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Computational Modelling with uncertainty of
frequent users of e-commerce in Spain using an
age-group dynamic nonlinear model with varying
size population

C. Burgos, J.-C. Cortés, D. Martinez-Rodriguez, R.-J. Villanueva

Abstract

Electronic commerce has numerous advantages. It allows saving time
when we purchase an item, offers the possibility of review without de-
pending on the schedules of traditional stores, access to a wider variety
and quantity of articles, in many cases, with lower prices, etc. Based upon
mathematical epidemiology tenets strongly related to social behavior able
to describe the influence of peers, in this paper we propose an age-group
dynamic model with population varying size based on a system of differ-
ence equations to study the evolution of the frequent users of electronic
commerce over time in Spain. Using data from surveys retrieved from the
Spanish National Statistics Institute, we use and design computational
algorithms to perform a probabilistic estimation of the model parameters
that allow the model output to capture the data uncertainty. Then, we
will be able to perform a precise prediction with uncertainty.

Keywords: Electronic Commerce; Real-World Mathematical Model;
Nonlinear System of Difference Equations; Uncertainty Quantification.

1 Introduction

Electronic commerce (in the following EC) gathers all the possibilities of pur-
chasing or selling via the Internet. It includes electronic marketing, safe pay-
ments via the Internet, automatic systems to control the inventories, the supply
chain management, etc.

The diffusion of EC has increased its business volume much more than the
traditional commerce in the recent years. Several factors have fostered this
growth: as it is not necessary to go physically to the shop, it saves time; it
allows to compare quality, features and prices without moving from home; there
are a lot of free apps for shopping using the smartphone; it is possible to read the
opinion and comments of other customers who bought the same item you want
to purchase; the purchasing platforms allow the connection to social networks
[15].



Furthermore, other fields of science have been involved in the evolution of
EC, for instance, artificial intelligence, smart commerce, analytics and big data.
Also, EC is transforming the traditional business models in travels, banking,
fashion, transportation, etc. [15].

EC has become a part of our lives, transforming the way of making economic
transactions. Although the number of individuals who buy via the Internet is
increasing over the time, there are still many people who do not. To carry
out the present study, we will use available data from the National Statistic
Institute of Spain, where the amount of people who use frequently EC for their
purchases has been measured at different time instants using sampling statistical
techniques.

As any human activity, EC can be considered a practice susceptible to be
transmitted by peers with whom we are related with, that is, our social network
[6]. Thus, the study of the evolution of the EC users may be approached using
a proper model that considers the influence of peers. The people influenced are
usually called imitators [4]. However, in the economic activities also arises the
profile of innovator, an individual who makes his/her own decisions regardless
of the decisions of others [4]. Both, the influence of the innovators and the
imitators should be considered in the building of our proposed mathematical
model. This will allow us to investigate and quantify the influence of each one
of them.

Dynamic mathematical models are powerful tools to explain and predict
the process of adoption of an innovation over the time. The formulation of a
reliable mathematical model must consider the particular features of the tech-
nology as well as its users. In spite of several authors have developed interesting
mathematical diffusion models for study the dynamics of some technologies us-
ing different approaches [14, 16, 13, 12], they do not consider aspects like the
different habits among people depending on their age and a major impact of in-
novations on certain age groups. This is particularly relevant because the use of
EC requires a certain knowledge and technological skills that are more common
in younger people.

In [7], the age, the innovators and the imitators have been considered in
the model. Nevertheless the uncertainty of the data coming from a survey, and
consequently, with an intrinsic error that may influence the study, has not been
considered and treated.

In this paper, the goal is to focus on the study of the potential users of EC,
as a fundamental part in the expansion of this increasing business. This way,
the target population will be divided into different age groups which allow us
to distinguish the different population behavior with respect to this technology.
Then, we will build a model that considers the effect of the innovators, the
imitators and the data uncertainty measurement error in the survey. In the
model, we will assume that the population varies in size over time, which is not
usually considered.

In the mathematical quantification of the uncertainty, we will use a new
technique for probabilistic estimation of the model parameters that best capture
the data uncertainty, different to the one developed in [8]. The new technique is



computationally cheaper than the one introduced in [8]. The model parameters
estimated probabilistically will give us tools to analyze how the dynamics occurs.
Finally, the proposed model provides a useful tool for forecasting the short-
term trends of EC in Spain and therefore to enable strategic decision-making
marketing for ensuring efficiency in production, sales and advertising campaigns.

The paper is organized as follows. In Section 2, we state the underlying
age-structured demographic model and, onto it, the model that describes the
dynamics of the frequent users of EC. In Section 3, we describe the probabilistic
estimation technique to fit the model to the data of frequent users capturing the
uncertainty involved in the sampled data. In Section 4, we present the results
of the probabilistic estimation, the probabilistic prediction and the discussion
of the obtained results. Finally, conclusions are drawn in Section 5.

2 Model Building

In this section, first, we recall the data available in the Spanish INE: birth rates,
death rates and percentages of frequent users of EC. Frequent users of EC are
those who have bought by the Internet in the last three months. Then, we
introduce a demographic model to know the general dynamics of the population.
Finally, using the parameters of the demographic model, we will be able to
describe the dynamics of the frequent EC users.

2.1 Available data

In Spanish INE [1], we can find the data corresponding to the percentage of
EC users from 15 to 74 years old divided into the following age groups: 15-24,
25-34, 35-44, 45-54, 55-64 and 65-74, every year in the period 2009-2017.

As we have pointed out in the Introduction, in our previous contribution [7]
we proposed a deterministic mathematical model to describe the dynamics of EC
in Spain, where the above six age groups were considered. In the present paper,
our aim is to treat the uncertainty included in the sampled data. Thus, the idea
of considering all the age groups could make the random model very complex, as
it occurs in [7]. Therefore, taking into account the significant difference between
the percentage of frequent users of EC if they are younger or older than 45 years
old, we are going to consider the age groups 15-44 and 45-74. We assume that
this difference will be reduced as young people are getting older, but it will take
longer than the prediction time of 4 years we will propose.

In Table 1, we can see the aggregated percentages of people who have pur-
chased by the Internet in the last 3 months (frequent users of EC) and the
people who do not (non-frequent users of EC), per age groups 15-44 and 45-74
in the period 2009-2017.

2.2 Demographical model

As we discussed in the above section, we consider two age groups, that is,



e Group 1 (G1): Population aged between 15 and 44 years old.

e Group 2 (G3): Population aged between 45 and 74 years old.

Then, following [10, p.623-624], taking into account that the time step is
going to be fixed in a month and the demographic data retrieved from [3] are
in years, the demographic model is given by the following system of difference
equations,

_ r_a _d
Gl(t+1)_G1(t)+12 12G1(t) 12G1(t),

_ EPN
Go(t+1) = Ga(t) + EGl(t) 12G2(t),
where

e 4 is the yearly birth rate (assuming that almost nobody dies between 0
and 14 years),

e d; is the yearly death rate in the age group Gf1,
e (; is the yearly growth rate from G; to Gs.

e 5 is the yearly rate of people who leave age group G2, by death or because
they turn 75.

The total population Pr(t) = G1(t)+G2(t) is not constant. At this point, we
could use the yearly demographic data retrieved from [3] and calculate the cor-
responding constant values of G1(t) and Ga(t) for each year t = 2009, .. .,2017.
Nevertheless, demographic data beyond 2017 to perform predictions of frequent
EC users will not be available. Consequently, we are going to consider that the
demographic parameters will be determined later by probabilistic estimations,
being these values between the maximum and minimum values retrieved from
[3]. Thus, these average fitted demographic parameter values will be used for
predictions.

Then, from [3], we have that u € [0.0035,0.0251], d; € [3.5279x10~>,0.0032],
c1 is about ﬁ = % = 0.0333 because the length of the age group 15 — 44 is
30 years and then, approximately 1/30 of people in this age group grow from
44 to 45 years old, moving then to age group Gs. Also, we should note that
dy gathers the death rate of people in Ga, in the interval [0.001269,0.02432]
plus the rate of leaving the system, approximately ==1r= = 55 = 0.0333, again,
because the length of the age group 45 — 74 is 30 years.

2.3 Electronic commerce dynamic model

Considering the demographic model previously introduced, we are going to build
a discrete model able to describe the transmission dynamics of the habit of the
frequent use of EC over time. First, taking the time ¢ in months, we introduce
the following subpopulations



e N;(t), i = 1,2, denotes the number of individuals in the age group G; who
have not purchased by the Internet at least in the last three months, at
the month ¢.

e Y;(t), 7 = 1,2, denotes the number of individuals in the age group G; who
have purchased by the Internet in the last three months, at the month ¢.

A first consequence of this division is that N7 (¢) +Y1(t) = G1(t) and Na(t)+
Ya(t) = Ga(t). Therefore, Pr(t) = Ni(t) + Y1(t) + Nao(t) + Ya(¢) and as we
mentioned before, the total population is not constant over the time.

Furthermore, the frequent users of EC can be classified into two main groups:
the innovators, who make the decision of using EC because of advertising or
marketing strategies through the media or other external factors regardless of
the decisions of others; and the imitators, who will use EC due to the influence
received from social interaction with frequent users [4]. The effect of both, the
innovators and the imitators, is going to be taken into account in the modeling
process.

The diffusion of the frequent use of the EC will be represented by the tran-
sition of people from the population N;(t) to Y;(¢) (¢ = 1,2) through the coeffi-
cients of innovation and imitation described by:

e p;, i = 1,2, are the coefficients of innovators for the i-th group, and the
transitions due to innovators from N;(t) to Y;(t) are modeled by p; N;(¢),
i =1,2;

e «1,q9,a3,a4 are the coefficients of the imitators, that is, when someone
is a frequent user of EC and influences another person who has not used it
yet or does it less frequently, that is, it has not used EC in the last three
months. These transitions are modeled by the terms [5, p. 14]

OllNl(t)Y;i(t) + agNl(t)

and Ya(t)
2 .
+a4N2(t)PT(t )

~—

e v;, 1 =1,2, are the transition parameters of those who have not purchased
by the Internet in the last three months and the transitions from Y;(t) to
N;(t) are modeled by the terms ~;Y;(t), i = 1,2.

Then, assuming that the individuals that turn 15 years old are not frequent
users of EC, the following age-structured mathematical diffusion model based
on the nonlinear system of difference equations given by expressions (2)—(5)
describes the evolution of the frequent users of EC in Spain over the time.



Nt 1) = No(6) = T80 (0) + 0ie) = Tyi(0) = M) L2 o)+ L),
(2)
Yi(t+1) = Yi(t) - %Yl(t) — Vi) — %Yl(t) + Nl(t)alyl(t]l:(t‘;zyz(t) +p1INL(t),
(3)
No(t+1) = No(t) — %NQ(t) +72Ya(t) + %Nl (t) — Na(t) 0‘3}/1(?7;234}/2(’5) — palNa(2),
(4)
Ya(t+1) = Ya(t) %Ng(t) ~9Ya(t) + LVi(0) + Na(t) 0‘31/1(3)3;(;‘4}/2@ + paNo ().
(5)

Figure 1 shows the compartmental representation of the system of difference
equations (2)—(5).

dll\]/ (ZJYI/‘

Yi(t)+asYa(t)
PN (1) + Ny (1) 22l r0a12(0)

Pr(h)
%u N Y]
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- asYi(t) b
2 Na(t) + No(t) g w2 1(2:(1)4 20
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Figure 1: Compartmental model corresponding to the system of nonlinear of
difference equations (2)—(5). The boxes represent the subpopulations and the
arrows the transitions between them.

As our data are given in percentages, we need to scale the model to match



the magnitudes. To do so, first, we need to establish a relationship between
Pr(t+1) and Pr(t). Summing up all the expressions in (2)—(5), we obtain that,

2 () — N0 + i) — Z(Na(0) + ¥al0). (6)

Pr(t+1)= Pr(t) + D

1

Now, if we define

m0) = 0 ) = i (0= B2 (o) =

(7)

and we divide the expression (2) by Pr(t + 1) given by (6), we obtain

Nt 1) N — BN(0) +nYalt) — SN () — N (1) TGV ) (1) 4 8 Pr(r)
Pr(t+1) Pr(t) + & Pr(t) — B(N.(t) + Yi(t) — B (Na(t) + Ya(t)) '
(8)
Then, if we divide numerator and denominator of equation (8) by Pr(¢),
taking into account (6) and (7), we have

n1(t) — Bna () + 71y1(t) — Shna(t) — na (8)(arys () 4 ooya(t)) — prna (t) + 45
L+ 45 — B () + () — Bna(t) + 2(1) o

and then, all the terms in (9) are scaled. Using the same procedure in (3)-(5),
we obtain the following scaled system of nonlinear difference equations

ni (f,—i-l) =

)

na(t) — i (t) + 7y (t) — Fna(t) — () (aayi(t) + asya(t)) — prma(t) + {5

mit+1) = T+ 45 — B n(0) + 91(0) — Bnalt) + (1)) ’
(10)
m@+nzw@*%m@*%mﬁ 1Y) + (1) (1y1(t) + azyz (1)) + prm ()
L+ £ — B(na(t) + y1(t) — B (nalt) +y2(1)) ’
(11)
W@+D:nﬂw—%m<Hﬂwx>+%muwwm%mwmﬂ+mmu»—mm@x
L+ 45 — B () + 1 (8) — B (na2(t) + y2(1))
(12)
e 1) — 220 = F0a(0) ~ wm@+%ww+WMM%mw+mmwﬂwwwx

L+ £ — S (ng () +y1(t) — 2 (na(t) + y2(1))
(13)

In this manner, it is clear that n(¢) + y1(t) + na(t) + y2(t) = 1 for all ¢.



3 Probabilistic estimation

3.1 Data

Here, the next usual step would be to fit the model to data in Table 1, that is,
to find the model parameter values that make the model output be as close as
possible to the data collected in Table 1 in the time instants ¢t;= Dec 2009, ...,
to= Dec 2017. However, the data come from surveys and, therefore, contain
intrinsic uncertainties (survey error) that we want the model captures.

In order to quantify the uncertainty of the data, it would be interesting to
have the complete data of the surveys. Nevertheless, this information does not
use to be available. As an alternative to avoid this drawback, our goal is to
assign reasonable probability distributions to data that allow us to simulate the
real survey samples in a reliable way.

To do so, we need the sample sizes of the surveys, collected in Table 2 and
available in [1]. We will assume that people interviewed each year is different
and, consequently, the survey outputs are independent. For each one of the 9

available surveys, let us denote by X7 = (Xf,Xg,Xg,Xi) 0 < X! <mj,i=
1,...,4,7=1,...,9 a random vector whose entries are:

e X f = Number of individuals who purchase frequently by the Internet in
the first age group G at the time instant j.

) Xg = Number of individuals who do not purchase frequently by the In-
ternet in the first age group G7 at the time instant j.

e XJ = Number of individuals who purchase frequently by the Internet in
second age group Go at the time instant j.

e X Z = Number of individuals who do not purchase frequently by the In-
ternet in second age group G at the time instant j.

These components represent exclusive selections (events) with probabilities:

PI(X) =2)=p!, i=1,...,4 j=1,...,9,

where p{7 p%, pé and pi are the percentages collected in Table 1 for each
survey j, j = 1,...,9. Thus each random vector has a multinomial (tetranomial)

probability distribution. Therefore, the probability that X { occurs r7 times, X3
occurs ry times, Xg occurs 3 times and Xi occurs 4 times is given by

P, (w1, @2, 03, 34) = ¥ (P (p2)" (p3)" (p1)™, j=1,...,9, (14)

g r1lzolasley!
where x1 + x2 + T3 + 24 = n;.
Now, let us scale the above tetranomial distributions in order to have the

same magnitudes in the data and in the model. Then, we define the random
vector



Year Non-users Users Non-users | Users

15 — 44 15 — 44 16 — 74 16 — 74

t; = Dec 2009 (j = 1) 0.4796 0.1008 0.392 0.0276
to = Dec 2010 (j = 2) 0.4588 0.1170 0.3885 0.0357
ts = Dec 2011 (5 = 3) 0.4371 0.1307 0.3929 0.0393
ty = Dec 2012 (j = 4) 0.4204 0.1393 0.3927 0.0476
ts = Dec 2013 (j = 5) 0.3885 0.1627 0.3934 0.0554
tg = Dec 2014 (j = 6) 0.3725 0.1684 0.3979 0.0612
t7 = Dec 2015 (j =7) 0.3338 0.1958 0.3897 0.0807
ts = Dec 2016 (j = 8) 0.2976 0.2213 0.3806 0.1005
tg = Dec 2017 (j =9) 0.2709 0.2401 0.3785 0.1105

Table 1: Proportion of people who have purchased by the Internet in the last 3
months (frequent users of EC) and the people who do not (non-frequent users
of EC), for the age groups 15-44 and 45-74 in the period 2009-2017 in Spain [1].

Year

Sample Size (=: n;) |

t1= Dec 2009 (j=
to= Dec 2010 (j=
ts= Dec 2011 (j=
t4= Dec 2012 (j=
ts= Dec 2013 (j=
te= Dec 2014 (j=
t7= Dec 2015 (j=
ts= Dec 2016 (j=
to= Dec 2017 (j=

1) 24935
2) 24877
3) 24972
4) 20647
5) 20484
6) 20815
7) 20786
8) 23877
9) 24132

Table 2: Sample size for each survey, [1].




Zi = (Z{,Zg,zg,zi), Zl=20 =1,

Note that the random variables Zij € [0,1] and the join probability mass
function of the scaled tetranomial distribution Z7 is the same as the one of X7
shown in expression (14).

Now, sampling a hundred thousand times the 9 scaled tetranomial proba-
bility distributions of Z7, substituting p7, p3, p% and p} by their corresponding
values in Table 1, for j = 1 ,9, we can obtain the quantiles 2.5 and 97.5, (95%
confidence interval) of these scaled tetranomial probability distributions. These
quantiles are collected in Table 3 and capture most of the data uncertainty.

Year 95% CI of nq(t)

15 —44

95% CT of y(t)
15— 44

95% CI of na(t)
45— 74

95% CT of ya(t)
45 —-174

t1= Dec 2009 (j=1 0.4733,0.4857 0.0971,0.0104 0.3859, 0.3980

0.0255,0.0296

0.4526, 0.4650
0.4308, 0.4432
0.4135, 0.4270

[ ]
[ ] | [0.1130,0.1210
[ ]
[ ]
[0.3818, 0.3951]
[ |
[ ]
[ |
[ ]

0.1265,0.1348
0.1344,0.1439

[ ]
[ ] | [0.2834,0.3944
[ ]
[ ]
[0.1576,0.1677]
[ ]
[ ]
[ ]
[ ]

0.3868, 0.3990
0.3861, 0.3994

[ ]
| t2= Dec 2010 (j=2 [ ]
[ ]
[ ]
[0.3867,0.4001]
[ ]
[ ]
[ ]
[ ]

(=1)

(1=2) |
| t3= Dec 2011 (j=3) |
| t4= Dec 2012 (j=4) |
| t5= Dec 2013 (j=5) |
| te= Dec 2014 (j=6) |
| t7= Dec 2015 (j=7) |
| ts= Dec 2016 (j=8) |
| to= Dec 2017 (j=9) |

0.3659, 0.3790
0.3272,0.3401
0.2918,0.3034
0.2652, 0.2765

0.1632,0.1735
0.1905,0.2013
0.2160, 0.2266
0.2345,0.2454

0.3913, 0.4046
0.3830, 0.3962
0.3744,0.3868
0.3732,0.3846

| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | il

0.0334, 0.0380
0.0368,0.0416
0.0448,0.0506
0.0522,0.0585
0.0578,0.0643
0.0770,0.0844
0.0966,0.1042
[0.1066, 0.1145]

[
[
[
[
[
[
[
[

Table 3: Calculated 95% confidence intervals, for each subpopulation, nq(t),
y1(t), na(t), y2(t), for the time instants Dec 2009, Dec 2010, ...,
the data.

3.2 Probabilistic estimation

The goal of this section is to determine sets of model parameters, which substi-
tuted into the model and calculating the model output, the means and the 95%
confidence intervals of the model output in the time instants ¢t;= Dec 20009, .. .,
to= Dec 2017 approximate as much as possible the data means and the data
95% confidence intervals given in Tables 1 and 3, respectively.

In order to determine the appropriate model parameters, we are going to
apply a computational technique other than the probabilistic fitting technique
presented in the paper [8], with the aim of saving computation time with similar
or even better results.

10
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Thus, in this section, we are going to determine an appropriate fitness func-
tion that measures if the model output lies inside or is close the data 95%
confidence intervals. Then, we will run several times the optimization Particle
Swarm Optimization algorithm (PSO) to minimize the defined fitness function
with the aim to calibrate the model. However, we are going to store all the model
evaluations and their errors (fitnesses). Now, among these performed evalua-
tions, we need to select those that allow us to capture the data uncertainty as
well as possible. To select the suitable evaluations and, therefore, their model
parameters, we have to propose a new selection algorithm. This algorithm has
been inspired in the PSO algorithm with an appropriate fitness function that
measures the closeness between the means and the 95% confidence intervals of
the model output of the evaluations and the data.

For the sake of clarity in the explanation of the processes properly, first, we
need to establish certain definitions and notations. Let us denote as M(¢; P) a
short representation of model (10)—(13), where

P = {Mad17cl7d27p17a17a27717p27a37a4772}7

are the model parameters and ¢ is the time instant (in months). Now, given a
set of model parameters, say P*, the model output M(¢;; P*) = (0¢,1, 0,2, 0t,3, 0t,4)
is a vector with 4 elements corresponding to subpopulations ni, y1, no and s,
for the time instants ;= Dec 2009, ..., to= Dec 2017. Also, we denote by Iy,
kE=1,...,9,1=1,2,3,4, the 95% confidence intervals given in Table 3. For
example, 34 = [0.0368,0.0416]. Furthermore, we define the distance from a
point p € R to an interval [a, b] as follows:

0 ifa<p<b,

min{|a — p|,|b —p|}  otherwise. (15)

Do) = {

Thus, we define the fitness function F' in the Algorithm 1, where we consider

that the fitness is zero if the model output values lie inside the 95% confidence
intervals of the data.

Algorithm 1: Fitness function F' used for model calibration.

Input : Model parameters
P = {p,di,c1,da, p1, 1, 2,71, P2, O3, 4, Y2 }-
Output: Fitness F(P)
1 Substitute the model parameters P into the model;
2 for t;1= Dec 2009, ..., tg= Dec 2017 do
3 | Calculate the model outputs M(t;; P) = (0¢,1,0¢,2, 01,3, 01,4);
4 end
5 Calculate the fitness of P as F(P) = 22:1 Z?:l D(ot,1, I11);

In the following, the calculation performed in the loop 2-4 of the Algorithm
1 will be called realization. Once the fitness function has been determined, we

11



will use the rPSO algorithm introduced in [11] to calibrate the model. In fact,
we are going to run it several times, storing the sets of model parameters and
their fitnesses used by rPSO in the set P. Later, we have to select the model
parameters of P whose output capture the best as possible the data uncertainty.

To perform the selection of these model parameters, we are going to intro-
duce an adapted version of the rPSO algorithm. Then, we define the fitness
function G given by the Algorithm 2.

Algorithm 2: Fitness function G.

Input : A= {P;,Pi,,...,Pi, }, Pi sets of model parameter values
1=1,...,n.
Output: Fitness G(A)

1 foreach P;; set of parameters in A do

2 Substitute the model parameters P;; into the model;

3 Perform the realization of the model with the parameters A;;

4 end

5 Calculate the mean, percentile 2.5 and percentile 97.5 of all the model
outputs in the time instants t;= Dec 2009, ..., tg= Dec 2017;

Calculate G(A), the 1-norm [9] of the difference between the mean,
percentile 2.5 and percentile 97.5 calculated in Step 5 with the
corresponding mean, percentile 2.5 and percentile 97.5 of the data in
Table 1 and Table 3, respectively.

(=]

Now, we propose the Algorithm 3, a rPSO-inspired selection algorithm to
select the sets of model parameters whose model-outputs best capture the data
uncertainty.

The selection Algorithm 3, with a probability of 10%, rejects the current
updated particle and generates randomly a new one. Also, with a probability
of 10%, the current updated particle is mutated, where the mutation consists of
changing some sets of model parameters in the current particle by others ran-
domly chosen, avoiding repetitions. These features allow a deeper exploration
of the space of parameters.

At this point, we should remark that, computationally, this probabilistic
estimation procedure is less expensive than the one in [8], because the time
headed to fit the model using rPSO will be smaller than the number of times we
have to sample and fit the model in the probabilistic fitting technique developed
in [8]. Also, the selection procedure is better because it allows us more flexible
combinations to capture the data uncertainty.

Also, we must say that the random selection of the elements in the loop
10-25 of the Algorithm 3 uses to lead to a reduction in the number of elements
of P;, making difficult to reach a good fitting. Therefore, we suggest to take the
same fixed given value every time the loop 10-25 is executed.

12



Algorithm 3: rPSO-inspired selection algorithm.

Input : P, set of model parameters obtained by applying several
times the rPSO algorithm; N, number of particles; ITMAX
the maximum number of iterations; T' number of elements of
the particles, T' < card(P).

Output: The sets of model parameters SSfjlfal that best capture the
data uncertainty.

1 Define Sbest , =0 and G(Shsst ) = +oo;

globa global
2 for i+ 1to N do
3 Initialize S; C P with T elements chosen randomly without
repetitions;
4 Evaluate its fitness G(.5;);
5 Define its individual best fitness as S?°5* = S;;
6 | if G(Si) < G(Siist,) then
7 ‘ Sgleglfal = SZ
8 end
9 end
10 for i + 1 to ITMAX do
11 for j < 1to N do
12 Build the new set P; = S; U S%°5" U Syj0par, that is, joining the
current particle, its individual best and the global best;
13 Remove the repeated elements;
14 Build the new particle S; as the random selection without
repetition of T elements of P;;
15 With a probability of 10%, rejects the current S; and generates
randomly a new one;
16 With a probability of 10%, the current S; is mutated;
17 Evaluate the fitness of the new S;, G(S;);
18 if G(S;) < G(S*!) then
19 | Sbest = g,
20 end
21 if G(S;) < G(Sb,;) then
22 ‘ Sgleslfal = SZ
23 end
24 end
25 end
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4 Results

We have performed 30 different calibrations using rPSO, 10 using N = 30
particles, 10 using N = 45 particles and 10 using N = 60 particles, everyone
with N x ITMAX = 3000 evaluations, therefore, a total of 90, 000 evaluations
of the model were performed. Some of them were withdrawn because their
model output presented unrealistic oscillations, leaving 44, 853.

Our goal, now, is to find among the 44, 853 realizations of the model those
such that the means and the 95% confidence intervals of these realizations be
as much close as possible of the corresponding means and the 95% confidence
intervals of the data in Tables 1 and 3.

Nevertheless, it would be interesting to reduce the number of eligible real-
izations to much less than 44, 853. There are 66 realizations with error less than
0.02, 359 with error less than 0.025, 755 with error less than 0.03 and 1590 with
error than 0.04.

Then, we have performed 10,000 evaluations of the Algorithm 3 with the
realizations with error less than 0.025, 0.03 and 0.04, with N = 30, N = 45
and N = 60 particles, and selecting T' = 100, T" = 150 and T" = 200 elements.
Among all of them, the lowest error has been 0.07056 for the set of realizations
with error less than 0.04 performed with N = 45 particles and selecting 7' = 100
elements. Substituting the 7" = 100 chosen model parameters values into the
model and obtaining the model output, in Figure 2, we can assess visually the
goodness-of-fit the probabilistic estimation.

Furthermore, the Figure 2 shows the probabilistic prediction over the next
four years, on the right of the black dotted-dashed vertical line. The prediction
preserves the trends drawn by the data, increasing for the frequent users of EC
and decreasing otherwise. In the Tables 4 and 5, we can see the means and their
95% confidence intervals for the predictions from Dec 2018 to Dec 2021.

Date Mean nq(t) | Mean y1(t) | Mean ns(t) | Mean yo(t)
15— 44 15— 44 45 — 74 45— 74
Dec 2018 0.2454 0.2637 0.3643 0.1266
Dec 2019 0.2159 0.2867 0.3522 0.1452
Dec 2020 0.1874 0.3092 0.3382 0.1652
Dec 2021 0.1604 0.3304 0.3226 0.1866

Table 4: Mean of the probabilistic prediction from Dec 2018 to Dec 2021 for
every subpopulation.

Now, taking the 100 sets of parameters selected, we can calculate, for each
parameter, the mean and the 95% confidence interval, and the results are col-
lected in Table 6.

Looking at Table 6, we can see that the model parameters p; and ps related
to the people who make their own decisions to use frequently EC (innovators)
are zero. Therefore, according to the results of our model, the use of the EC in
Spain depends mainly on the transmission by peers (imitators) rather than the
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Date

95% CI of n4(t)
15 —44

15 —-44

95% CI of y1(¢)

95% CI of ns(t)
45 — 74

95% CI of ya(t)
45— 74

Dec 2018
Dec 2019
Dec 2020
Dec 2021

0.2342,0.2529
0.2035, 0.2255

0.2544,0.2721
0.2757,0.2965

[ ]I
[ ]I
[0.1736,0.2002] | [0.2954,0.3207
[ ] |1

0.1453,0.1766

0.3133, 0.3435

[0.3573,0.3737]
[0.3439, 0.3623]
0.3280, 0.3513]
0.3108, 0.3371]

[0.1207,0.1345]
[0.1383,0.1548]
[0.1568, 0.1770]
[0.1765,0.2010]

Table 5: 95% confidence interval of the probabilistic prediction from Dec 2018
to Dec 2021 for every subpopulation.

Parameters Mean 95% CI

M 0.00351 | [0.00351, 0.00355]
e 0.04164 | [0.03172,0.05430]
dq 0.00139 [0.00033, 0.00269]
do 0.05333 [0.02882, 0.07809]
n 0 [0, 0]

a1 0.00376 [0,0.01726]

Qg 0.06905 [0.02934, 0.08545]
Y1 0.00011 [O, 0.00182}

D 0 [0,0]

s 0.00011 [0,0.00065]

oy 0.019124 | [0.014733,0.02262]
Y2 0.00011 [0,0.00231]

Table 6: Mean and 95% confidence interval of the selected model parameters
whose model outputs best capture the data uncertainty.
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Figure 2: Probabilistic estimation and probabilistic prediction. Solid lines repre-
sent the model output 95% confidence bands and means, respectively. The dots
are the mean of the data and the data 95% confidence intervals, respectively. As
we can see, the model output band captures most of the data uncertainty rep-
resented by the dots. The dotted-dashed vertical lines separate the estimation
(on the left) and the prediction (on the right) from Jan 2018 to Dec 2021.

own decisions (innovators).

Also, we can see that the model parameters v, and -, are very small, that
is, when an individual uses frequently EC, it is not usual he/she gives it up for
more than 3 months and moves to the non-user state.

Furthermore, for the transmission parameters, we have that as and a4 are
greater than oy and ag, respectively. This means that the group ya(¢), frequent
users of EC in the age group 45 — 74, even being less people than y;(t), they
influence more effectively to make the others to become frequent users of EC,
regardless the age. Thus, elder frequent EC users are less people but more
convincing.

Recently, the Spanish INE has released the data of EC frequent users corre-
sponding to year 2018, [2]. These data with their CI 95% are collected in Table
7. Comparing with the model probabilistic prediction from Dec 2018, given in
Table 5, we can see that our prediction is in agreement with the real data to
Dec 2018, because the CI 95% for each subpopulation have intersection or are
very close.
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5 Conclusion

In this paper, we propose a mathematical epidemiological-type model with vary-
ing size population, based on a scaled system of difference equations, to study
the dynamics of the frequent users of EC in Spain using real data retrieved from
the INE (Spanish Statistical Institute).

Then, we propose a new technique to estimate probabilistically the model
parameters in such a way the model is able to capture the data uncertainty.
With the estimated model parameters we can perform a probabilistic monthly
prediction over the next four years via the mean and the 95% confidence intervals
each month from Jan 2018 to Dec 2021.

A deeper look to the model parameters selected to capture the best the data
uncertainty, shows us some hidden behavior of the frequent and non frequent
users of EC and how the habit of the frequent use EC transmission occurs.
For instance: it is not usual the individuals get frequent users of EC by own
decisions; when an individual uses frequently EC, he/she does not use to give
it up; the elder users of EC are more convincing to make the others to change
their mind and use EC.

Furthermore, the probabilistic prediction shows a sustained increasing in the
subpopulations of frequent user of EC, reaching in Dec 2021 mean values around
33% and 18.5% of the total population for y; and ¥, respectively.

In comparison with the technique proposed in [8], this new technique is
much less expensive and more accurate, taking advantage of all the evaluations
performed during the rPSO fitting. However, we can not provide estimations of
the model parameters, only the means and the 95% confidence interval.

Acknowledgments

This work has been partially supported by the Ministerio de Economia y Com-
petitividad grant MTM2017-89664-P and by the European Union through the
Operational Program of the European Regional Development Fund (ERDF)
/ European Social Fund(ESF) of the Valencian Community 2014-2020, grants
GJIDI/2018/A /009 and GJIDI/2018/A/010.

References

[1] Spanish INE. Encuesta sobre equipamiento y uso de tecnologias de infor-
macién y comunicacién en los hogares (Survey on equipment and use of
the information technologies and communication in the household, http:
//www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&
cid=1254736176741&menu=resultados&idp=1254735576692.

[2] Spanish INE. Encuesta sobre equipamiento y uso de tecnologias
de informacién y comunicacién en los hogares (Survey on equip-
ment and use of the information technologies and communication in

17



[10]

[11]

[12]

the household, https://www.ine.es/jaxi/Tabla.htm?path=/t25/p450/
base_2011/a2018/10/&fi1e=02002. px&L=0.

Spanish INE. Indicadores demogréficos bdsicos (Basic demographic
indicators), http://www.ine.es/dyngs/INEbase/es/operacion.
htm?c=Estadistica_C&cid=1254736177003&menu=resultados&idp=
1254735573002.

Bettencourt, L., Customer voluntary performance: Customers as partners
in service delivery, Journal of Retailing 73 (1997) 383—406.

Brauer, F. and Castillo-Chavez, C., Mathematical Models in Population
Biology and Epidemiology (Springer New York, 2001).

Christakis, N. A. and Fowler, J. H., Conected. The surprising power of our
social networks and how they shape our lives (Little, Brown & Company,
2009).

Cortés, J.-C., Lombana, I.-C., and Villanueva, R.-J., Age-structured math-
ematical modeling approach to short-term diffusion of electronic commerce
in spain, Mathematical and Computer Modelling 52 (2010) 1045-1051.

Cortés, J.-C., Santonja, F.-J., Tarazona, A.-C., Villanueva, R.-J., and
Villanueva-Oller, J., A probabilistic estimation and prediction technique
for dynamic continuous social science models: The evolution of the atti-
tude of the basque country population towards ETA as a case study, Applied
Mathematics and Computation 264 (2015) 13-20.

Golub, G. and Van Loan, C., Matriz Computations, Johns Hopkins Studies
in the Mathematical Sciences (Johns Hopkins University Press, 1996).

Hethcote, H. W., The mathematics of infectious diseases, SIAM Review 42
(2000) 599-653.

Khemka, N. and Jacob, C., Exploratory toolkit for evolutionary and swarm-
based optimization, The Mathematica Journal 11 (2010) 376-391.

Li, Y. and Siming, Z., Competitive dynamics of e-commerce web sites,
Applied Mathematical Modelling 31(5) (2007) 912-919.

Li, Y. and Zhu, S., Global analysis to a kind of competition model of e-
commerce sites, Annals of Differential Equations 3 (2003) 325-333.

Mahajan, V., Muller, E., and Bass, F. M., New product diffusion models in
marketing: A review and directions for research, in Diffusion of Technolo-
gies and Social Behavior (Springer Berlin Heidelberg, 1991), pp. 125-177.

Turban, E., Outland, J., King, D., Lee, J., Liang, T.-P., and Turban,
D., Electronic Commerce 2018, Series: Springer Texts in Business and
Economics (Springer, 2018).

18



[16] Zhang, D., Ntoko, A., and Dong, J., Mathematical model of technology
diffusion in developing countries, in Applied Optimization (Springer US,
2002), pp- 525-539.

19



t10 = Dec 2018 (j = 10) n1(tio) Y1 (tio) na2(tio) y2(t10)
15 —44 15 —44 45— 74 45 - 74
Mean 0.2279 0.2570 0.3746 0.1405

CI 95% [0.2230,0.0.2326] | [0.2512,0.2622] | [0.3680,0.3805] | [0.1366,0.1447]

Table 7: Data released for 2018. Mean and CI 95% of people who have used
EC in the last 3 months (frequent users of EC) and the people who do not
(non-frequent users of EC), for the age groups 15-44 and 45-74 during the year

2018 in Spain [2].
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