framework we propose could be applicable in the field of ecology
as a way to provide theoretical support for decisions concerning the measurement
and data collection stage (pre-measurements) with the aim to identify observables
that contain information for a particular prediction purpose (post-measurement)
and reduce at the same time the data acquisition costs. For instance, if the aim
is to predict the presence of a certain species at a specific site (agent measure-
ment), our experiments indicate that in the short run data collected at this site
might be the most useful one. However, depending on the prediction horizon, ad-
ditional data – regional or even global – can complement this measure and add
important information about the prediction problem to be addressed. The notion
of multiple levels may have a two-fold meaning here, one related to the structure of
the geographical space and the other one to the structure of inter-species mutual
dependencies [22, 26, 27]. Both, the history of the species at question at different
geographical scales as well as its embeddedness into the webs of food and reproduc-
tion could be relevant and the framework, applied to a more sophisticated model
that includes these aspects, could provide an idea which observables may contain
useful additional information.

To make another example, in recent years, the UN statistical department as well
as other agencies have made available large amounts of data on the trade of different
products between the countries of the world5. On the basis of these data, measures
of economic complexity [17] and fitness [29] have been constructed by aggregating
information from the structure of the exports of countries into a single observable.
These measures were shown to have significant predictive power to anticipate the
growth potential of countries. The Information Bottleneck framework can be a
useful tool for the assessment of the predictive capacity of these measures and to
evaluate other observables at different aggregation levels as well as combinations of
them. In this context, as in the previous example, macroscopic observables can be
defined along at least two dimensions: aggregation of trade data in the geographic
space (from regional trade to international trade) and in the product space (from a
refined list of products to aggregated classes such as industrial sectors or production
chains). This application will be addressed in a forthcoming paper [3].

6.3 Theoretical Perspectives

Currently, a fundamental hypothesis of our framework is that a complete model of
the system’s microscopic dynamics is available to the observer. However, in most

5The UN statistical department makes this data available under the COMTRADE
web page (http://comtrade.un.org) and the French research centre in international eco-
nomics CEPII (http://www.cepii.fr) provides two rectified datasets on international
trade partly based on COMTRADE data.
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practical cases – such as in the two application fields here above mentioned – no such
model exists. Hence, the predictor – that is the conditional probability of the post-
measurement given the pre-measurement – has to be inferred from a limited amount
of data. If one or both measurements are low-level observables this can become very
challenging – or will be not feasible at all – because they are usually very high-
dimensional and the data requirements exponentially increase, making inference at
low levels very often unfeasible in practice. In order to deal with this major issue
one has to take into account the degree of inferability of predictors as part of the
cost function of the optimisation problem. Hence, efficient prediction would be
driven in this context not only by the complexity of the measurements alone but
also, to a large extent, by the complexity of the predictor, i.e. the model complexity.
If we start with a parametrized model for the conditional probability on the lowest
level (given by the data), the refinement relation on the pre-measurement will also
induce a hierarchy on the induced models. Thus, the corresponding optimisation
problem is directly related to the problems of over-fitting and model selection in
statistical inference. For instance, in the case of maximum likelihood estimation
regularisation terms such as the Akaike Information Criterion (AIC) would take the
part of the model complexity, see also [15] for a Bayesian perspective. In general,
we propose to rely on classical work in learning theory, such as the theoretical
tools of model selection and feature selection to express the trade-off between the
model likelihood (quantifying how well the estimated macro-dynamics fit with the
empirical data) and the model complexity (that should be controlled to avoid over-
fitting at microscopic levels).

Moreover, in many real-world scenarios, prediction is strongly related to finan-
cial cost of data acquisition and economic impact of prediction-based decisions.
For example, one would like to optimise investments based on the prediction of
future economic indicators with limited money allocated to data collection. To
be useful in this context, objective functions should express domain-depend costs
and rewards. We hence plan to generalise our framework to a broad class of such
objectives, thus going over the IB framework. For example, a cost could be as-
sociated to any outcome of the pre-measurement and a reward to any outcome of
the post-measurement. The OPP would consist in maximising the expected re-
ward while minimising the expected cost. To give an example, when dealing with
extreme events and crisis prediction, outliers are much more important to predict
than regular trajectories of the system. The resulting objective function can hence
be highly non-regular, but yet satisfy general properties that are required and suf-
ficient for our framework to apply. To this purpose, one has yet to make this
properties explicit – such as the monotonicity of objective functions with respect
to the refinement relation – and to show which classes of objectives can hence be
optimised with our method.
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