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Abstract

We consider a model of financial contagion in a bipartite network of assets and
banks recently introduced in the literature, and we study the effect of power law dis-
tributions of degree and balance-sheet size on the stability of the system. Relative to
the benchmark case of banks with homogeneous degrees and balance-sheet sizes, we
find that if banks have a power-law degree distribution the system becomes less robust
with respect to the initial failure of a random bank, and that targeted shocks to the
most specialised banks (i.e. banks with low degrees) or biggest banks increases the
probability of observing a cascade of defaults. In contrast, we find that a power-law
degree distribution for assets increases stability with respect to random shocks, but
not with respect to targeted shocks. We also study how allocations of capital buffers
between banks affects the system’s stability, and we find that assigning capital to banks
in relation to their level of diversification reduces the probability of observing cascades
of defaults relative to size based allocations. Finally, we propose a non-capital based
policy that improves the resilience of the system by introducing disassortative mixing
between banks and assets.

Keywords: Contagion; Systemic risk; Network Models

1 Introduction

Financial institutions are increasingly diversifying their balance sheet across several asset
classes in order to reduce the idiosyncratic component of their portfolio risk. This has
led to increased global connectivity in the portfolio holdings across several institutions
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1 INTRODUCTION

[4, 30]. However, recent studies including [36, 20, 35, 14, 3, 15] have shown that while
increased interconnectivity can help diversify risk across the system, it also serves as a
contagion propagating and amplification mechanism whenever a crisis is underway. This
was partly the reason American International Group (AIG) was bailed out during the
financial crisis as many of the biggest financial institutions had become exposed to it
via derivative contracts ([40] provides more details). Financial institutions are connected
directly via inter-institutional lending (e.g. interbank and repo transactions) and also
indirectly through similar asset investments such as connections arising from overlapping
portfolios. However, the former has drawn the most attention in the literature. Significant
effort has been for instance devoted to studying the role of counterparty and roll-over risks
in propagating contagion [20, 35, 21, 5, 3, 14, 2], and to understanding the impact of
different interbank network topologies on the resilience of the financial system [41, 29, 4,
32, 22]. Other studies have focused on the effect that agents’ strategic choices have on
the systemic stability (see for instance [6]), or on the characterization of feedback loops
between the macroeconomy and the financial system [1, 24].

Recently, academics and policymakers have begun paying close attention to the risk
posed by indirect connections associated with overlapping portfolios [27, 15, 23]. These
connections provide a contagion channel for the propagation of mark-to-market portfolio
losses to one or more financial institutions due to depression in asset prices resulting from
fire sales by a distressed institution holding the same assets. In some cases, these losses
may be sufficient to cause additional institutions to become distressed thereby resulting
in more rounds of asset fire sales and further depression in asset prices. The 2007 quant
crisis, for instance, was caused by a similar scenario in which the fire sales liquidation
of the portfolio of one equity hedge fund depressed prices of assets held by other funds
causing them to embark on additional rounds of selling which depressed asset prices even
further and resulted in large portfolio losses (see [31] for an elaborate discussion). The
existing literature on overlapping portfolios have only considered bank interlinkages in
the context of a single asset [17, 36, 20, 3]. However, [15] have recently generalised the
fire sales model introduced in [17] to the case of many assets. They characterised the
stability of the financial system in terms of its structural properties including average
degree, market crowding, leverage and market impact using a bipartite financial network
model in which the contagion channel is formed through local portfolio overlaps between
banks with homogeneous degrees.

The analysis of Ref. [15] has been carried out for the case of Erdős-Renyi networks
and banks with the same size, but in fact empirical studies [25, 11, 33, 34] show that real
financial networks of common portfolio holdings and balance sheet size distributions are
more heterogeneous. Specifically, they provide evidence of power laws in these distribu-
tions. Therefore, we consider the model of Ref. [15] and analyze the effect of power law
distributions of banks’ size and degree on the stability of the system. We refer to banks
with low degrees as specialised while those with high degrees are said to be diversified.
In this way, we are able to distinguish between the systemic risk contribution of different
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1 INTRODUCTION

categories of banks ranging from very specialised to very diversified banks. In this vein,
our work builds on previous analysis by [29, 32, 14] on the impact of heterogeneity on the
interbank network. While these previous works considered the effect of heterogeneity on
the stability of interbank lending networks, here we focus on indirect connections due to
overlapping portfolios. Furthermore, we study the effectiveness of various regulatory capi-
tal policy models guided by the intuition developed from the systemic risk contribution of
the different types of banks. Finally, we consider the possibility of improving systemic sta-
bility by introducing structural correlation into the network without imposing new capital
requirements.

The model used for our simulations belongs to the same class of contagion mecha-
nisms used extensively in the literature of counterparty network models [36, 43, 20]. In a
nutshell, the system is exogenously perturbed and the resulting impact is recursively prop-
agated through the network until no new default is observed. This feedback mechanism is
essentially driven by asset devaluations based on a market impact function that revalues
an asset with respect to its traded volume [10, 9]. Our goal is to understand the impact
of heterogeneity in the portfolio structure of banks on financial contagion due to overlap-
ping portfolios. As such, we abstract from strategic processes used by banks in choosing
a particular portfolio structure as in [44], who show using a microfounded model that in
equilibrium the risk of joint liquidation motivates investors towards heterogeneous port-
folio configurations. Moreover, a mechanistic approach keeps the model general enough
for stress testing real financial systems by calibrating the model. A further assumption is
that of passive portfolio management so as to keep the dynamics simple (i.e. banks do not
deleverage or rebalance their portfolios during a crisis). In this sense, a bank’s portfolio
remains fixed until it becomes liquidated whenever it defaults. This assumption can be
justified from the fact that most financial markets are illiquid relative to the positions held
by large institutions such that whenever a crisis is underway, banks usually have insufficient
time to deleverage until they become insolvent (see [15] for an elaborate discussion).

Our stress tests reveal that heterogeneous bank degrees and sizes make the system
more unstable relative to the homogeneous benchmark case with respect to random shocks
but not with respect to targeted shocks. In contrast, heterogeneity in asset concentrations
makes the system more resilient to random shocks but not with respect to targeted shocks.
We then proceeded to study possible capital policy models guided by these results and find
that a regulatory policy that assigns capital to the most specialised banks performs better
than random assignments when the average degree is high. Moreover, diversification is a
more significant factor than size in improving the financial system’s resilience with capital
based policies. The insights we develop can be used to address one of the major drawbacks
of the Basel accords in ignoring the role of diversification for setting capital requirements
[18]. An example is the risk weighted capital requirement framework which is heavily
criticised for providing banks with incentives to concentrate in low risk asset classes such
as interbank loans, sovereign debt etc. which not surprisingly turned out to be at the
centre of the 2007 financial crisis [7]. Finally, we investigated the possibility of improving
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2 THE MODEL

financial stability with a non-capital based policy that imposes a particular configuration
in the bipartite network and find that disassortative mixing (i.e. connecting the most
specialised banks with the most concentrated assets) increases the stability of the system.

The rest of this paper is organised as follows. In the next section, we outline the
main features of the model. In section 3, we explore the stability impact of heterogeneous
network topology and balance sheet sizes. section 4 provides insights on the effectiveness
of capital based policies and proposes a non-capital based policy by introducing structural
correlations into the bipartite network. Finally, a summary of our findings is presented in
section 5.

2 The Model

In this section we describe the model of Ref. [15], that we will then study in section 3
under different scenarios pertaining to the degree and size distribution of banks.

2.1 Network

We consider a bipartite network of a financial system consisting of N banks and M assets
as shown in Figure 1. A link from bank i to asset j implies that j constitutes part of the
portfolio of bank i. We define ki as the degree (i.e. the total number of links) of bank i.
Hence, the average bank degree is defined as:

µb =
1

N

N∑
i=1

ki (1)

Similarly, we can define the average degree of the assets as:

µa =
1

M

M∑
j=1

li (2)

where, lj is the number of banks holding asset j in their portfolio.

2.2 Balance sheet structure

A bank’s portfolio in the network discussed above consists of investments in non-liquid
assets (e.g. shares in stocks) and liquid assets (e.g. cash). Figure 2 depicts the general
structure of a bank’s balance sheet. The initial total assets held by bank i are denoted by
A0
i . A fraction θ of total assets are liquid assets, which we denote as Ci = θA0

i , while the
rest is assumed to be uniformly spread across the assets in the bank’s portfolio. The initial
equity is equal to E0

i = γA0
i . In the following, for consistency with previous work [15,

20], we consider θ = 20% and γ = 4%. Moreover, reports in [43] suggest that the capital
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2 THE MODEL

Figure 1: A Heterogeneous bipartite financial network. Banks are depicted in red circles
while assets are shown in blue. The links of the banks follows a power law distribution

Assets(A0

i
) Liabilities

Non-liquid
assets Deposits

Liquid assets
e.g Cash

Capital

(1− θ)A0

i

Ci = θA0

i
E0

i
= γA0

i

Di

Figure 2: A typical bank’s initial balance sheet structure. The bank holds a fixed amount
of its asset in the form of cash and the value is assumed to remain fixed throughout the
simulation for the purpose of simplicity.
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2 THE MODEL

structure of banks in advanced economies typically conforms with this configuration. We
further assume that the remaining portion of the liabilities side of bank’s i balance sheet
comprises customers’ deposits Di. We define the total asset of bank i at any time t as:

Ati =
M∑
j=1

Qijp
t
j + Ci (3)

Where Qij denotes the number of shares of stock j held by bank i and Ci is assumed to
remain fixed throughout the simulation. We define ptj as the price of stock j at time t such
that:

ptj = pt−1
j fj(x

t
j), (4)

where xtj denotes the quantity of asset j sold at time t. In the model, a bank is declared

insolvent whenever its initial capital endowment E0
i is completely eroded due to losses

incurred from the depreciation of its asset values. Hence, the solvency condition for a bank
i is defined as:

A0
i −

M∑
j=1

Qijp
t
j − Ci ≤ E0

i (5)

2.3 Contagion mechanism

A simulation of the model follows the sequence enumerated below:

Step 1. Exogenously shock the system at time step t = 0

Step 2. Check banks for solvency condition as in Equation 5 at each successive time steps
t = 1, 2, ..

Step 3. Liquidate the portfolios of any newly bankrupt bank and re-compute asset prices.
In order to keep the model simple, liquidated assets are assumed to be traded with
parties outside the banking system.

Step 4. Terminate the simulation when no new defaults occurs between successive time
steps.

This dynamics is captured by the flowchart depicted in Figure 3

2.3.1 Exogenous shocks

We consider two kinds of initial shocks: random and targeted shocks. In a random shock,
a bank or asset is randomly selected and exogenously perturbed while a specific kind of
bank or asset is perturbed in the case of a targeted shock.
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Any new

defaults?

Exogeneous

Shock

Liquidate portfolios &

recompute assets' prices

Check for new

insolvent banks
Terminate

Yes

No

Figure 3: Flowchart representation of the contagion mechanism. A Bank is only declared
bankrupt whenever it becomes insolvent.

2.3.2 Market impact

We assume a market impact function of the form fj(xj) = e−αxj as in [20, 3, 17] such that
xj is the liquidated fraction of asset j. The price of asset j is then updated according to
the rule: pj → pjfj(xj). As in [20, 36, 15], we set α = 1.0536 such that the liquidation of
10% of an asset results in a 10% price drop in the asset’s value.

2.3.3 Systemic stability

We characterise the stability of the financial system in terms of the systemic risk posed by
an exogenous shock. We define systemic risk as the probability that the number of defaults
exceeds a threshold φ. We define φ as 5% of the total number of banks in the system for
consistency with previous work [20, 15].

3 Effect of heterogeneity on contagion properties

In this section, we consider different scenarios to understand the effect of heavy-tailed
distributions of assets and degree on contagion due to overlapping portfolios.

3.1 Heterogeneous bank degrees

We desire to investigate the stability impact of heterogeneity in the degree of banks. As
such, we consider a heterogeneous bipartite financial networks where the degrees of banks
are generated according to a power law distribution i.e. P (k) ∝ k−γ with γ = 2.5. 1.
Each bank then forms a link with a random asset until it reaches its generated degree such
that no bank is linked to an asset more than once. This link formation approach implies
that the number of links of the assets follows a Poisson distribution since every asset has
the same probability of being selected. A bank’s degree can be interpreted as its level of

1We have chosen this value for γ in order to generate power law distributions where the first moment is
defined and the second is infinite i.e 2 ≤ γ ≤ 3. Moreover, we choose this particular value for γ to ensure
consistency with previous work [14] on counterparty default contagion
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3 EFFECT OF HETEROGENEITY ON CONTAGION PROPERTIES

diversification since it denotes the number of different investments of the bank. We have
used the term specialised bank to mean a bank with focused investments in contrast to a
bank holding a diversified portfolio. Our focus here lies in understanding the systemic risk
contribution of different types of banks ranging from very specialised to very diversified
banks without mixing in the influence of size. This approach mandates an assumption of
the same balance sheet sizes across all banks.

In the left panel of Figure 4, we plot the probability of contagion as a function of µb
when a random bank fails. We compare the unstable region for the system with heteroge-
neous bank degrees relative to the homogeneous case. We find that the unstable region is
wider in the heterogeneous system. The right panel of Figure 4 shows that this observation
is independent of the kind of exogenous shock. In particular, we plot the contagion prob-
ability for the case when an asset is randomly devalued and still find that heterogeneity
in banks’ degree results in greater instability. A similar finding is reported by [23], who
show that heterogeneity increases aggregate vulnerability of the financial system to adverse
shocks. The existence of a wider unstable region in the heterogeneous system can be un-
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(a) Bank shock
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(b) Asset shock

Figure 4: Left Panel: Contagion probability as a function of µb for the case when a random
bank fails. Red circles: system with heterogeneous bank degrees. Blue squares: system
with homogeneous bank degrees. Right Panel: Contagion probability as a function of µb
for the case when a random asset is devalued. Contagion is worse in the heterogeneous
system irrespective of the kind of exogenous shock. Result refer to 1000 simulations for
N = M = 1000

derstood by observing that, contrary to the homogeneous case, the heterogeneous system
is characterized by a few highly diversified banks and many specialized banks. Hence, the
probability that a specialized bank is hit from the initial shock is relatively higher. Conse-
quently, specialised banks induce higher devaluations on their assets since they hold large
amounts of these assets.
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However, this result is in contrast to general reports in the complex networks literature
in which heterogeneous network topology has been shown to create more stability, for
instance, [14] show that heterogeneity in a counterparty network creates a more robust
system relative to the homogeneous case. The reason for this lies in the fact these previous
works have considered a network of direct bilateral exposures. In such case the few hubs (i.e.
the most connected nodes) become the most systemically relevant because they can impact
a higher number of counterparties, whereas in our case the specialised nodes are the most
systemically relevant because they concentrate their investments in specific assets, and have
a higher impact of liquidation on these. This result may shed some light on why specialised
institutions like mortgage banks, building and loan associations, specialist funds etc., who
hold significant amounts of specific assets, should be considered systemically important.
Moreover, it provides further support to the conjecture given by Andrew Haldane, the Bank
of England’s Chief Economist, in one his speeches that the ”rapid growth in specialist funds
potentially carry risk implications, both for end-investors and for the financial system as
a whole” [26]. Furthermore, [44] also suggests imposing higher diversity requirements on
portfolio holdings of financial institutions with high liquidation risk relative to those with
low risk.

In Figure 5, we show the impact of targeted shocks on the stability of the system. We
plot the probability of contagion as a function of µb when the initial shock is aimed at
specific banks. We find that the unstable region is widest when any of the top 5% most
specialised banks is hit while targeted shocks on any of the top 5% diversified banks results
in the smallest unstable region. This can be understood from the fact that banks hold lesser
amounts of specific assets with increasing degrees since we assume here that all banks are
endowed with the same asset sizes. Hence, targeting shocks at the most diversified banks
would effectively close the fire-sale contagion channel quicker since only small amounts of
assets would be sold, which implies lower price devaluation than the case when banks are
randomly perturbed. However, the reverse is observed when shocks are directed at the
most specialised banks since they hold significant amounts of specific assets and thereby
carry higher liquidation risk. We refer to these banks as ”Too Specialised To Fail” (TSTF).

3.2 Heterogeneous asset concentration

In the previous section, the distribution of the banks’ degrees was heavy-tailed, but degrees
of assets (i.e. the concentration of assets) followed a Poisson distribution. In this section,
we turn our attention to the opposite case when the distribution of the number of banks
holding each asset is heavy tailed and the degree distribution of banks is homogeneous.
We follow the approach of the previous section and assume a power law distribution in
the asset concentrations. An asset’s concentration can be interpreted as the preference of
banks towards that asset. Our aim is to study how this preference structure affects the
stability of the entire system.
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Figure 5: Contagion probability as a function of µb when banks have heterogeneous de-
grees. Blue squares: contagion probability when a random bank fails. Green diamonds:
contagion probability when shocks are targeted at the most specialised banks. Red circles:
contagion probability when shocks are targeted at only the most diversified banks. The
region where contagion occurs is widest when specialised banks are targeted. Result refer
to 1000 simulations for N = M = 1000
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(a) Random shocks
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(b) Targeted shocks

Figure 6: Left Panel: Contagion probability as a function of µa for homogeneous and
heterogeneous distributions of asset concentrations. Blue squares: system with homoge-
neous asset concentrations. Red circles: system with heterogeneous asset concentrations.
A random bank fails in both cases. Introducing heterogeneity into the distribution of asset
concentrations results in a more robust system. Right Panel: Targeted shocks on a system
with heterogeneous asset concentrations. Targeting concentrated assets amplifies contagion
probability. Result refer to 1000 simulations for N = M = 1000
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In the left panel of Figure 6, we plot the probability of contagion as a function of average
asset degree for the case when a random bank fails. In contrast to the results observed for
heterogeneous bank degrees, we find that introducing heterogeneity in the concentration
of the assets produces a slightly more robust system relative to the homogeneous system.
This can be understood from the fact that the probability than a highly concentrated asset
is perturbed is relatively low since the scale free network comprises very few concentrated
assets and many less concentrated (i.e. isolated) ones. This effectively reduces the unstable
region since fewer banks are affected by contagion.

The right panel of Figure 6 shows the impact of targeting initial shocks at any of the
top 5% most concentrated (i.e. with highest degree) assets. As expected, targeting initial
shocks at these highly concentrated assets has the effect of amplifying contagion since more
banks are negatively affected by the initial asset devaluation. However, the width of the
unstable region is essentially the same as in the homogeneous system. This is because as
soon as banks reach a critical average degree the exogenous shock is not amplified by the
system (irrespective of whether the shock consists in the initial default of a bank or the
initial devaluation of an asset).

3.3 Heterogeneous bank sizes

In the previous sections, we assumed that all banks have the same balance sheet sizes in
order to separate the influence of size from diversification. However, empirical evidence
in the literature clearly suggest that banks also have largely heterogeneous sizes [8]. For
instance, a recent data analysis by SNL Financial shows that the top 5 biggest banks have
44% of the total assets held by banks in the U.S. [39]. Our aim in this section is to study
the impact of this kind of heterogeneity in the size distribution of banks on the stability
of the financial system. To do this, we model the bank sizes according to a power law
distribution i.e. P (A) ∝ A−γ resulting in the creation of a few banks with significantly
larger asset sizes than most banks whilst abstracting from the influence of diversification
by assuming a Poisson degree distribution.

In the left panel of Figure 7, we plot the probability of contagion as a function of
µb for the case of random bank shocks. We find that the probability of contagion as a
function of µB decays much faster when banks have homogeneous sizes relative to the
heterogeneous case. The following argument provides an intuition to why this is the case.
In the heterogeneous system, the fire sales impact on asset prices is more severe whenever
any of the large banks are hit as these banks hold significant amounts of their assets relative
to the entire system since we have assumed a Poisson degree distribution. This effectively
shifts the critical threshold for which contagion is no longer possible to the right.

The right panel shows the contagion probability as a function of µb for the case of initial
shocks to specific banks. We observe that the system is significantly more unstable when
exogenous shocks are targeted at any of the top 5% biggest banks but more stable when
the shocks are targeted at any of the top 5% smallest banks. This follows from the fact
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(a) Random shocks
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(b) Targeted shocks

Figure 7: Left Panel: contagion probability as a function of µb for homogeneous and
heterogeneous distribution of banks’ sizes. Blue squares: system with similar balance
sheet sizes. Red circles: system with heterogeneous balance sheet sizes. The system is
subject to random bank failures in both cases. Contagion probability is wider in the
heterogeneous system relative to the homogeneous case. Right Panel: Targeted shocks
on a system with heterogeneous distribution of banks’ balance sheet sizes. Blue squares:
contagion probability when a random bank is perturbed. Red circles: contagion probability
when shocks are targeted at the biggest banks. Green diamonds: contagion probability
when shocks are targeted at the smallest banks. Targeting shocks at the biggest bank
results in the widest unstable region. Result refer to 1000 simulations for N = M = 1000.
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that big banks hold comparatively larger amounts assets for each value of µb relative to
other banks, which implies that targeting shocks at them would cause higher devaluations
of the assets they hold, effectively fuelling the contagion mechanism that leads to a wider
unstable region. We refer to these banks as ”Too Big To Fail” (TBTF).

In summary, the findings of the stress tests conducted in section 3 are the following:

(i) Introducing heterogeneity in the degrees of banks exacerbates the fragility of the
system to random shocks in contrast to [14, 20] who show that a scalefree counterparty
network results in a more robust system with respect to random shocks. We find that
this result is independent of the type of exogenous shock (i.e. bank or asset shock).
Furthermore, we find that targeting the most specialised banks makes the system
more unstable.

(ii) Heterogeneity in asset concentrations improves the resilience of the system to random
shocks in contrast to heterogeneous bank degrees. Moreover, targeting highly con-
centrated assets increases the probability of contagion, however the average degree
threshold where contagion dies out is effectively unchanged.

(iii) Cascading default stops at r when banks have homogeneous sizes relative to the
heterogeneous case and is greater when exogenous shocks are targeted at the biggest
banks.

4 Policy Impact Analysis

The 2007-2009 financial crisis has precipitated calls for higher regulatory capital require-
ments for banks. Although higher capital requirements can improve financial stability,
they however carry some implicit costs 2, namely reduced profitability for banks and higher
lending cost which may have a negative impact on social welfare [28, 12, 13]. Hence, it
is important that new regulatory capital requirements are assigned to banks in the way
that gives the most stable configuration. To this end, we investigate how the intuition
developed from the stress tests in section 3 can influence capital based regulatory policies.
We then propose an alternative non-capital based policy by studying the structure of the
bipartite network.

4.1 Capital based policy

Here, we compare the performance of possible capital policy models following the intuition
developed in section 3. In each model, the same amount of capital χ is injected into the

2This is based on the assumption that Modigliani-Miller theorem does not hold, which essentially implies
that a bank’s capital structure does not affect profit or social welfare in an idealised world without frictions
such as interest payments on debts, taxes, bankruptcy and agency costs [19].
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system. The difference in the policies lies in the way χ is distributed amongst the banks.
In each analysis, we test the response of the system to the initial default of a random bank.

4.1.1 Targeted versus random

The stress tests done in section 3 suggests that ”Too Specialised To Fail” and ”Too Big To
Fail” banks are systemically important. Hence, it becomes interesting to ask if assigning
capital requirements to only this group of banks can improve financial stability relative to
targeting a random group of banks. We consider two kinds of targeted policies. In one,
we assign the capital equally to only the top 5% most specialised banks and refer to this
policy as TS (Targeted Specialised) while in the second, which we call TB (Targeted Big),
only the top 5% biggest banks are required to hold more capital. We model a random
policy for the purpose of comparison. In the random policy, 5% of the banks are randomly
selected and assigned additional capital requirements equally.

TS : We now investigate the stability impact of the TS policy relative to the random policy
as such we abstract away from the influence of size by assuming similar balance sheet sizes
across all banks. We show this comparison in left panel of Figure 8 by computing the ratio
R of the contagion probability of both policies as a function of µb such that R = 1 implies
similar performance, R > 1 means the TS policy supersedes the random policy and R < 1
implies that the TS policy outperforms the random policy. We focus our analysis on only
those regions where contagion occurs in both systems to avoid divisions by zero. The plot
suggests that a policy that focuses on the most specialised banks results in greater stability
relative to a random policy in the region with high values of µb, which is significant from a
policy perspective because real world financial networks are more likely to be in this region.

The right panel of Figure 8 provides an insight to why the TS policy outperforms the
random policy. It shows the probability that a bank i with degree ki defaults before the
occurrence of contagion. The plot suggest that the specialised banks are the most likely to
default before contagion occurs. As such, it is reasonable to conjecture that focusing the
capital policy on these banks is more likely to increase the resilience of the system.

TB : We now abstract from heterogeneous degrees and consider only heterogeneous sizes
in order to study the stability impact of the TB policy relative to the random policy. We
show this comparison in left panel of Figure 9 by computing the ratio R of the contagion
probability of both policies as a function of µb such that R = 1 implies similar performance,
R > 1 means the TB policy supersedes the random policy and R < 1 implies that the TB
policy outperforms the random policy. The plot markers oscillate around 1 suggesting that
a policy that focuses only on the biggest banks is not effective.

In order to understand why the TB policy does not perform better than the random
policy, we plot the probability that a bank i with size Ai defaults before the occurrence of
contagion in the right panel of Figure 9 and find that big banks have a smaller chance of
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Figure 8: Left panel: Stability impact of TS policy relative to the random policy for a
system with heterogeneous bank degrees. Dotted line: comparison basis i.e. R=1. The TS
policy produces more stability relative to the random policy for high values of µb. Right
panel: Probability that a bank i with degree ki defaults before contagion occurs. The most
specialised banks have a greater chance of defaulting before contagion occurs.
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Figure 9: Left panel: Stability impact of TB policy relative to the random policy for a
system with heterogeneous bank sizes. Dotted line: comparison basis i.e. R = 1. The TB
policy appears to be ineffective relative to the random policy. Right panel: Probability that
a bank i with size Ai (shown in log-scale) defaults before contagion occurs. The biggest
banks have a greater chance of defaulting before the occurrence of contagion.
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failing before contagion occurs. This implies that allocating capital requirements to only
these banks is likely to be ineffective in the context of this model.

4.1.2 Diversification versus size

In the previous section, we simplified the model in order to separate the impact of diver-
sification and size. However, it is also interesting to ask which of the two factors namely
diversification and size is the more significant factor for capital requirement policies. In
order to facilitate this comparison, we introduce heterogeneity into the degrees and sizes
of the banks. The diversification based policy we consider assigns capital requirements
to banks based on their degrees such that banks with higher degrees are required to hold
lesser capital i.e.

εi =
1/ki∑
i 1/ki

χ (6)

Where, ki denotes the degree of bank i. While the size based policy allocates capital
requirements to banks based on the size of their balance sheets such that big banks are
required to hold more capital i.e.

εi =
Ai∑
iAi

χ (7)

Where, Ai denotes the size of bank i. Consequently, we compute the initial capital E0
i

of bank i as E0
i = E0

i +εi. In Figure 10, we compare the stability impact of a diversification
based policy relative to a size based policy by computing the ratio R of their respective
contagion probabilities as a function of µb such that R = 1 implies similar performance,
R > 1 means the diversification based policy supersedes the size based policy and R < 1
implies that the size based policy outperforms the diversification based policy. The figure
suggests that assigning capital based on a bank’s degree supersedes assignment based on
size further confirming recent findings reported by [16].

4.2 Non-capital based policy

From a policy maker’s perspective, it is interesting to ask if there is a network structure
that improves systemic stability without imposing new capital requirements (see [42] for
example)? We address this question by introducing some structural correlation into the
bipartite network. In the subsequent paragraphs, we use the term ”assortative network”
for a bipartite network in which the most diversified banks hold the most widely held (i.e.
concentrated) assets and ”disassortative network” for one in which the most specialised
banks hold the most widely held assets while the most diversified banks hold the least held
assets. The correlated networks are generated based on the algorithm proposed in [37].
The procedure essentially involves minimising a network cost function until a stationary
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Figure 10: Stability impact of policy based on diversification relative to policy based on
size as a function of µb for a system with heterogeneous sizes and degrees. Using banks’
diversification levels as a proxy for assigning capital requirements is superior to using bank
sizes.

state using Monte Carlo simulations. This cost function is defined as:

H(G) = −J
2

N∑
i,j=1

aijkikj (8)

aij

{
0, if i = j

1, otherwise

Where, ki =
∑

j aij and J denotes a control parameter for tuning the level of assortativity
i.e. J < 0(J > 0) gives a disassortative (assortative) network respectively while J = 0
produces an uncorrelated network.

In the left panel of Figure 11, we study the resilience of the system as a function of
µb for the different network configurations for the case when a random bank fails. The
right panel shows the same plot but for the case when a random asset is devalued. In both
cases, we find that the disassortative network produces the most stable configuration. This
is so because in a disassortative network, assets with high degree are held by the most
fragile banks (i.e. banks with low degrees, that are less diversified). This implies that fire
sales impact on the asset prices resulting from the default of any of these fragile banks
would be minimal. However, in the assortative network, assets with low degrees are held
by these fragile banks, which implies that the fire sales resulting from their default would
be much more severe thus leading to a wider unstable region. This result raises a question
of whether it is possible to implement a structure of incentives that makes the bipartite
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Figure 11: Left Panel: Contagion probability as a function of µb for different network
correlation configurations subject to the initial failure of a random bank. Blue squares:
Uncorrelated network. Red circles: Assortative network. Green diamonds: disassortative
network. The disassortative network gives the most stable configuration, while the assor-
tative network results in the most unstable system. Right Panel: Contagion probability as
a function of µb for different network correlation configurations. Again, the disassortative
network gives the most stable configuration.

network disassortative? For instance, such a scheme is proposed by [38] for reducing the
build up of systemic risk in the financial system.

5 Conclusion

Previous studies on overlapping portfolios have relied on the assumption of homogeneity in
the degrees and sizes of banks, however, empirical findings show that real financial networks
deviate from this assumption [25, 11, 8, 33, 34]. In particular, they provide evidence that
bank degrees and sizes follow power law distributions. In our work, we considered the
model recently introduced in [15] and studied the effect of these features. This approach
makes it possible to study the aggregate risk contribution of different types of banks with
varying degrees and sizes. We found that separately introducing heterogeneity into the
degrees and sizes of the banks widens the unstable region relative to the homogeneous
case with respect to the initial failure of a random bank but not with respect to targeted
shocks. In contrast, heterogeneity in asset concentrations makes the system more resilient
to random shocks but not with respect to targeted shocks.

Based on these intuitions, we proceeded to study possible capital policy models. Our
findings suggest that a regulatory capital policy that assigns capital requirements to the
most specialised banks performs better than random capital assignments when the network
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connectivity is high. However, focusing capital requirements on only the biggest bank does
not appear to be effective relative to random assignments within the context of the model.
Furthermore, we investigated the relevance of using diversification or size in building the
capital based policies and find that the diversification based policy outperforms the size
based policy with increasing network connectivity.

We then proposed a non-capital based policy that improves financial stability by in-
troducing structural correlation into the bipartite network. Our results suggest that dis-
assortative mixing (i.e. connecting the most specialised banks with the most concentrated
assets) improves the resilience of the system. This can be understood from the fact that
the fire sales impact of the specialised banks is significantly reduced due to the smaller
quantity of traded shares relative to the entire volume of the assets.

In an ongoing work, we plan to break away from the mechanistic stress test models used
in this paper and consider a more realistic agent based model in which negative externalities
from overlapping portfolios endogenously evolve. This way we can implement measures to
disincentive banks from structuring their portfolios in a manner that increases the fragility
of the system.
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