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Recent theoretical study on network robustness has focused primarily on attacks
by random selection and global vision, but numerous real-life networks suffer from
proximity-based breakdown. Here we introduce the multi-hop generalized core percola-
tion on complex networks, where nodes with degree less than k and their neighbors within
L-hop distance are removed progressively from the network. The resulting subgraph is
referred to as G(k, L)-core, extending the recently proposed Gk-core and classical core of
a network. We develop analytical frameworks based upon generating function formalism
and rate equation method, showing for instance continuous phase transition for G(2, 1)-
core and discontinuous phase transition for G(k, L)-core with any other combination of
k and L. We test our theoretical results on synthetic homogeneous and heterogeneous
networks, as well as on a selection of large-scale real-world networks. This unravels,
for example, a unique crossover phenomenon rooted in heterogeneous networks, which
raises a caution that endeavor to promote network-level robustness could backfire when
multi-hop tracing is involved.

Keywords: phase transition; random network; generating function; rate equation; core.

1. Introduction

Robustness of networked systems has been a vigorous research subject in network
science over the last two decades, informing the study of various applicable fields
such as social and biological networks, infrastructure networks, and technological
networks [1, 2]. Most of the early work on network robustness has focused on random
attacks and targeted attacks which often require global knowledge of the network
such as the degree sequence [3–6]. In reality, many attacks rely on proximity-based
tracking, which turns out to be economically cost-effective and practically feasible.
Natural examples are the epidemic transmission in contact networks [7] and the
effect of floods and earthquakes spreading from epicenters to neighboring areas [8].
Technical examples include cyberspace defense where bots are detected and traced
following communication links, and email scams spoofing all users in the address
book of a compromised account [9, 10]. Percolation on interdependent networks
[11–14], where the deletion of a node in one layer would cause deletion in another
layer through dependency links between different layers of networks, has been pro-
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posed to interpret the cascading failure in interdependent networks. Moreover, a
proximity-based percolation strategy on single networks, referred to as localized at-
tack, characterizes how a network dismantles starting from a seed node, its nearest
neighbors, and next nearest neighbors, and so on [15–17].

To quantify resilient network topology, the well-known leaf removal algorithm
[18] has been extended recently in the work [19, 20] to the so-call k-leaf removal
(k ≥ 2), in which nodes in a network with degree less than k (k-leaves) are recur-
sively removed together with all its nearest neighbors and their incident edges. The
resulting subgraph is called the Generalized k-core or Gk-core (with G2-core being
the ordinary core). By introducing the parameter k, Gk-core displays a discontin-
uous phase transition for k ≥ 3 in contrast to the continuous phase transition in
ordinary core percolation, i.e. in the case of k = 2 [21–23]. The hierarchy of Gk-cores
is a unique metric of network robustness in the sense that the inner cores and their
nearest neighbors are well-connected, which is distinct from the graph-theoretic no-
tion “k-core”, i.e., the maximal subgraph which contains nodes of degree at least k

[24].
Here, motivated by the above work, we extend the Gk-core to G(k, L)-core,

namely “Generalized (k, L)-core”, by introducing a parameter L ≥ 1 accommo-
dating the multi-hop proximity-based removal strategy. Specifically, we consider a
pruning algorithm in which k-leaves are recursively removed from the network to-
gether with all its neighbors within L-hop distance in terms of shortest paths in the
network. For example, if we choose L = 1, then the resulting subgraph G(k, 1)-core
is equivalent to the Gk-core. This tweak allows us to obtain a refined phase diagram
of core percolation. We show that G(k, L)-core has a discontinuous phase transi-
tion for all combinations of k and L apart from the case of (k, L) = (2, 1). Based
upon generating functions and rate equations, we develop theoretical frameworks
for G(k, L)-core percolation and test them on synthetic homogeneous and heteroge-
neous networks as well as on a selection of real-world networks. A unique crossover
phenomenon for heterogeneous networks is identified, which raises a caveat that
endeavor to improve robustness could backfire when multi-hop tracing is involved.

Fig. 1. Schematic illustration of the removal of a 3-leaf node v (a) when L = 1 and (b) when L = 2.
White nodes are removed.
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It is worth mentioning that, in addition to network robustness implications,
our multi-hop core percolation framework can be linked back to the well-developed
applications related to maximum matching and network controllability [25]. The
situation of L ≥ 2 can be mapped to the L = 1 case via graph subdivision operation
[26]. Therefore, the β-removable nodes (see definition below) as neighbors of a leaf
node in G(2, 2)-core percolation, for example, are matched in all maximum matching
configurations under subdivision. However, this connection only holds in the special
case of k = 2 and L = 1.

2. Theoretical results

2.1. Generalized (k, L)-core of complex networks

We consider a random network model with a prescribed degree distribution P (q),
which indicates the probability of having q neighbors for a node in the network G.
Let dist(u, v) be the length of the shortest path between two nodes u and v in the
network. Denote by NL(v) = {u : dist(u, v) = L} the set of L-th nearest neighbors
of a node v, and similarly NL(v) = {u : dist(u, v) ≤ L} the set of nodes within L-
hop distance of v. Given k ≥ 2 and L ≥ 1, our pruning algorithm is straightforward.
At each time step, a randomly chosen k-leaf node v (i.e., v has degree less than k)
is deleted together with the nodes in NL(v) and all their incident edges (see Fig.
1). The procedure continues until no k-leaves exist in the remaining network. We
call the resulting network the Generalized (k, L)-core, or G(k, L)-core for short.

To find the size of the G(k, L)-core, we employ the generating function for-
malism [2, 27] in this section and an alternative rate equation method [29] will
be given in Section 2.1. The generating function of the degree distribution is de-
fined by G0(x) =

∑
q P (q)xq and G1(x) = G′

0(x)G′
0(1)−1 = G′

0(x)〈q〉−1 is the
generating function of the excess degree distribution [2, 27], where 〈q〉 is the aver-
age node degree. Using the power property of generating functions, we introduce
the generating function for the size distribution of Nj(v) for a randomly chosen
node v as G[j](x) = G0(G1(· · ·G1(x) · · · )), with j − 1 iterations of the function G1

acting on itself [27]. If we follow a randomly chosen edge to the end node v, the
corresponding generating function for the size distribution of Nj(v) is denoted by
G(j)(x) = G1(G1(· · ·G1(x) · · · )), which represents the jth iterate of the function
G1.

Given k ≥ 2, we divide the nodes into three categories [19, 23]. If a node can
become a (k − 1)-leaf, it is called α-removable; if a node can lie in NL(v) for some
k-leaf v, it is called β-removable; if a node cannot be removed and hence belongs
to G(k, L)-core, it is called non-removable. Let α and β be the probability that
a random neighbor of a random node, say u, in a network G is α-removable and
β-removable in G\{u}, respectively. Note that the following calculations using gen-
erating function formalism are a special case of the cavity method [28], where the
cavity refers to the theoretical removal of a link or node when deriving the self-
consistent equations.
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The network is locally treelike as the probability of having a fixed closed loop
goes as n−1, where n is the size of the network, and is thus negligible in the large
network limit. Moreover, the above node u lies in G(k, L)-core if it has at least
k − 1 out-going nearest neighbors in the G(k, L)-core and no node in NL(u) is α-
removable. This means the probabilities satisfy the following self-consistency equa-
tion

1 − α − β =
∑

s1≥k−1

∑
s2

· · ·
∑
sL

[ L∏
j=1

dsj G(j)(x)
sj !dxsj

∣∣∣∣
x=0

·
( s1∑

s=k−1

(
s1

s

)
(1 − α − β)sβs1−s

)
· (1 − α)s2+···+sL

]
, (1)

where sj is the number of nodes in Nj(u), namely, the j-th nearest neighbors of u,
dsj G(j)(x)

sj !dxsj

∣∣
x=0

is the probability that u has precisely sj j-th nearest neighbors (using
the derivative property of generating functions [2]), the combinatorial number

(
s1
s

)
counts the choices of s non-removable neighbors among s1 neighbors in N1(u), and
(1 − α)s2+···+sL is the probability that none of the neighbors in NL(u)\N1(u) are
α-removable.

Note that for a β-removable node u, the set NL(u) contains at least one α-
removable node. Therefore, we similarly derive the second self-consistency condition

1 − β =
∑
s1

· · ·
∑
sL

(1 − α)s1+···+sL

L∏
j=1

dsj G(j)(x)
sj !dxsj

∣∣∣∣
x=0

. (2)

By tackling the high-order derivatives in (1) and (2), we find the following amenable
expressions for the probabilities α and β (see Appendix A)

α =
1
〈q〉

( k−2∑
s=0

(1 − α − β)s

s!
· ds+1G0(x)

dxs+1

∣∣∣∣
x=β

)
·

L∏
j=2

G(j)(1 − α) (3)

and

β = 1 − G′
0(1 − α)
〈q〉

L∏
j=2

G(j)(1 − α). (4)

For L = 1, these equations are consistent with the previous results for Gk-core; see
[19] .

Next, we can write down the relative size of G(k, L)-core, denoted by n(k,L),
which is equivalent to the probability that a random node belongs to the G(k, L)-
core. We find (see Appendix B)

n(k,L) =
[
G0(1 − α) −

k−1∑
s=0

(1 − α − β)s

s!
· dsG0(x)

dxs

∣∣∣∣
x=β

]
·

L∏
j=2

G[j](1 − α), (5)
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which coincides with Equation (5) in [19] for the case L = 1. Moreover, for a network
with n nodes and l edges, the normalized number of edges of G(k, L)-core, signified
by l(k,L), can be computed as follows

l(k,L) = (1 − α − β)2
l

n
= (1 − α − β)2

〈q〉
2

, (6)

where the term (1−α−β)2 means the probability that two end nodes of a random
edge belong to the G(k, L)-core.

2.2. Rate equations method

Following [19, 22, 29], we in this section introduce the rate equations to investigate
the structure of the evolution under our pruning process. For ease of analysis, we
assume only edges are deleted during the pruning. In other words, at each time step
all edges incident to a randomly chosen k-leaf node v and to the nodes in NL(v)
are removed. The procedure continues until all k-leaves become isolated nodes, i.e.
nodes of degree zero. Clearly, the remaining network apart from the isolated nodes
constitutes the G(k, L)-core. As observed in [19], this tweak ensures that the network
dynamics is self-averaging, which is essential for the derivation of rate equations.

Suppose the initial network has n nodes and l edges. For each step of the pruning
algorithm, the re-scaled time increment is set as ∆t = n−1 following [19]. Letting
P (q, t) be the degree distribution at time t, we have P (q, t) = n(q, t)n−1, where
n(q, t) indicates the average number of nodes having degree q at time t. Therefore,
dP (q,t)

dt = P (q,t+∆t)−P (q,t)
∆t = n(q, t + ∆t) − n(q, t) := ∆n(q, t) in the large network

limit.
Let θ(q) be the step function such that θ(q) = 1 if q > 0 and θ(q) = 0 if q ≤ 0.

For a randomly chosen k-leaf node v, the average number of nodes in NL(v) can
be seen as

FL :=
∑
s1

· · ·
∑
sL

(s1 + · · · + sL)
θ(k − s1)P (s1, t)∑
s1

θ(k − s1)P (s1, t)
·
( L∏

j=2

dsj G[j](x)
sj !dxsj

∣∣∣∣
x=0

)

=
∑
s1

s1θ(k − s1)P (s1, t)∑
s1

θ(k − s1)P (s1, t)
·

L∏
j=2

G[j]′(1), (7)

where sj counts the number of j-th nearest neighbors of v, and θ(k−s1)P (s1,t)
P

s1
θ(k−s1)P (s1,t) is

the probability that v has degree s1 given it is a k-leaf. Bearing this in mind, we
obtain the following rate equation for the evolution of nodes from t to t + ∆t:

dP (q, t)
dt

= ∆n(q, t) = − θ(k − q)P (q, t)∑
q θ(k − q)P (q, t)

+ δq · (1 + FL) − FL
qP (q, t)
〈q〉t

+ (FL+1 − FL)
(

(q + 1)P (q + 1, t)
〈q〉t

− qP (q, t)
〈q〉t

)
. (8)

The first term on the right-hand side of (8) is responsible for the contribution
of the randomly chosen k-leaf node v to ∆n(q, t) (namely, v has degree q with
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this probability, and n(q, t + ∆t) decreases by 1). The second term δq · (1 + FL)
corresponds to the number of isolated nodes generated, where δq = 1 if q = 0 and
δq = 0 otherwise. When edges incident to nodes in NL(v) are deleted, n(q, t + ∆t)
decreases by FL with probability qP (q, t)〈q〉−1

t since qP (q, t)〈q〉−1
t is the probability

that a node in NL(v) (following a random edge) has degree q. The last term in
(8) corresponds to the contribution of the nodes in NL+1(v): n(q, t + ∆t) increases
by FL+1 − FL with probability (q + 1)P (q + 1, t)〈q〉−1

t and decreases by the same
amount with probability qP (q, t)〈q〉−1

t . By combining all the cases that may alter
n(q, t+∆t), we arrive at the rate equation (8), which agrees with the case of L = 1;
see [19] .

Next, we estimate the number of edges, l(t) − l(t + ∆t), that are deleted on
average in each time step, where l(t) indicates the average number of edges at time
t. When L is odd, we have

l(t) − l(t + ∆t) = [F1 + (F3 − F2) + · · · + (FL − FL−1)] ·
〈q2〉t
〈q〉t

, (9)

where 〈q2〉t〈q〉−1
t is the average degree of the end nodes of a randomly chosen edge.

Similarly, if L is even, we have

l(t) − l(t + ∆t) =F1 + [(F2 − F1) + (F4 − F3)

+ · · · + (FL − FL−1)] ·
〈q2〉t
〈q〉t

, (10)

where F1 accounts for the average number of nearest neighbors of a randomly chosen
k-leaf. Therefore, the evolution equation for the dynamics of edges from t to t + ∆t

is given by

l′(t)
n

=
l(t + ∆t) − l(t)

n · ∆t
= −(l(t) − l(t + ∆t)), (11)

which depends on the parity of L. In particular, if L = 1, we have F1 =
P

q qθ(k−q)P (q,t)
P

q θ(k−q)P (q,t) by (7). Applying (9) to (11) we recover Equation (10) in [19].
We perform the above modified pruning procedure on a network of n nodes and

l edges until some time t∗ when all k-leaves become isolated nodes. The relative size
and the normalized number of edges of G(k, L) are given, respectively, by

n(k,L) = 1 − P (0, t∗) (12)

and

l(k,L) =
l(t∗)
n

. (13)

In terms of numerical calculation, we can solve the set of differential equation system
(8) iteratively given a finite maximum degree qmax. The termination time t∗ is
determined by P (q, t∗) = 0 for q = 1, · · · , k−1. Moreover, in view of (9)-(11), l(k,L)

is independent of the network size n in the thermodynamic limit (i.e., n → ∞) and
can be solved straightforwardly.
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3. Synthetic networks

In this section, we conduct numerical simulations along with the analytical results
derived in Section 2 for synthetic homogeneous random networks following Poisson
degree distributions and heterogeneous random networks with exponential tails.
Note that scale-free networks have no core [23] and hence no G(k, L)-core. All the
simulations are based on networks with n = 107.

3.1. Erdős-Rényi networks
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(d) k=3

Fig. 2. Top row: fractions of G(k, L)-core n(k,L) as functions of λ for L = 1 (squares), L = 2
(triangles), and L = 3 (circles) when (a) k = 2 and (b) k = 3. Bottom row: normalized edge
numbers of G(k, L)-core l(k,L) as functions of λ for L = 1 (squares), L = 2 (triangles), and L = 3
(circles) when (c) k = 2 and (d) k = 3. Curves are theoretical results based on Eqs. (5) and (6); red
symbols are obtained from rate equation approach Eqs. (12) and (13); blue symbols correspond
to simulations averaged over 30 realizations of ER networks with n = 107 and average degree λ.

We first consider Erdős-Rényi (ER) random networks with degree distribution
P (q) = e−λλq/q! for q ≥ 0. The average degree of an ER network is given by
〈q〉 = λ.

In Fig. 2 we exhibit the relative size n(k,L) as well as the normalized number
of edges l(k,L) for the G(k, L)-core for varied degree parameter k and multi-hop
parameter L in ER networks. In the calculation of rate equation, we set qmax = 40
as P (qmax) is less than n−1 in all our networks (In fact, the maximum degree of such
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an ER network is only around (ln lnn)−1 lnn with high probability [31].) Several
interesting observations are as follows.

Firstly, numerical simulations, theoretical results based on generating functions
and rate equations agree well with each other. Secondly, for k = 2 and L = 1 the
G(k, L)-core shows continuous phase transition for both n(k,L) and l(k,L), while for
all other scenarios with larger k or larger L only first-order percolation transition
behavior is observed. Our result is in line with [19, 23] for L = 1, namely, k = 3
marks the turning point of Gk-core percolation. However, for multi-hop generalized
core percolation with L ≥ 2, such a turning point disappears: the G(k, L)-core will
emerge abruptly at a critical threshold value λ∗ = λ∗(k, L) for any k ≥ 2. Thirdly,
the phase transitions for l(k,L) is consistent with those for n(k,L). Moreover, the
connectivity of G(k, L)-core grows nearly linearly with the density of the network.
For example, from Fig 2(c) we observe that the average degree of G(2, 2)-core is
around 4 when it first appears at λ ≈ 6.5 and then increases gradually with respect
to λ.

To better appreciate the discontinuous phase transition, we show the evolution
of λ∗ in Fig. 3 for different combinations of k and L. The critical average degree λ∗ is
seen to increase almost linearly with respect to both parameters, which implies the
pruning process unravels the robustness of ER networks in terms of the emergence
of core structure gradually and steadily.

10
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10
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10
0

10
1

10
2

10
3

10
4

k

λ*

 

 

L=1
L=2
L=3
L=4

Fig. 3. The critical threshold λ∗ for ER networks as a function of k for L = 1 (stars), L = 2
(pluses), L = 3 (crosses), and L = 4 (diamonds) based on numerical calculation via Eq. (5) where
n(k,L) > 10−3.

3.2. Exponential networks

We next consider exponentially distributed networks where degrees follow P (q) ∝
(1+q)2e−q/γ for q ≥ 0, where γ > 0 is the exponent. Exponentially distributed net-
works are heterogenous with quasi-heavy tails and seen in various real-life networks
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[2, 32]. Although scale-free networks always lead to trivial n(k,L), some intriguing
phenomena are revealed by such asymptotically exponential networks.

Fig. 4 shows how n(k,L) and l(k,L) evolve with respect to γ for different k and
L. Similarly as in the case of ER networks in Fig. 2, continuous phase transition
is only observed for G(2, 1)-core percolation and discontinuous phase transition
dominates all the other cases. The critical threshold value for the phase transition
shifts toward right indicating that the G(k, L)-core for an exponential network is
much smaller than that for an ER network with the same density. For example,
the G(2, 2)-core for an ER network with average degree 15 has size n(2,2) ≈ 1 (see
Fig. 2(a)) while n(2,2) for the exponential network with the same average degree is
around zero (see Fig. 4(a)). As low-degree nodes (k-leaves) in exponential networks
are likely to connect to hubs within their multi-hop neighborhoods, our pruning
algorithm causes much more serious damage to such heterogenous networks than
homogeneous ER networks.
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Fig. 4. Top row: fractions of G(k, L)-core n(k,L) as functions of γ for L = 1 (squares), L = 2
(triangles), and L = 3 (circles) when (a) k = 2 and (b) k = 3. Bottom row: normalized edge
numbers of G(k, L)-core l(k,L) as functions of γ for L = 1 (squares), L = 2 (triangles), and L = 3
(circles) when (c) k = 2 and (d) k = 3. Curves are theoretical results based on Eqs. (5) and
(6); symbols correspond to simulations averaged over 30 realizations of exponential networks with
n = 107 and exponent γ. The crossover points for n(k,L) and l(k,L) are signified by Cn and Cl,
respectively.

Interestingly, we observed from Fig. 4 the appearance of crossover points of n(k,L)
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(and l(k,L)) for L = 2 and L = 3. For example, Fig. 4(a) and Fig. 4(c) confirm that
G(2, 3)-core is larger and denser than G(2, 2)-core for networks with 〈q〉 ' 45 while
G(2, 3)-core does not exist for 〈q〉 / 45. This situation, however, does not exist in
ER networks. We contend that the phenomenon that larger multi-hop parameter L

could result in larger multi-hop generalized core could find its origin in the network
heterogeneity. An example scenario is shown in Fig. 5, where a sparse subnetwork
(green network containing k-leaves) is connected to a well-connected subnetwork
(orange network). Therefore, n(k,L) and l(k,L) are not monotonic with respect to L

in general. This yields an important implication that effort to enhance robustness
could backfire — for example, a heterogeneous network may become less robust
when facing virus infection (through compromising weak nodes and their multi-hop
neighbors) with reduced tracing capability.

Fig. 5. An example network where n(2,2) = 0 but n(2,3) = 4. The orange nodes and edges form
the G(2, 3)-core while the green nodes are removed through the G(2, 3)-core percolation.

4. Real-world networks

We apply the G(k, L)-core percolation to a couple of real-world networks in this
section. Table 1 presents the relative size and normalized number of edges of G(k, L)-
core for the Web graph [30] from the technology field, whose nodes are web pages
and links are hyperlinks connecting two pages. Web is the undirected version with
n = 163598 nodes and l = 16898307 edges crawled in 2004. The second graph is
the Brain network [33], where nodes are human brain neurons and edges are fiber
tracts linking neurons. This graph has n = 750742 nodes and l = 175235019 edges.
The results for Brain network are summarized in Table 2.

n(k,L)/l(k,L)
Web

k = 2 k = 3 k = 4
L = 1 0.610/8.541 0.498/8.163 0.360/6.372
L = 2 0.554/5.088 0.347/4.701 0.285/3.036
L = 3 0.342/4.846 0.168/3.428 0.141/1.965

Table 1. n(k,L) and l(k,L) of G(k, L)-core for Web network.
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n(k,L)/l(k,L)
Brain

k = 2 k = 3 k = 4
L = 1 0.892/18.310 0.653/13.548 0.412/7.345
L = 2 0.465/12.167 0.326/6.850 0.120/3.464
L = 3 0.221/9.410 0.104/3.391 0.075/0.901

Table 2. n(k,L) and l(k,L) of G(k, L)-core for Brain network.

Both Web and Brain have approximately heavy tails [30, 33], which would result
in very small or vanishing core structure according to the theoretical and numerical
analysis in Section 3. However, they posses apparently non-trivial G(k, L)-cores for
k ≤ 4 and L ≤ 3, which are substantially larger than what would be expected.
Similarly to what was observed in Gk-core percolation and core percolation, we
believe wealthy structural features such as correlation, motif or clustering in real
networks could play an essential role in the G(k, L)-core percolation.

5. Conclusion

In summary, we have introduced the multi-hop generalized core percolation, or
G(k, L)-core percolation, associating a degree parameter k ≥ 2 with a multi-hop
parameter L ≥ 1. The proposed pruning procedure extends the Gk-core pruning
as well as the k-core pruning by incorporating the L-hop tracing mechanism. For
all different combinations of (k, L) except k = 2 and L = 1, first-order phase
transition is observed in the number of nodes and the number of edges of G(k, L)-
cores, which offers a new perspective on the network robustness against attacks with
tracing capability. Analytical frameworks based on generating function formalism
and rate equation method have been established. We tested the theoretical results
on synthetic networks as well as real-world networks. The crossover phenomenon
revealed in heterogeneous networks highlights a non-monotonicity risk regarding
enhancement to network robustness. As a future work, it would be interesting to
reveal the topological effect of real-world networks on core structure by randomizing
the networks such that the degree sequence is preserved and re-calculating the core.

Acknowledgments

This work was supported by a starting grant of Northumbria University and UoA
Flexible Fund Grant No. 201920A1001. The author would like to thank the two
anonymous reviewers and the handling editor Márton Karsai for valuable comments
that helped improve the paper.



12 Yilun Shang

Appendix A: The probabilities α and β

First, note that (1 − α)s1 =
∑s1

s=0

(
s1
s

)
(1 − α − β)sβs1−s by the binomial theorem.

It follows from (1) and (2) that

α =
∑
s1

· · ·
∑
sL

(1 − α)s2+···+sL

L∏
j=1

dsj G(j)(x)
sj !dxsj

∣∣∣∣
x=0

·
k−2∑
s=0

(
s1

s

)
(1 − α − β)sβs1−s

=
k−2∑
s=0

(1 − α − β)s

s!

[∑
s1

βs1−s

(s1 − s)!
ds1G1(x)

dxs1

∣∣∣∣
x=0

]

·
∑
s2

· · ·
∑
sL

(1 − α)s2+···+sL

L∏
j=2

dsj G(j)(x)
sj !dxsj

∣∣∣∣
x=0

. (14)

Drawing on the properties of generating functions, we calculate

ds1G1(x)
dxs1

∣∣∣∣
x=0

= 〈q〉−1(s1 + 1)P (s1 + 1), (15)

ds+1G0(x)
dxs+1

∣∣∣∣
x=β

=
∑
s1

(s1 + 1)!
(s1 − s)!

P (s1 + 1)βs1−s, (16)

and

L∏
j=2

G(j)(1 − α) =
∑
s2

· · ·
∑
sL

(1 − α)s2+···+sL ·
L∏

j=2

dsj G(j)(x)
sj !dxsj

∣∣∣∣
x=0

. (17)

The expression (3) for the probability α can be obtained by applying (15)-(17) to
(14).

Finally, the formula (4) for β can be derived likewise by invoking (2) and G′
0(1−

α) =
∑

q qP (q)(1 − α)q−1.

Appendix B: Relative size of G(k, L)-core

To calculate the relative size n(k,L), we note that a randomly chosen node v belongs
to G(k, L) if it has at least k nearest neighbors in the G(k, L)-core and no node in
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NL(u) is α-removable. Similarly as in (1), we obtain

n(k,L) =
∑
s1≥k

∑
s2

· · ·
∑
sL

[ L∏
j=1

dsj G[j](x)
sj !dxsj

∣∣∣∣
x=0

·
( s1∑

s=k

(
s1

s

)
(1 − α − β)sβs1−s

)
· (1 − α)s2+···+sL

]

=
∑
s1

· · ·
∑
sL

[ L∏
j=1

dsj G[j](x)
sj !dxsj

∣∣∣∣
x=0

· (1 − α)s2+···+sL ·
(

(1 − α)s1 −
k−1∑
s=0

(
s1

s

)
(1 − α − β)sβs1−s

)]

=
∑
s1

· · ·
∑
sL

L∏
j=1

dsj G[j](x)
sj !dxsj

∣∣∣∣
x=0

· (1 − α)s1+···+sL

−
∑
s2

· · ·
∑
sL

L∏
j=2

dsj G[j](x)
sj !dxsj

∣∣∣∣
x=0

· (1 − α)s2+···+sL

·
( k−1∑

s=0

(1 − α − β)s

s!

∑
s1

βs1−s

(s1 − s)!
ds1G[1](x)

dxs1

∣∣∣∣
x=0

)

=
∑
s2

· · ·
∑
sL

L∏
j=2

dsj G[j](x)
sj !dxsj

∣∣∣∣
x=0

· (1 − α)s2+···+sL

·
[∑

s1

ds1G[1](x)
s1!dxs1

∣∣∣∣
x=0

· (1 − α)s1 −
k−1∑
s=0

(1 − α − β)s

s!
dsG0(x)

dxs

∣∣∣∣
x=β

]
. (18)

Drawing on (17), (18) and the definition G[1](x) = G0(x), we readily derive Equation
(5).

Conflict of interest disclosure

The author declares that there is no conflict of interest regarding the publication
of this article.

References

[1] Cohen, R. and Havlin, S., Complex Networks: Structure, Robustness and Function,
Cambridge University Press, Cambridge, 2010.

[2] Newman, M. E. J., Networks: An Introduction, Oxford University Press, Oxford,
2010.

[3] Albert, R., Jeong, H., Barabási, A.-L., Error and attack tolerance of complex net-
works, Nature 406 (2000) 378.

[4] DeDomenico, M. and Arenas, A., Modeling structure and resilience of the dark net-
work, Phys. Rev. E 95 (2017) 022313.



14 Yilun Shang

[5] Iyer, S., Killingback, T., Sundaram, B. and Wang, Z., Attack robustness and centrality
of complex networks, PLoS ONE 8 (2013) e59613.

[6] Shang, Y., Unveiling robustness and heterogeneity through percolation triggered by
random-link breakdown, Phys. Rev. E 90 (2014) 032820.

[7] Massaro, E., Ganin, A., Perra, N., Linkov, I. and Vespignani, A., Resilience manage-
ment during large-scale epidemic outbreaks, Sci. Rep. 8 (2018) 1859.

[8] Wang, W., Yang, S., Stanley, H. E. and Gao, J., Local floods induce large-scale abrupt
failures of road networks, Nat. Commmun. 10 (2019) 2114.

[9] Huang, K., Siegel, M. and Madnick, S., Systematically understanding the cyber attack
business: a survey, ACM Comput. Surv. 51 (2018) 70.

[10] Junger, M., Montoya, L. and Overink, F.-J., Priming and warnings are not effective
to prevent social engineering attacks, Comput. Hum. Behav. 66 (2017) 75–87.

[11] Aleta, A. and Moreno, Y., Multilayer networks in a nutshell, Annu. Rev. Condens.
Matter Phys. 10 (2019) 45–62.

[12] Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E. and Havlin, S., Catastrophic
cascade of failures in interdependent networks, Nature 464 (2010) 1025–1028.

[13] Danzier, M. M., Bonamassa, I., Boccaletti, S. and Havlin, S., Dynamic interdepen-
dence and competition in multilayer networks, Nat. Phys. 15 (2019) 178–185.

[14] Radicchi, F. and Bianconi, G., Redundant interdependencies boost the robustness of
multiplex networks, Phys. Rev. X 7 (2017) 011013.

[15] Dong, G., Xiao, H., Wang, F., Du, R., Shao, S., Tian, L., Stanley, H. E. and Havlin,
S., Localized attack on networks with clustering, New J. Phys. 21 (2019) 013014.

[16] Shang, Y., Localized recovery of complex networks against failure, Sci. Rep. 6 (2016)
30521.

[17] Shao, S., Huang, X., Stanley, H. E. and Havlin, S., Percolation of localized attack on
complex networks, New J. Phys. 17 (2015) 023049.

[18] Karp, R. M. and Sipser, M., Maximum matching in sparse random graphs, Proc. 22nd
Annual IEEE Symposium on Foundations of Computer Science, IEEE, Piscataway,
NJ, pp. 364–375, 1981.

[19] Azimi-Tafreshi, N., Osat, S. and Dorogovtsev, S. N., Generalization of core percola-
tion on complex networks, Phys. Rev. E 99 (2019) 022312.

[20] Shang, Y., Attack robustness and stability of generalized k-cores, New J. Phys. 21
(2019) 093013.

[21] Azimi-Tafreshi, N., Dorogovtsev, S. N. and Mendes, J. F. F., Core organization of
directed complex networks, Phys. Rev. E 87 (2013) 032815.

[22] Bauer, M. and Golinelli, O., Core percolation in random graphs: a critical phenomena
analysis, Eur. Phys. J. B 24 (2001) 339–352.

[23] Liu, Y.-Y., Csóka, E, Zhou, H. and Pósfai, M., Core percolation on complex networks,
Phys. Rev. Lett. 109 (2012) 205703.

[24] Dorogovtsev, S. N., Goltsev, A. V. and Mendes, J. F. F., k-core organization of
complex networks, Phys. Rev. Lett. 96 (2006) 040601.

[25] Liu, Y.-Y. and Barabási, A.-L., Control principles of complex systems, Rev. Mod.
Phys. 88 (2016) 035006.

[26] Shang, Y., On the number of spanning trees, the Laplacian eigenvalues, and the
Laplacian Estrada index of subdivided-line graphs, Open Math. 14 (2016) 641–648.

[27] Newman, M .E. J., Strogatz, S. H. and Watts, D. J., Random graphs with arbitrary
degree distributions and their applications, Phys. Rev. E 64 (2001) 026118.
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