
BIROn - Birkbeck Institutional Research Online

Borges, J. and Levene, Mark (2004) An average linear time algorithm for web
data mining. International Journal of Information Technology and Decision
Making 3 (2), pp. 307-320. ISSN 0219-6220.

Downloaded from: https://eprints.bbk.ac.uk/id/eprint/213/

Usage Guidelines:
Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

https://eprints.bbk.ac.uk/id/eprint/213/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk

An Average Linear Time Algorithm for Web

Usage Mining

José Borges

School of Engineering, University of Porto

R. Dr. Roberto Frias, 4200 - Porto, Portugal

jlborges@fe.up.pt

Mark Levene

School of Computer Science and Information Systems

Birkbeck, University of London

Malet Street, London WC1E 7HX, U.K.

mark@dcs.bbk.ac.uk

October 22, 2003

Abstract

In this paper we study the complexity of a data mining algorithm for

extracting patterns from user web navigation data that was proposed in

previous work [3]. The user web navigation sessions are inferred from

log data and modeled as a Markov chain. The chain’s higher probability

1

trails correspond to the preferred trails on the web site. The algorithm

implements a depth-first search that scans the Markov chain for the high

probability trails. We show that the average behaviour of the algorithm

is linear time in the number of web pages accessed.

Keywords.Web usage mining, Markov chains, analysis of algorithms

1 Introduction

Web usage mining is defined as the application of data mining techniques to

discover user web navigation patterns in web log data [15]. Log files provide

a list of the page requests made to a given web server in which a request is

characterised by, at least, the IP address of the machine placing the request,

the date and time of the request, and the URL of the page requested. From

this information it is possible to reconstruct the user navigation sessions within

the web site [1], where a session consists of a sequence of web pages viewed by

a user in a given time window. The web site owner can take advantage of web

usage mining techniques to gain insights about the user behaviour when visiting

the site and use the acquired knowledge to improve the design of the site.

Two distinct directions are, in general, considered in web usage mining re-

search. In the first, the user sessions are mapped onto relational tables and an

adapted version of standard data mining techniques, such as mining association

rules, is invoked, see for example [11]. In the second approach, in which we

situate our research, techniques are developed which can be invoked directly on

the log data, see for example [3] or [14].

2

In [14] the authors propose a novel data mining model specific to analyze

log data. A log data mining system is devised to find patterns with predefined

characteristics by means of a query language to be used by an expert. Several

authors have proposed the use of Markov models to model user requests on the

web. Pitkow et al. [12] proposed a longest subsequence model as an alterna-

tive to the Markov model. Sarukkai [13] uses Markov models for predicting

the next page accessed by the user. Cadez et al. [6] use Markov models for

classifying browsing sessions into different categories. Deshpande et al.[7] pro-

pose techniques for combining different order Markov models to obtain low state

complexity and improved accuracy. Finally, Dongshan and Junyi [8] proposed

an hybrid-order tree-like Markov model to predict web page access which pro-

vides good scalability and high coverage. Markov models have been shown to

be suited to model a collection of navigation records, where higher order models

present increased accuracy but with a much larger number of states.

In previous work we have proposed to model a collection of user web nav-

igation sessions as a Hypertext Probabilistic Grammar (HPG). The HPG is a

self-contained and compact model which is based on the well established theory

of probabilistic grammars providing it with a sound foundation for future en-

hancements such as the study of its statistical properties. In [3] we proposed an

algorithm to extract the higher probability trails which correspond to the users

preferred navigational trails.

In this paper we provide a formal analysis of the algorithm’s complexity,

which is a first step in the direction of making the various web usage mining

3

models proposed in the literature comparable, since the diverse characteristics

of the patterns induced by the various models makes such comparison difficult.

The HPG model can alternatively be seen as an absorbing Markov chain [9].

Since the HPG concept is not essential for the algorithm’s complexity analysis,

herein, for simplicity, we will treat our model in terms of an absorbing Markov

chain. For details on the HPG model we refer the reader to [2, 3, 4, 5].

In Section 2 we briefly present the proposed model and the depth-first algo-

rithm for finding patterns in the data. In Section 3 we present the main result

of this paper proving that the algorithm has average linear time complexity.

2 Markov Chains to Model User Navigation Ses-

sions

2.1 Building the Model from the Navigation Sessions

In this section we will introduce the proposed Markov model by means of an

example. The model is inferred from the collection of sessions. Consider a web

site with three pages, {A,B,C}, and the following collection of user navigation

sessions:

(1) A,B, C,B (2) A,C, B,C, C (3) B,C, B (4) C, A, B.

Each navigation session gives a sequence of pages viewed by a user. To each

web page visited we create a corresponding state in the model.

Moreover, there are two additional states: a start state S representing the

first state of every navigation session and a final state F representing the last

4

state of every navigation session.

Figure 1 (a) shows the Markov chain modelling just the first session. There

is a transition corresponding to each sequence of two pages in the session, a

transition from the start state to the first state of the session, and a transition

from the last state of the session to the final state. The probability of a transition

is estimated by the ratio of the number of times the corresponding sequence of

pages was traversed and the number of times the anchor page was visited.

The model is incrementally build by processing the complete set of naviga-

tion sessions. Figure 1 (b) shows the model for the entire collection of sessions

given in the example.

AS F

C

B
1/21

1 1/21

(a)

1/6

AS F

C

B

1/6

3/6
2/3

3/6

1/4
1/6

3/6

2/4

1/4

1/3

(b)

Figure 1: The process of building the Markov model.

Figure 2 shows the Markov chain corresponding to the example represented

in Figure 1 (b). The Markov chain is defined by a set of states X, a transition

matrix T , and a vector of initial probabilities π. The set of states, X, is com-

posed by the start state, S, the final state, F , and the states that correspond

5

to the web pages visited. The transition matrix records the transition probabil-

ities which are estimated by the proportion of times the corresponding link was

traversed from the anchor.

The initial probability of a state is estimated as the proportion of times

the corresponding page was requested by the user. Therefore, according to the

model’s definition, apart from the final state, all states have a positive initial

probability. In [3] we make use of a parameter by which we can tune the model

to be between a scenario where the initial probabilities are proportional to the

number of times a page has been requested as the first page and a scenario

where the probabilities are proportional to the number of times the page has

been requested. For this paper we have adopted the latter scenario which enables

us to identify sequences of pages which were frequently followed but were not

necessarily at the beginning of a user navigation session.

From the method given to infer the model we note that every state in X (i.e.,

a state present in at least one navigation session) is included in at least one path

from state S to state F . Since the final state F does not have out-transitions

and it is reachable from every other state, the state F is an absorbing state and,

therefore, the Markov chain is an absorbing chain.

As described, the model assumes that the probability of a hypertext link

being chosen depends solely on the contents of the page being viewed. Several

authors have shown that models that make use of such an assumption are able

to provide good accuracy when predicting the next link the user will choose

to follow, see for example [13]. In addition, this assumption can be relaxed by

6

making use of the Ngram concept [3], or the dynamic Markov chain concept

[10]. Since the application of the two referred concepts results in a model with

the same properties as the model described herein we refer the reader to [3] and

[10] for more detail.

X = { A, B, C, F }

π = < 3/15, 6/15, 6/15, 0 >

T =

A B C F

A 0 2/3 1/3 0

B 0 0 1/2 1/2

C 1/6 3/6 1/6 1/6

F 0 0 0 1

Figure 2: The Markov chain corresponding to the example.

The Markov chain inferred from the log data summarises the user interaction

with the web site and the aim is to identify patterns in the navigation behaviour.

Definition 1 (Trail) We define a trail as a finite sequence of states that are

accessed in the order of their traversal in the underlying web site.

According to the model proposed, the probability of a trail is estimated

by the product of the initial probability of the first state in the trail and the

transition probabilities of the enclosed transitions. For example, the estimated

probability of trail A,B, C, F is 3/15 · 2/3 · 1/2 · 1/6 = 6/540. Note that, a

trail induced by the model does not necessarily have to end in the state F .

The probability estimated for trail A,B, C, which is 3/15 · 2/3 · 1/2 = 6/90,

gives the probability of A,B, C as a prefix of other trails, and the probability

estimated for A,B, C, F gives the probability of a user terminating the session

7

after following the trail A,B, C.

Definition 2 (Navigation patterns) A set of navigation patterns is defined

to be the set of trails whose estimated probability is above a specified cut-point,

λ ∈ (0, 1).

We define the cut-point, λ, to be composed of two distinct thresholds, with

λ = θ δ, where θ ∈ (0, 1) is the support threshold and δ ∈ (0, 1) the confidence

threshold. This decomposition is adopted in order to facilitate the specification

of the cut-point value. In fact, since the model assumes that every state has

a positive initial probability, the values of the probabilities in the vector of

initial probabilities are of a much smaller order of magnitude than the values

of the transition probabilities. Therefore, when setting the cut-point value we

recommend the analyst to view the support threshold as the factor responsible

for pruning out the states whose initial probability is low, corresponding to

a subset of the web site rarely visited. Similarly, we recommend to view the

confidence as the factor responsible for pruning out trails containing transitions

with low probability.

One difficulty that arises with models such as the one described herein is how

to set the value of the parameters. The idea behind decomposing the cut-point

into two components is to provide the analyst with some insight on how to set

the parameter’s value. For example, if the support threshold is set in a way

that takes into account the number of states in the model, i.e. a model with n

states having the support set to θ = 1/n, it would mean that only pages which

were visited a number of times above the average will be considered as being

8

initial states of a trail.

Similarly, in order to set the value of the confidence threshold the analyst

could take into account the web site branching factor, that is, the average num-

ber of out-links per page. For example, if the model has on average t out-links

per page the average transition probability is 1/t. Therefore, if the analyst

aims to identify trails composed by transitions whose estimated probability is

greater than 1/t and with length m, the confidence threshold should be set to

δ = (1/t)(m−1). The factor (m− 1) is necessary because the first state in a trail

is obtained by a transition from the start state which is taken into account by

the support threshold. Two other algorithms that make use of other cut-point

definitions in order to identify different types of patterns were proposed in [4]

and [5]. Assuming a support threshold of 1/n, in the context of a set of con-

trolled experiments, it is possible to vary the overall value of the cut-point by

varying its confidence component.

2.2 The Algorithm

The algorithm proposed for finding the set of all trails with probability above a

specified cut-point consists of a generalisation of a depth-first search, [16]. An

exploration tree is built with the start state as its root wherein each branch of

the tree is explored until its probability falls below the cut-point.

Definition 3 (Rule) A branch with probability above the cut-point and with

no extensions leading to a longer branch with probability above the cut-point is

called a rule.

9

While a branch in the tree corresponds to a trail users may follow in the web

site, a rule corresponds to a trail that has, according to past behaviour, high

probability of being followed by the users. Note that we only include maximal

trails in the induced rule-set, RS, where a trail is maximal if it is not a proper

prefix of any other trail in the set. All non-maximal trails that have probability

above the cut-point are implicitly given by one, or more than one, maximal trail.

For example, if a trail X,Y, Z is maximal (i.e., cannot be augmented) the non-

maximal trail X, Y also has its probability above the cut-point, however it will

not be included in the rule-set because it is implicitly given by the corresponding

maximal trail.

We now give the pseudo-code for our depth-first search algorithm. We let

X be the set of states, |X| be its cardinality, and Xi, 1 ≤ i ≤ |X|, represent a

state. Moreover, wXi represents a trail being evaluated. For a trail composed

by m states, w represents the prefix-trail composed by the first m−1 states and

Xi represents the mth state which is the tip of the trail being evaluated. We let

p(wXi) represent a trail’s probability. The concatenation operation, wXi + Xj ,

appends the state Xj to the trail wXi, resulting in the trail wXiXj with Xj

being its tip. Also, Ti,j represents the probability of a transition from state Xi

to state Xj , πi the initial probability of state Xi, and RS represents the set

of rules being induced. The transition matrix is implemented as a linked list

in such way that each state has its out-transitions represented by a list of the

states which according to the user’s navigation records are reachable from it

in one step. Links that were not traversed and have an estimated probability

10

of 0 are not kept in the list. The notation, Xi → lst represents the access to

the first state from the list of states that have a transition from state i, ptr

represents a pointer to the state from the list that is currently being handled,

and ptr = ptr → next assigns to ptr the next state in the list. Finally, Xptr

represents the state currently indicated by a pointer.

Algorithm 1.1 (DFSmining(λ))
1. begin
2. for i = 1 to |X|
3. if πi > λ then Explore(Xi, πi);
4. end for
5. end.

Algorithm 1.2 (Explore(wXi, p(wXi)))
1. begin
2. flag = false;
3. ptr = Xi → lst;
4. while (ptr ! = null)
5. if p(wXi) · Ti, ptr > λ then
6. Explore(wXi + Xptr, p(wXi) · Ti, ptr);
7. flag = true;
8. end if
9. ptr = ptr → next;
10. end while
11. if flag = false then RS = RS ∪ {wXi} ;
12.end.

Figure 3 illustrates the exploration tree induced when the algorithm with

the cut-point set to λ = 0.11 is applied to the example in Figure 2. A plain line

indicates the composition of the maximal trails and a dashed line corresponds

to a transition whose inclusion in the trail being explored would lead to a trail

with probability below the cut-point.

11

S

A

B

C

B

C

C

A

B

0.20

0.40

0.40

0.13

0.07

0.20

0.07
0.20

C0.07

A

B

0.03

0.10

C0.10
C0.03

C0.07

Figure 3: The exploration tree induced by the algorithm when applied to the

example on Figure 2 with λ = 0.11.

2.3 Experimental Evaluation

Experiments were conducted on randomly generated Markov chains in order to

assess the performance of the proposed algorithm. For a complete description

of the method used to generate the random data and full presentation of experi-

ment results we refer the reader to [2] and [3]. Herein we confine the presentation

to the results that lead the authors to the pursuit of a formal complexity analysis

of the algorithm’s performance.

Figure 4 shows the variation of the number of operations performed with the

number of states in the model for different values of the cut-point. The results

shown correspond to models with an average number of five out-links per page;

we call the average number of out-links per page the model’s branching factor

(or simply BF). We fixed the support threshold to be θ = 1/n and, therefore,

12

in the figure the cut-point is indicated by the value of its confidence threshold

component. We define an operation as the evaluation of a link when constructing

the exploration tree. For each configuration of the model 30 runs were performed

and the results shown correspond to the average number of operations for 30

runs. We note that similar behaviour was observed on real data sets [3]. These

results suggest that the algorithm has average linear time behaviour.

0

20

40

60

80

100

120

140

160

0 5000 10000 15000 20000

N
um

. o
pe

ra
tio

ns
 (

x1
00

0)

Num. states

DFSmining algorithm (BF=5)

Conf.=0.3
Conf.=0.5
Conf.=0.7

Figure 4: Variation of the number of operations with the model’s number of

states.

13

3 Analysis of the Algorithm’s Average Complex-

ity

We now give our analysis of the average case complexity for the proposed al-

gorithm. We measure the algorithm’s complexity by the number of operations,

where an operation is defined as a link evaluation in the exploration tree.

Consider a Markov chain with n = |X| states, t transitions between states

having probability greater than 0, and cut-point λ. The model’s branching

factor, BF , is the average number of out-transitions per state and is given by

t/n. Also, we define the length of a trail as the number of states it contains.

Given a model, the average number of trails starting in a particular state

and having a given length, ∆, corresponds to the number of distinct branches in

a BF -ary tree whose depth is equal to ∆. Thus, since the navigation can begin

at any of the n states, we can estimate the average number of trails having a

given length, ∆, denoted by E(#w∆), by the following expression:

E(#w∆) = n ·BF (∆−1) = n
(

t
n

)(∆−1).

Given that every state has positive initial probability the average initial

probability of a state is 1/n. Similarly, the average transition probability be-

tween two states is 1/BF = n/t. Therefore, the average probability of a trail

with length ∆, E(p(w∆)), will be

E(p(w∆)) = 1
n

(
n
t

)(∆−1)
.

By making E(p(w∆)) = λ we can estimate the average trail length for the

given cut-point value, ∆λ, as

14

∆λ = ln(λn)

ln(n
t) + 1.

Note that the algorithm augments trails until their probability fall below the

cut-point, therefore, on average the probability of the maximal trails inferred is

close to λ.

Given that λ = θ δ and assuming θ = 1/n we have

∆λ =
ln(δ)

−ln (BF)
+ 1. (1)

This last expression shows that for a given confidence threshold and branch-

ing factor, the estimated average rule length is constant and independent of

the number of states. There is a special case to consider when BF = 1, which

occurs if all existing trails from S to F are disjoint and with no recurrent states.

In this case, E(p(w∆)) = 1/n and ∆λ is given by the average length of all the

trails from S to F . In general, since every state has at least one out-transition

BF ≥ 1, therefore, if θ = 1/n it follows that ∆λ ≥ 1. In addition, for a given δ

the average number of trails with length ∆λ is

E(#w∆λ
) = n

(
t

n

)(∆λ−1)

= n

(
t

n

)(
ln(δ)

−ln(t/n)

)
=

n

δ
, (2)

since

(t
n)

ln(δ)
−ln(t/n) = e−ln(δ) = 1

δ .

Expression (2) gives the average number of rules for a given cut-point. Intu-

itively, (2) follows from the fact that 1/δ gives an upper bound on the number

of trails we can pack into δ for each of the n states.

15

We will now determine the average number of operations necessary to induce

the rule-set RS for a given cut-point. As before we define an operation as the

evaluation of a link. The for loop in Algorithm 1.1 performs one operation per

state, in a total of n operations. For each state Algorithm 1.2 is invoked.

In Algorithm 1.2 there is a while loop that recursively calls the algorithm

from line (6). In the worst-case analysis, each recursive call of the algorithm

evaluates all the out-transitions from the tip of the trail, and therefore, for each

invocation of the while loop the algorithm performs on average BF operations.

Moreover, in order to induce a rule-set for a Markov chain with n states, each of

the n states needs to have its out-transitions evaluated, therefore, the average

rule length, ∆λ, corresponds to the depth of recursion. Finally, the average

number of operations performed, denoted by E(#On), is bounded below and

above by

1
δ
≤ E(#On)

n
≤
d∆λe∑

i=0

BF i =
1−BF d∆λe+1

1−BF
(3)

were d∆λe is the ceiling of ∆λ.

We are now ready to present the analysis of the average complexity of the

algorithm.

Theorem Given a fixed support, θ = O(1/n), and confidence, δ, the average

number of operations needed to find all the trails having probability above the cut-

point, λ = θ δ, varies linearly with the number of states in the absorbing Markov

Chain.

16

Proof. Consider a Markov chain with n states, t transitions between states,

λ = θ δ and assume θ = 1/n. From their definitions δ and BF are independent

of n. Also, it follows from (1) that ∆λ is independent of n. Therefore, it follows

from (3) that the number of operations depends linearly of n. 2

Following the analysis, we can state that the worst-case complexity of the

algorithm occurs when the average trail length is maximal. Assuming that Tmax

is the maximal probability of a transition in the Markov chain, for Tmax < 1 we

can derive the maximum for the average trail length as

∆Tmax = ln(λn)
ln(Tmax) + 1.

To obtain the number of operations corresponding to the worst-case just

replace ∆λ by ∆Tmax in Equation 3.

We now illustrate the result by means of an example. Consider a model

having n = 5 , BF = 2 and λ = θδ = 0.05 where δ is taken to be 0.25 and θ

to be 1/5. The average case of such model consists of a Markov chain in which

every state has exactly two out-transitions and every transition has probability

0.5. Thus, the estimate for the average trail length is given by

d∆λe = ln(δ)
−ln(BF) + 1 = 3

To induce the rule-set the algorithm constructs the exploration tree rep-

resented in Figure 5. In the figure, plain lines indicate links that are part of

trails with probability above the cut-point (i.e. rules), dotted lines indicate links

whose inclusion in the trail being evaluated would lead to a trail with probabil-

ity below the cut-point and the lines represented by a dots and dashes represent

an exploration tree similar to the one detailed. Finally, the numbers next to the

17

links indicate the order in which links are evaluated.

Figure 5 indicates the number of operations (link evaluations) performed by

the algorithm in order to induce the set of maximal trails. The first link to be

evaluated is the transition from the start state to state n1, which has probability

1/5. Then, transitions are recursively evaluated in a depth-first scheme until

the trail’s probability falls below the threshold. Since each state has two out-

transitions with equal probability the induced trails are composed by just two

transitions. Therefore, in order to induce the maximal trails that start from

state n1 we need to perform 15 operations, and 75 operations are needed to

induce the complete set of maximal trails.

46

n2

n3

n5

S

n4

n1

n.

n.
n.

n.

n.

n.

1

61

15

12

8

4
5

7

11

1413

10

6

3

2

9

16

31

Figure 5: Example of the exploration tree resulting from the algorithm.

The average case analysis for the example gives

E(#On) ≤ n 1−BF d∆λe+1

1−BF = 75

18

which corresponds to five times the sub-tree detailed in Figure 5. Finally, the

worst-case analysis depends of the Tmax value as shown in Table 1.

Table 1: The variation of the worst-case analysis with the Tmax value.

Tmax 0.6 0.7 0.8 0.9 1

∆Tmax 3.7 4.9 7.2 14.2 ∞

E(#On) 155 315 2555 327675 ∞

4 Concluding Remarks

Several authors have been studying the problem of mining web usage patterns

from log data. Patterns inferred from past user navigation behaviour in a site are

useful to provide insight on how to improve the web site design’s structure and

to enable a user to prefetch web pages that he is likely to download. In previous

work we have proposed to model users’ navigation records, inferred from log

data, as a hypertext probabilistic grammar and an algorithm to find the higher

probability trails which correspond to the users’ preferred web navigation trails.

In this paper we present a formal analysis of the algorithm’s complexity and

show that the algorithm presents on average linear behaviour in the number of

web pages accessed. In the literature there are several other web usage mining

algorithms, however, comparison is not always possible due to the diversity of

the assumptions made in the various models. Providing the average complexity

analysis of our algorithm is a step in the direction of making the web different

usage mining approaches comparable.

19

As future work we mention the study of the form of the probability dis-

tribution which characterises user navigation behaviour and the effect of such

a distribution on the complexity analysis. Also, we aim to explore dynamic

Markov chains and state cloning in the context of web usage mining [10]. Fi-

nally, we plan to conduct a study to evaluate the usefulness of the web usage

patterns to the user and to incorporate relevance measures into the model.

Acknowledgements. The authors would like to thank the referees for several

comments and suggestions to improve the paper.

References

[1] Bettina Berent, Bamshad Mobasher, Myra Spiliopoulou, and Jim Wilt-

shire. Measuring the accuracy of sessionizers for web usage analysis. In

Proceedings of the Web Mining Workshop at the First SIAM International

Conference on Data Mining, pages 7–14, Chicago, April 2001.

[2] José Borges. A Data Mining Model to Capture User Web Navigation. PhD

thesis, University College London, London Uiversity, 2000.

[3] José Borges and Mark Levene. Data mining of user navigation patterns.

In Brij Masand and Myra Spliliopoulou, editors, Web Usage Analysis and

User Profiling, Lecture Notes in Artificial Intelligence (LNAI 1836), pages

92–111. Springer Verlag, Berlin, 2000.

20

[4] José Borges and Mark Levene. A fine grained heuristic to capture web

navigation patterns. SIGKDD Explorations, 2(1):40–50, 2000.

[5] José Borges and Mark Levene. A heuristic to capture longer user web

navigation patterns. In Proceedings of the first International Conference

on Electronic Commerce and Web Technologies, pages 155–164, Greenwich,

U.K., September 2000.

[6] I. Cadez, D. Heckerman, C. Meek, P. Smyth, and S. White. Visualization

of navigation patterns on a web site using model based clustering. In

Proceedings of the 6th KDD conference, pages 280–284, 2000.

[7] Mukund Deshpande and George Karypis. Selective markov models for

predicting web-page accesses. In Proc. of the 1st SIAM Data Mining Con-

ference, April 2001.

[8] Xing Dongshan and Shen Junyi. A new markov model for web access

prediction. Computing in Science & Engineering, 4(6):34–39, 2002.

[9] John G. Kemeny and J. Laurie Snell. Finite Markov Chains. D. Van

Nostrand, Princeton, New Jersey, 1960.

[10] Mark Levene and George Loizou. Computing the entropy of user navigation

in the web. International Journal of Information Technology and Decision

Making, 2:459–476, 2003.

[11] Bamshad Mobasher, Honghua Dai, Tao Luo, and Miki Nakagawa. Us-

ing sequential and non-sequential patterns for predictive web usage mining

21

tasks. In Proceedings of the IEEE International Conference on Data Min-

ing, pages 669–672, Japan, December 2002.

[12] James Pitkow and Peter Pirolli. Mining longest repeating subsequences to

predict world wide web surfing. In Proc. of the Second Usenix Symposium

on Internet Technologies and Systems, Colorado, USA, October 1999.

[13] R. Sarukkai. Link prediction and path analysis using markov chains. In

Proceedings of the 9th Int. WWW conference, 2000.

[14] M. Spiliopoulou and C. Pohle. Data mining for measuring and improving

the success of web sites. Data Mining and Knowledge Discovery, 5:85–114,

2001.

[15] Jaideep Srivastava, Robert Cooley, Mukund Deshpande, and Pang-Ning

Tan. Web usage mining: Discovery and applications of usage patterns

from web data. SIGKDD Explorations, 1(2):1–12, January 2000.

[16] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM

Journal on Computing, 1(2):146–160, June 1972.

22

