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Bilevel programming techniques are developed for decentralized decision problems with
decision makers located in two levels. Both upper and lower decision makers, termed as
leader and follower, try to optimize their own objectives in solution procedure but are
affected by those of the other levels. When a bilevel decision model is buile with Fuzazy
cocthicients and the leader and/or follower have goals for their objectives, we call 1 fuzzy
goal bilevel (FGBL) decision problem. This paper first proposes a A-cut set based FGBL
model. A programmable A-cut approximate algorithm is then presented in detail. Based
on this algorithm, a FGBL software system is developed to reach solutions for FGBL
decision problems. Finally, two examplex are given to illustrate the application of the
proposed algorithn.
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1. Introduction

Bilevel programming techniques, initiated by Von Stackelberg,?® are mainly devel-

oped for solving decentralized management problems with decision makers in a

two-level hierarchy. The upper decision wmaker is termed leader and the lower
g . . . « . . e

the follower.” Fuzzy bilevel programming techniques, which handle bilevel decision
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problems when coefficients are described by fuzzy sets,%¢ are recognized effective
on analyzing potential risks and generating warnings in risk management.

The investigation of bilevel decision problems is strongly motivated by
real world applications, and bilevel programming techuiques have Deen applied
with remarkable success in different domains such as decentralized resource
planning.?® electronic power market,” logistics.?” civil engineering.! and road net-
work management.® 7 For risk management, which aims to mcasure and assess any
risk and develop strategies to manage it,?® bilevel programming techniques play
significant roles as well. Decision makers face the challenge of allocating supply
resources, transportation ability, rescue aid and whatever to minimize the effect
of threat. These decision makers may be located at different levels within a man-
agement network and thus have inconsistent concerns. For example, when a severe
earthquake ocenrs,® the roadway systems usually get different degrees of damage.
which reduces the through capacity and causes traflic congestion. The commander
of an Emergencv-Response Center, in the upper level, aims at allowing traffic to
go through the disaster areas as mnch as possible within the roadway capacity,
while the road users, located at the lower level, always choose the shortest route
to actualize emergency rescues. The decision from the commander and the road
users will inevitably influence the choice from each other. In this situation. bilevel
programming should be a suitable technigue to solve this decision problem.

Fuzzy numbers, which are used for representing numerical quantities in a vague
environment.?” have been applied in subsequent research on bilevel decision prob-
lems. Shih et al.®! and Lai'® first applied fuzzy set approach to bilevel decision
problems. Their method. however, sometimes might canse a final undesirable solu-
tion due to the inconsistency between fuzzy goals of the objective functions and
the decision variables.?® To overcome this problem, Sakawa et al.?? developed an
interactive fuzzy set approach by deriving a satisfactory solution and updating the
satisfactory degrees of decision makers with considerations of overall satisfactory
balance among all levels. In our research lab, an approximation approach has been
1607 Splutions
can be reached by solving associated rmultiple objectives bilevel decision problem
under different cut sets,

developed®3® based on framework building and models formatting.

~

Goal programming was originally proposed by Charnes and Cooper? in 1961 for
1132 Charnes and
Cooper.” Recent research on goal programming can be found from Refs. 10. 15,
18-20. Goal programming requests a decision maker to set a goal for the objective
that he/she wishes to attain. A preferred solution is then defined to minimize the
deviation from the goal. Therefore. goal programming seems to yield a satisfactory

a linear model. It has been further developed by Lee,! Ignizio,

solution rather than an optinal one. In fuzzyv hilevel decision problems. when both
a leader and follower set goals for their objectives respectively, the problem becomes
a FGBL decision prohlem. which is addressed by this study.

This paper is organized as follows. After the introduction, Sec. 2 reviews related
definitions and theorems of FGBL programming. In Sec. 3, a A-cut set based FGBL
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model and a A-cut approximate algorithm to solve FGBL problems are presented.
Meanwhile, a FGBL software system which implemented the proposed algorithin is
described. A numerical example and a case-based example on traffic management
in a disaster area are shown in Sec. 4. Conclusions and further study are discussed
in Sec. 5.

2. Preliminaries

In this section, some definitions and formulations used in subsequent sections are
presented.

Throughont this paper, R represents the set of all real numbers, B” is n-
dimensional Euclidean space, F*(R) and F*(R") are the set of all finite fuzzy
numbers and the set of all n-dimensional finite fuzzy numbers on R" . respectively,

Definition 2.1. (Ref. 21) The A-cut set of a fuzzy set A is defined as an ordinary
set Ay for which the degree of its membership function exceeds the level A:

Ay o= {ajpa(z) 2 A}, Ae (0,1l
Ay is a nonempty bounded closed interval and it can be denoted by
Ay = [AY. AR,

where AL and Af’ are the lower and upper bounds of the interval, respectively.

Definition 2.2. (Ref. 30) For any n-dimensional fuzzy numbers a. b & F(R"),
under a certain satisfactory degree o, we define

i <o biff a;f < bif\’ and aif\e < bv,;f\{, i=1,2,...,n. VAE o, 1,
where « is the adjustable satisfactory degree, which means, when comparing two

fuzzy numbers all values with membership grades smaller than « are neglected.

Definition 2.3. A fuzzy linear bilevel (FLBL) decision problem is defined as?”
Forre XORY, yeYCR", F: X xY - F*R),and f: X x YV — F"(R).

min Flz, y) = & + dvy {1a)

e X

subject to A 2 + Biy <o by (1h)
min f(x,y) = éax + doy {1¢)
yey
subject to fig.l’ + f)’gy s i)z, {1d)

where ¢y, & € F*(R™). dy.ds € F(R™), by € F(Rpy, by € Fr(RY)Y, Ay = (@) )pxn-
Fl’i.] € l‘x*(R) By = (,bij)pxrn,~ bij € j'*(R) A = (&J)quu EiJ € f"*(R) By =
(8ij)gxom, &y € FP(R), and F"(R) is the set of all finite fuzzy numbers.
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subject to AEQOJ. + B‘zf{,y < 52f\’07

43f\ -+ Bzfn?j = ’J'zf,n
(3d)
Al a+ By S 67,

3. A A-Cut Approximate Algorithm for Fuzzy Goal Bilevel

Decision Problems
First, we give the definition of a multiple objective bilevel (MOBL) decision
problem:
Definition 3.1. Forxz € X ¢ R*, y € ¥ < R™, a MOBL decision problem is
defined as

in Fx. e
min Fa. y) (1a)
subject to Gla,y) €0, (db)

Iylgg,lf(l y) (4¢)
subject to g{x.y) <0, {4d)

where F : R* x R" — RF G . R" x R — R?, R xR — R, and
(j . RR X R?f& . Rq.

Associated with MOBL problem (4). some definitions are listed below:
Definition 3.2.
{1) Constraint region of MOBL problemn (4}
SE&{(xy):xe X, ye Y, Glay) <0.g9(x,y) <0}

It refers to all possible combinations of choices that the jeader and follower may
make.
(2) Projection of S onto the leader’s decision space

S(X)2{re X :FyeY.Glz,y) <0.g(zy) <0}
(3) Feasible set for the follower Yir € S(X'):
Sr) & {yeY :(z.y)e S}
(1) Follower’s rational reaction set for z € S(x):

Plr) &2 {y €Y :ye€argminlflz, )y € S(x)]},



where argmin(f(z,§) : § € S(2)] = {y € S(2) : flay) € fle.4).y € S(2)}.
which means, the follower Obbel ves the | eadex s action and reacts by selecting
y from his/her feasible set to minimize his/her objective function.

{5) Inducible region

IR & {(r.y): (x,y) € S,y € P(x)}, {5)
which represents the set over which the leader may optimize his or her objective.

To ensure that (4) is well posed, it is assumed that S is nonempty and conpact,
and that for all decisions taken by a leader. the follower lias some room to respond:
ie. Plz) # @ Thus, in terms of the above notation. a MOBL problem can be
written as

min{F(r.y): (o, y) € IR} {6)

Goals given for objectives of a leader and follower in (1) are denoted by fuzzy
numbers g7, and gp with membership functions g, and s, respectively. and owr
concern is to make the objectives of both the leader and the follower as near to
their goals as possible. The differences between F(u.y) and g1, flx,y) and §p are
usually defined as deviation functions. Initiated by the idea of Theoremn 2.1, we use
A-cut set of fuzzy number to format a FGBL model as in Definition 3.3.

Definition 3.3. The A-cut set based FGBL model is defined as

i WL Lo
ng? 17, I"-?-(f?)\ Y=L

7a)
LR ‘ R (
%2153 o1, @ (}'1,\,. ¥ 8o,
subject to Ali‘ x BI,\ T é
. (7L}
41)\ X -t BL)\ Y = 1‘}1/\‘
min leky I +d2)\ Yy - r,vj,‘«)\,é.
S : (7¢)
mm,r,)\ 1+(!,,\ ’/“lk,\ I ’
yeY
subject to 47,\ A R;,\ Y s Igf’(lh
8 < R 7
A'g)‘j T Bg,\j T bgAJ. (7d)

i=0,1,2.... L

whmeq £ € FU(RY), didy € B (R™), by € F*(R), by € F*(RY). Ay = (i )y,
By = (b ‘;)pxm A’ = (éu)qxns BZ = (533)que y, bm dz; iy bu\ ("‘Lja 5"5,}' € FI*UR)

For a clear understanding of the idea adopted, we define

L — 1
l,\ 2

Lo : Ly
(H r+du z;—g,, ,"'(f;)\ ?‘*’ffn ¥ - f]m_s}y
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1
L tpon L L Lo gl Loy
Py, = 5[ e, @+ Ay = gpa, |+ (eiy, 2+ diy g — 90,0
R—~1: R R R B 1
A, T plon, et agy, /"'91, = {ey, 2 +‘u J—fll,\ B
JOF S S 1 [N d R (LR i 1
ia, = )["u\ Ay Y Gt ((«1,\,--1 + iy JL ) .
- = lTi @+l y—gby | - (b ox - dly oy - gk )]
Yax; = 5t Coxy Y }M Can T Ao ¥ - Geag b
1
L+ _ 1L L Lo L L 1
Yoy, & ;[EQA;‘ + (f:a)\ Y- ‘}.:v)\gl + (Q/\,*E +diny - .f};-'x‘,)fs
")R“w—l— el dl oy - L= (e x+dl y— ol )
vy = 5 lledh, B = i, = (e, an, ¥ 9
1
R 1 s
'UQ?,\’:: ‘lr',)\ @ i,/\ (/wq,/\ I+ ( (*n :I:J»d,,\ (/-“JI/\ . (8)

Associated with the FGBL problem defined bv {7), we now consider the following
bilevel decision problem:

For (vfy, vf, off ofif) € R XD C X xR, (w0 ot ofl o) € RY
Y CV x RYUlet o = (27....,7,) € X, o' = {ay....,2,, zl’i\ , zf):* 13\,
mﬁifj eX.y= {5}1; <o a?fn‘e) €Y. .‘,f’ = {3/1* sy Ym, {’{J/\ ) “‘i'i ”f};{-* ”éir) € Yi’ and

oy, Ul - v, vy XX Y FU(R).

L L L+

1%1% Uix, = 0 iy -+ vy IV
9a)
"o B R4 (9a
mm “|>\ 1‘\ 4 -
BeX’ i

subject to (‘1/\ x -+ dF Y 1,\ — ,,,{t;r = gl
4 <A

R

. , ot
ef, @+ dfy ’/"“1,\ DY

“Jl)\

I L+ Jiee R
Pra Yia, o Vi, s Vs 20,

L
PIa, u, 0. {9D)
o dT
V1%, ? -()

Lo L . L
Au\,:a-i-BuA,s;§bu ,

quiéﬁ 31 U—bl,x

min ofy, = vy gy,
e G i ‘

9¢
min v = pfte 4 pftt {9¢)
GEY AN 20 7 T2
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subject to cf’;’f\i.‘z:‘ -+ <1’§’(\J?; + zi\} — (‘é‘;’ = gk A,

0 R R+
e ARy - ey =l

lz{’)\ ué‘,{"’ ﬁ;‘ , U5 H* >0,

- (9d)
Vax, " lax, & 0,
4.’)/\ €Tt BJ y =~ I};
A+ Byl y <1,
2, B A ¥y= zx )
Je=0,1.20. ... L.
: gt b Lde Res | R v Lt R
Theorem 8.1.  Let (2. 4/") = (47, v}", 1‘1)??*“'1&, "1; Y o,\ ) L’zAJ:*’i’;J{A.; '

‘vffif*) be the optimal solution to the bileved decision problem (9): then, (2%, y") s

the optimal solution to the bilevel decision problem defined by (7).

Proof. By Definition 3.2, let the notations associated with problemn (7) be
denoted Ly

Foa (o, y) e AM O B,A y ;,__:?),)\ ,A;i € - B,A Y S ~b“‘i

i=1.2.7=01,2...1} (10a)
S(Xy={veX:3yeV, AL o+ BiyShi Afa+ By sb],
i=1.2.7=0,1,2....,1}, {10b)
S{z)={yeY :(z,y) ¢ S} {10c)
Plx) = {yC Y :y € argmin] {())\ x +(12)\ y - qﬁ,\j{.
(B, o+ dBs - gl 5 € @)} (104)
IR = {{x.%): (z,y) € S,y & P(x)}. {100)

Problem (7) can be written as

min{[efy @ +diy y = gix, |- leth,x + diy Yy — gy, | < (e.y) € TR}, (11)
and those of problem (9) are denoted bv
S ={" ) Ak e+ By y S bk Al e+ By S0

1; R— R+
vl = 0,0 = 0,7 = 1,2,
L

L e L b RO R R Rt R
CIa, L +r{,i,\_7y+ Ul/\7 ““7’1,\< = G0a Coag i+ day v N, T Ui, TS
Y ) A Lt L R R R __
f'nji oy, YUy U OEA Can, +d2)\ Y+ tg, T Uax = g1\ Ap)

J m0.1.2,...,l}.
(12a)



SXNY={z'e X' 3y Y. Aéi‘ T+ BM' T b,/\ ,A,x e+ B ﬁ'cj < b,-,f’.

o e E L.
LY‘)\J‘ 2/\ - {] ” ’ Uz)\} SN ,.2,

£ L ,,Lm L L R R R- R4 _ K
el d{)\j g+ vb\ = g Cia, 4 a5y -+ ug‘)\ ----- “x:\+ = 0L,
2 L L— L+ L R— R+ I
cg}\:’.’l: + (122)‘7,:{} Uy, “u =GR ff))‘ A dq)‘ Y+ Pax, T Vax; B URA
J=0.1.....1},
(1121))
S’y = {4y €Y' (:1:’, ¥ e S8, {12¢)
PQY={yeY 1y < AI‘UIUIH[T/‘;A - 2'{‘)\ uﬁi\' + ué‘;* cy e SNy (12d)
R ={{"y): (2".y) e &4 € P(a")}. {12e)
Problem {9) can be written as
min{efy + vy, t;R; + 1*1” (', y') e IR'}. (13)
As (2", 9™) is the optimal solution to the problem {9). from (13), it can be
obtained that V{2’ y') € IR, we have: z:f‘g; . sf; > v{'/\j* ""‘*"flx cand ]IA" -t {i{i” >
pRms Rt
Tl
As
Lo gl L pLt , pho b
(MJJ,%—dMJ,y»#LM Ui —q,,\ and Uiy, VI T 0,

we have

L .
1/1/\ +zl/\ '(1,\ z+d1,\ y—yra,l, and
L Lo L , Lo
U, RN = e S0y S "?1,\ yr - gra,l-
So,
Lo gl Lo~ ink Lo
G, & A,y = g, | 2 el e - di gt - g, {14a)

Similarly, we can get that

R I R . R n
t"lf\,,»«’) """ d])\ Y- QL)\,’ = I‘(ll)\ i dzx&’* - .‘}l,)\;i' (14b)

Now we prove that the projection of 5’ onto the X
is equal to S.

On the oune hand, V(r.y) € S'ixy. from constraiuts: A&‘J € A B,;i‘j y <
b,A ,.’1 T+ ,B,A TIS b,R b= 1.21n 5, we have: (x,y) € §,s0 §xyv € 8.

On the othel haud Vie,y) € 85, by (8). we can always find such
t{; ,@ff.rﬁ z;ﬁ“‘ ¢ == 1,2, which make constraints: c‘rf\ . fi’*“ = 0,41 = 1,2,
('AT—%dv\u—l—vM-1'1}:(/“, L\l+du/*?;fi - f"f“q“.(ul‘%«
(z’,/\ J;—H’M mr.ff == g,A andcu adf Y H'r)/\ ----- r,fi\* = q;,)\ satisfied. Together




requested by S, we have (3‘,?;‘5‘/\' f:;f’/\* 1, ?z’:‘;",* ff} € 8’ thus, (1 J} Xy,
SC Sy

So, we can prove that

with the inequations of A;;%;r + Bi% T bk x, and AR FYE Bl WY S b i 1,2

Sixy =S (15)

Similarly. we have
S(a)xy = S(x), (16a)
S(XY ] x,y = S{X). (16h)

Also, from
c:é’A €+ do,\ Y+ l',,/\ ui,\t = gf:‘)‘, and Ufﬁ‘A . v,f,{*' = 0.

we have

I Y A R ¥ Lol L e

Uy, T Uk, = e v day Y — gea,l- (17a)
Similarly, we have

v.g + uéi’*‘ = (;,\ @ +do,\ Y- (]f,\‘ (17h)

Thus,

Py ={y' €Y'y € argmin]cfy 2+ dfy v — gF»,
s, o+ 5 =g, | g e SEOIL (18)
From {15) and (18). we get
Pl x«v = Plx). {19}

From (10e}, (12e)}, (15), and {19), we get

IR |xxy = IR, (20)
which means. the leaders of (7) and (9) share the same optimizing space in X x Y
space.
Thus, from (14) and (20) and the (11‘;(’u%§§(')11% above, we have
Y{x, z;) € [R. we have ot ’+da,\ r;«gu > e {‘,\ x —H}lM y" b(;“ L ('M T+
11)\ y - C‘M = C’RA & “”du\ ¥ 9’1,
So. {z*,y") is the Optllndl solution of probilem (7). O

By adopting weighting method. (9) can be further transferred into {21):

4 Re R+ »
Juig ’1,\ + ”1,\ UL, RV (21a)



wubiect to of 4 d- - L
subject to ¢yy, &+ dyy, ‘/‘”’u b = ghs,

R R- R+ _ R
ey, v+ iy oy - Ui, T LA,

pbe b R R
ia-Uiag - tia, oY, 2 0.

R R |
Ui, P, = O (21b)
=R

Uix, s, =0
r’hi’,l‘ + BNy < 5')15{ .

Al}xl’"’B] }<l}

Li— [ \ R— R+ \
9}‘}1,”2/\ +?7J + vy, T U, (21¢)

A 2
subject to (’2A £+ du Yy e, T Y,

R— R+ _ R
,/\ x4+ i,A Yy +ups, T UaN, B GEy
L L4 H—
()/\.‘L‘);\ ,”))\ ~f’)/\) > U
’ué‘; "u ={),
B R g, (21d)
Vax, Vay

L ; L -y L
E e 1 <,
A._zk?h{ -+ Bg/\v}j}f = {)’3(\3,
- 125\1 & .Ef‘gf‘ Y 7\; b«)f

=001

The nonlinear conditions of '1;1.1;‘, fA = {) and UR" i m =1{), ¢ = 1,2 need not

be maintained if the Kuhn-Tucker approdch‘Z K together Wltvh Simplex algorithm are
adopted. since only equivalence at an optimuin is wanted. Further explanation can
be found from Ref. 4. Thus, problem {21) is further transforiued as follows:
T (g™ 4y 2 Pt v 3 e o~y 2
For (ul,\j, Ul/\,-) e RS AT COX xR (v, ‘v,\ e R Y CY xR

, let
o= (g € X, 7 = (... £

o a e Yo, e E '
rln i/1,\3: 'i}‘;’) £ X » Yo (ylw-'}f}m) £} '
o - + Pl Vd A . \ P s S
T o= (Yr, oo Yoy Vg v%j} €Y' and v, von, t XD x Y — FR(R).

I = P
min vy = e (222)

I L BNy o (gl g SR AR
subject to {(‘1/\‘, + ey e+ (diy, +diy 4o, — vy, =90, + g,f)w,
Lo 13 L

Avy e By y S by,

A f e Blf;y <6y

mnin vy, = v oz, T "u {22¢)
JeyY )



subject to ((’;lz’,\, + cé&g}m + ((,l;i:,\?, + (ig\))y gy, - vé"% = g}';,/\J + gﬁ{\‘i?

L L L

A?Aj T+ B’Z)\J Y é 3)2,\:[ .
R .k R

As IVE 3, z Y < {’2)\;» s

G=0.1. L
{22d)

here v = phm o Be ot = b B
where vy = v F UL Us, =0 Ry B L2

Problem { 292} is a standard lnear bilevel decision problem, which can be solved
by Kuhn-Tucker approach.??

Based on the discussions above. the A-cut approximate algorithm for solving the
FGBL problems is detailed as follows:

Step 1 (Input) Get relevant coefficients of a FGBL problem which inclnde:

(1) Coefficients of (1)
(2} Coeflicients of g7, and gp
(3) Satisfactory degree: o

(4) e >0
Step 2 (Initializing) Let k = 1, which is the counter to record current loop.
In (7), where A; € [a,1]. let Ay = o and A; = L, respectively; then, each

objective will be transferred into four nonfuzzy objective functions, and each fuzzy
constraint is converted into four nonfuzzy constraings.

Step 3 (Computing) By introdueing auxiliary variables ix, and zr;&j. i 1,2
we get the format of (22).

The solution (;r.t,z;‘]}ﬁz;{*;i:y, ‘L‘g;\’)./'l;.;;/\])g of (22) is obtained by Kuhn-Tucker
approach.

Step 4 (Comparison)
If (k =1} Then
(x. -3)1_/\‘5 R ‘O?}\; /R 7)2_/\1 , Ug;b b= {2 z';\j . ‘U{S\) s ?:?;j , 'u.j;\j Jar
go to Step 5;
Else If (}(:):,fu}_/\j.*e;f')\j,y. Usy, - vr_f;’)g - {2, ’UI-Aj,UTA}::{){;?}QA},U;’AJ)” < & } Then
go to Step 7:
EndIf

Step 5 (Splitting) Suppose there are (L + 1) nodes A; (j = 0.2,4,...,2L) in the
interval [ev, 1] | insert L new nodes A; {j = 1,3,...,2L — 1}, which satisfy

)\gj.+.1 m (Ag, -+ /\33‘.;”2)/'2. (J =0,1,2...., L~ l}
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Fig. 1. The system structure of the FGBL software system.

Step 6 (Loop)
k= koL
go to Step 3:

Step 7 (Output) {(x.y)2 is obtained asg a final solution.

To realize this algorithm proposed above, a FGBL software system is developed
using Visual Basic 6.0. This FGBL software system provides comnputerized assis-
tance to decision makers in a decentralized organization to gather knowledge about
a FGBIL problem and controls the decision-making process tor a better-informed
decision.

The structure of the software system is depicted in Fig. 1. Within this architec-
ture, five modules are involved, iLe. “user interface,” “model management.” “algo-
rithm engine,” “updating system,” and “visnalization.” Data are collected through
user interface and formatted as a FGBL model by model management module. The
core calculations are carried in algorithm engineer over a FOBL model, and Lhe
solution is output through visualization module to an end user by user interface.

4. Examples

This section emplovs a numerical example aud a case-based example to show the
running procedure and the application of the proposed algorithm.

4.1. A numerical exzample
We first use the proposed algorithm to solve s numerical FGBL probler.

Step 1 (Input relevant coefficients)
(1) Coefficients of {1}:

max F(2,y) = iz + dyy,
:IJG(X ( g) 1+ duy
subject to Ay + ély < bwl,
miyq Flr,y) = Fou + day.
yeyY

suhject to A"Qm + }5’23; < b}
wherer € R,y € R, and X =2 > 0,Y =y > 0.
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The membership functions of the coeflicients of the objective functions and the
constraints of both the leader and the follower are as follows:

0. r <5, g, r <2,
(z® —25)/11. 5 <o <8, (2?2 —1)/5,  2Z2<3,
Hey U) =g 1 x = 0. i, (2} = 1. o 3,
(64 — 22)/28, 6 <x <8 (25 — x?)/16, 3 <z <5,
0. x> 8, 0, x> 5.
0, FR N Q. LB,
(16 —2%)/7, —4Sa< -3, (£ - 25)/11. 5<x <6
ey (i) = 4 1 v 3, g, (x) =< L ¢ =6
(x? ~1)/8, =3<ur< -1 (64 — 2%3/28, 6<r<8
0 r > 1. 0 r> 8
(0 £ 2
(4 —2%)/3, 2<% < 1
g, (e) = ¢ L xow -],
(2* = 0.25)/0.75, ~l<xz<-05
0, @ > —0.5.

;zz-;g(ar) =<1, T =3,
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1239 {z) == J

/l.i,z(:z:) = {

{2) The membership functions for the fuzzy

£

fg (T) = J

pap () =

0,

(% - 361)/80.
1.

(625 — %) /184,

0,

0,
(2% — 625)/104,
1.
(961 — 2?)/232,
{1,

0,
(27 —225)/175,
1,
(900 — %) /500,
0,

(O}

(27 — 16)/48,
L
(225 — +?)/161,

r< 19,
1950 <21,
@ == 21,
21 <> <25,

x> 25,

20 < @ < 30,
x> 30,

HA
A A
A
&

£
I
«x

0. o 15,
(3) Satisfactory degree: o = (.2
(4) e = 0.01.
Step 2 (Initializing) Let & = 1. Associated with this example, the corresponding
A-cut set based FGDBL problem is

mi{} IVITA + 252 + VBA + dy — V175X + 225
PHED)

Hél{l [v/64 ~ 28A2 -+ /25 — 16y — /900 — 500A]



~V0.75X + 0.252 + V25 — 16Ay < V625 — 184X

min | -~ V16~ TAz ++ VIIA + 25y ~ V48X + 16]
na

min| VBN T 1z + V61— 28Xy — 225 - 1613
I

subject to VO.75A + 0.252 + VBX + dy < V104X + 625
VA= 3xx 4+ V25 — 16hy < VOB — 2320,

where A € [0.2,1].

Referring to the algorithm. only Ay = 0.2 and Ay = 1 are considered initially.
Thus, four nonfuzzy objective functions and four nonfuzzy constraints for the leader
and follower are generated, respectively:

min |52 + 2.2y - 16.1

@& X

wmin (6o + 3y - 208

re X

min | 7.6z + 4.7y — 28.3]
rEX -

min {6z + 3y — 20/

réX

subject to — 1.8z 4 22y < 19.1
-4 3y < 21
—0.62 + 4.7y < 24.3
—x 3y < 21

min} — 3.8x + 5.2y ~ 5.1
yey

min | - 32 + Gy — 8]

yeY

niin {1.6.2 + 7.6y — 13.9

yey

min| — 3¢ + 6y —~ 8

yEY

subject to 0.62 4 2.2y < 25.4
x4+ 3y <27

1.8 + 1.7y < 30.2

4 3y = 27,
Step 3 (Computing) By introducing auxiliary variables v, v, 1 = 1,2, we get

min vy
o nF e O s
(e 0 w)EX



subject to 24.8x + 12.9y + v, — v = &L,
—1.8x+ 2.2y < 19.4,
g - 3y < 21,
~(.6x + 4.7y < 24.3,

=2 3y < 21,

. — +
min. vy, + w5,
{yvy Cl!ig‘)EY’

subject to — 11z + 248y + v — vy = 35,
0.6% + 2.2y < 25.4,
x4 3y <7,
1.8 + 4.7y < 30.2,
x4 Jy < 2T

Using DBranch-and-bound approach.? the cwrrent solution is (2.15366.0.0,
2.39213.0.0).

Step 4 (Comparison) Because & = 1. go to Step 5.
Step & (Splitting) By inserting a vew node Ay = (0.2 4 1)/2 = 0.6. there are in

objective functions for the leader and follower togethier with 12 nonfuzzy constratnts
for the leader and follower, respectively are generated.

Step 6 (Loop) k£ = 1+1 = 2, go to Step 3, and the current solution of (2.17093.0.0.
2.41756,0,0) is obtained. As [2.15366 — 2.17003] + |2.39243 — 241756 = 0.01 > ¢ =
0.01, the algorithm keeps going until the solution of (2.13535.0.0. 2.42797.0.,0) is
obtained. The computing results are listed in Table 1.

Step 7 (Output) As 12.123932,13535| + 243436~ 242797 = 0.0178 < ¢ = (.02,
(™, ") = {2.1354, 2.1280) is the final solution of this FGBL decision problem. The

Table 1. Summary of the running solution.

k @ Y v 27 w

1 2.15366  2.39243 0
2 217093 241736 0
3 2.12393 2.43436 0
4 2.13535 242797 G

<
-
o3

o DD
<
oo D
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Fig. 2. Membership functions of F{z*,¢") and J{o*. 47},

objectives obtained for the leader and the follower under (v*. y*) = (2.1354. 2.4280)
are

P y*) = F(2.1354.2.4280) = 2.13546; + 2.4280d,.
Fla,y*) = F{2.1354,2.4280) = 213546, + 2.4280d,.

and their inembership functions are shown in Figs. 2(a) and 2{b).
The above examnple illustrated the detailed working process of the proposed
algorithm,

4.2, A case-based example on traffic management in a
disaster area

This section develops a case-based example on the traffic management in a disaster
area by the FGBL model. When a disaster occurs, the blockage on roads and
streets will canse severe problems for the missions of evacuation. restorstion, and
rescue. It is necessary to balance the travel demand and service supply in order to
relieve traffic congestion. This study addresses this problem from a two-level aspect
to present the interactive decision process between the roadway control decision
makers and the road user. We treat the commander of the Emergency-Response
Center for the disaster-raided areas as the leader, whose objective (£} is to allow
traffic to go through the disaster area as much as possible under the condition of
not exceeding the available roadway capacity. The road users, as the followers. will
reasonably choose the shortest routes with regard to travel time, which are the
objectives { f; and f2) for the followers. In the FGBL model. the decision maker for
the Emergency-Response Center, the leader, controls the mumber of vehicles {r) to
enter the earthquake-raided area, while the road vsers, the followers, decide their
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specific route (y; and ¥»). The leader mayv have certain goal of traffic throughout
(g1} for his or her objective, and the followers wish to meet the emergency rescue
needs (Gpy and §ra) for their objective as well.

When modeling this problem, the main difficulty is to set up coeflicients for the
objectives and constraints of both the leader and the follower. We can only estimate
these values according to our experience and previous data. Thus, by using fozzy
numbers to deseribe these uncertain values, a FGBL model is established below:

max F{z, y1. y2) = 61 + 3y + dyo,
reX

subject to Tr+ §y1 + fi;z;g < 21,

min f{x.1 -11 3y,
th( yi) + 3y,

min f(z,y2) = 3x + Gys,

yaE¥Ya
subject to Lo + 3y + Ty, < 1,
whearez e Ry € Rand X =0 2 0., =1 20,30 =y > O

The merbership functions of the coeflicients of the objective functions and the
constraints of both the leader and the followers are as follows:

0 0 < B, 0 £ 2,
{27 = 25)/11 B <uw <8, (2~ d4)/5 2 << 3.
pgle) =< 1 r = G, pale) = {1 €= 3.
(64 —a2)/28 6 <z <8 (26 — 23}/16 8 < x <5,
L O x> R, { R
(0 @< 3, 0 <05
(%~ 9)/7 3 < a4, (2% - 0.25)/0.75 0 <a < 1,
wylz) =<1 x == 4, gy = ¢ 1 €= 1,
(36— x%)/20 4< 2 <0, (4 - 2%)/3 I<a<?,
0 xr > 6, L0 x>
z < 19,
(12 - 361)/80 19 < <21,
g (z) =<1 x =21,
(625 — 22)/184 21 < 2 < 25,
0 a > 25,

The membership function of the fuzzy goal given to the leader is

0 x < 15,

(0% = 225)/175 15 < & < 20,
g, ()= ¢ 1 @ = 20,

(000 ~22)/500 20 < = < 30.

T > .i{}.
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The membership functions

(0
(22 — 100)/225

of the tuzzy goals set for the followers are;

r < 10,
10 < r < 15,

= ¢ 1 x =15,

(400 — 22} /175 15 < 2 < 20,
0 x> 20,

0 <7,

(a? —d9)/32  7T<ae <9,
Ooms 9,

» <11,

piwlr) = 1
(1201 —-2%)/40 9
f z
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Fig. 3. Objectives for the leader and followers.



Following all the steps of the proposed A-cut approximate algorithin, the solution
to this problem is: (x*, y§,¥3) = (1.0,11.82,0.02), The objectives for the leader and
followers under this solution are shown in Figs. 3(a}-3(c).

5. Conclusion and Future Study

Many organizational decision probleins can be forinulated by bilevel decision mod-
els. In a bilevel decision niodel. the leader and/or the follower may wish that their
objectives artain some goals, which are different from simple optimization prob-
lems. This kind of bilevel decision problems are studied by goal programmiug in
this paper. Meanwhile, we take into consideration of the sitnation where coefficients
which formulate a bilevel decision model are not precisely known to us. Fuzzy set
method is thus applied to handle these coefficients.

This paper has proposed an approximate algorithm to solve FGBL decision
problems, demonstrated the software svstem, and presented two examples to fur-
ther explain this algorithm. In the future. we will develop a method to handle
the situation where the leader and the follower in a FGBL problemn have multiple
objectives, respectively.
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