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Abstract

Anomaly detection has recently become an
important problem in many industrial and financial
applications. Very often, the databases from which
anomalies have to be found are located at multiple
local sites and cannot be merged due to privacy
reasons or communication overhead. In this paper, a
novel general framework for distributed anomaly
detection is proposed. The proposed method consists
of three steps: (i) building local models for distributed
data sources with unsupervised anomaly detection
methods, (ii) transforming local models into uniform
models , and (iii) reusing learned models for new data
and combining their results by considering both
quality and diversity of them to detect anomalies in a
global view. In experiments performed on several
synthetic and real life large data sets, the proposed
distributed anomaly detection method achieved
prediction performance comparable or even slightly
better than the global anomaly detection algorithm
applied on the data set obtained when all distributed
data sets were merged.

1. Introduction

The explosion of very large databases and the World
Wide Web has created extraordinary opportunities for
monitoring, analyzing and predicting global
economical, geographical, demographic, medical,
political and other processes in the world. However,
despite the enormous amount of data being available,
particular events of interests are still quite rare. These
rare events, often called anomalies, are defined as
events that occur very infrequently (their frequency
ranges from 5% to less than 0.01% depending on the
application). Detection of anomalies (rare events) has
recently gained a lot of attention in many domains,
ranging from detecting fraudulent transactions and
intrusion detection to engineering health management
(prognostics and diagnostics) and direct marketing. For
example, in the network intrusion detection domain,
the number of cyber attacks on the network is typically
a very small fraction of the total network traffic. In
prognostics and diagnostics applications, data records
that correspond to failures that may occur in particular
engines or its components correspond only to small

portion of all the data records recorded in monitoring.

Data mining techniques that have been developed
for detecting anomalies have been based on two major
approaches, namely supervised and unsupervised
techniques. Supervised learning methods typically
build a prediction model for different types of rare
events based on labeled data (both normal data and
rare events), and use it to classify data record [11], [24],
[25]. On the other hand, unsupervised learning
methods typically do not require labeled data and
detect anomalies as data points that are very different
from the normal (majority) data based on some
measure [23]. These methods are typically called
anomaly detection techniques, and their success
depends on the choice of similarity measures, feature
selection and weighting, etc. Anomaly detection
algorithms have the advantage that they can detect new
types of rare events as deviations from normal
behavior, but on the other hand suffer from a possible
high rate of false positives, primarily because
previously unseen (yet normal) data are also
recognized as anomalies, and hence flagged as
interesting. There are generally two types of anomaly
detection algorithms, namely semi-supervised and
completely unsupervised techniques. Semi-supervised
anomaly detection techniques require knowledge of the
normal behavior to build a model for its
characterization, while unsupervised techniques do not
require any knowledge about the labels and usually
assume that the anomalies are data records that are
significantly different than others.

The current research in anomaly detection using
advanced data mining techniques so far has been
focused on detecting various types of anomalies from
individual data sources. However, sometimes
anomalies that occur at multiple locations
simultaneously may be undetected by anomaly
detection algorithms built only from a single location.
For example, detecting anomalous events and trends in
near-real time from several multiple data sources (e.g.,
sets of independent components) during a flight can be
helpful in making crucial decisions such as whether to
abort the launch of a spacecraft prior to reaching the
intended altitude. Such anomalous events and trends
can best be detected, especially in their earlier stages,
by correlating information collected across dispersed
locations. However, such exchange of relevant and



useful information typically requires significant
communication among the sites. Thus, there is need for
an efficient exchange of limited amount of relevant
information to allow anomaly detection in near-real
time and at early stages. Furthermore, very often due to
privacy reasons, data from multiple locations cannot be
aggregated or exchanged, which represents additional
challenge for a distributed anomaly detection
algorithm. However, the existing techniques for
anomaly detection from distributed data sources
typically do not consider these restrictions.

In this paper, we propose a novel general framework
for anomaly detection from distributed data sources
that cannot be directly merged. In the proposed method,
anomaly detection methods are first applied on data
collected from individual data sites and the models for
each site are created. These models are then applied to
new data and their results are combined for the final
list of detected anomalies. We have investigated three
clustering based of unsupervised anomaly detection
methods. We have also examined a new weighted
voting for combining anomaly detection models. We
have tested our anomaly detection algorithms on
simulated data, several publicly available data sets as
well as on flight record data obtained from NASA
ASIAS systems. Our experimental results have shown
that our proposed combining methods can achieve
comparable detection performance to the single global
model in which data from all dispersed locations are
merged together.

The remainder of this paper is organized as follows.
In the next section, we review the related work and
give notation that will be used throughout the paper.
Section 3 provides description of investigated anomaly
detection algorithms as well as methods for their
combining. In Section 4, we present our experiments
and report the results of applying the proposed
framework on a synthetic, several publicly available as
well as on NASA ASIAS data sets. Finally, Section 5
summarizes the main contribution of the work and
gives the conclusion.

2. Background

2.1. Related work

To solve the problem of detecting anomalies from
very large and distributed databases, some researchers
have been proposing modifications of standard
ensemble classification schemes. These ensemble
techniques typically manipulate the training data
patterns individual classifiers use (e.g. bagging [2],
boosting [12], arcing [3] and random forests [4]) or the
class labels (e.g. ECOC [20]). In general, an ensemble
of classifiers must be both diverse and accurate in
order to improve prediction of the whole. In addition
to classifiers’ accuracy, diversity is also required to
ensure that all the classifiers do not make the same

errors. The application of ensemble learning is widely
used in many domains such as image analysis in [8],
handwriting recognition in [13] and medical diagnosis
in [23].

Using ensemble methods for distributed learning
has also gained a lot of attention among researchers
recently. The simplest method for distributed learning
is to combine different multiple predictors in a “black-
box” manner. Different meta-learning techniques
explored at the Jam project [26] were proposed in
order to coalesce the predictions of classifiers trained
from different partitions of the training set. Similarly, a
knowledge probing approach for distributed learning
from homogeneous data sites in the first phase learns a
set of base classifiers in parallel, and in the second, the
meta-learning is applied to combine the base classifiers.
The boosting technique has also been adapted for the
problem of distributed learning [27], [28]. However,
there have been only a limited number of proposed
techniques for distributed unsupervised learning.
Several researchers have proposed approaches for
combining anomaly detection approaches in distributed
environment (e.g., Clustering-based DIDS [22],
Distributed Network Monitoring and Anomaly
Detection based on Principal Component Analysis [6]
and Distributed Intrusion Detection based on genetic
programming [11]). However, all these approaches
require exchanging more or less initial data
information or data descriptions (e.g., minimal
bounding rectangles, convex hulls) from multiple
locations.

In this paper we propose a novel approach for
distributed anomaly detection using combination of
local models from local sites. The most significant
feature of the proposed approach is that it does not
need global information to combine local models.
Moreover, we employ unsupervised learning
techniques, which make our approach unique
comparing to other methods.

2.2. Notation
Let X:{x],xz,...,xm}cRd denote a set of m data

records with unknown labels (normal or anomaly) in a
d-dimensional feature space. The i-th data record x; is a
d-dimensional feature vector [X;i1, Xi2, Xi3, ... » Xigl.
Clusters learned by unsupervised anomaly detection
model in distributed datasets are represented as Cj =
{ X1, X2,...., Xn; },j = 1, ..., N, where N; is the number
of data records in cluster j, and N, is the total number
of clusters. An unsupervised anomaly detection model
predicts a data record x; as normal or anomalous and
assigns it a label A; € {normal, anomaly} and an
anomaly score s; € [0,1]. A higher anomaly score
corresponds to a higher possibility that the data record
is an anomaly. Therefore, an anomaly detection model



can also be described as a function that maps the set of
data records X = {X1, X3, ... , X,,} into a label vector A

= {7L1, kz, cee s 7Lm}
3. Methodology

3.1. General framework for distributed

anomaly detection

In this paper, we present a novel approach for
distributed anomaly detection that is based on building
a global model by exchanging local models from
distributed sites (Figure 1).
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Figure 1. Framework for combining heterogeneous models derived
from distributed and independent data sites to generate a global
model.

In the scenario described in Figure 1, data are stored
at several independent sites which do not exchange
information among themselves. Each site obtains
anomaly detection models from local data using
unsupervised learning (clustering) techniques, such as
K-means [14], SOM [16], and DBSCAN [5]. A data
point that does not belong to any of the clusters will be
detected as an abnormal data point or an anomaly.
Multiple anomaly detection models derived from a
local site could be combined into a general model.
Nevertheless, such a general model is specific to local
data and its usefulness and generality are limited. In
order to integrate local models from each site into a
global model, in this paper, we propose a new
approach for model combination. The proposed
approach has the following characteristics: (1) it does
not require the global data and (2) it reuses the
knowledge embedded in local models built from local
sites.

Figure 2 presents proposed three-step model
combination approach. Initially, in the first step, we
build local anomaly detection models from local sites
using unsupervised learning algorithms. Based on the
assumption that anomalies in the data are quite rare,
we can build the local anomaly detection model using
clustering algorithms. After applying particular
clustering algorithm, we label the largest cluster (one
with the largest number of data points) as a normal.

Lets assume its centroid is 4. We sort the remaining
clusters in the ascending order of the distance from
their cluster centroid to f4. Within a cluster, we sort
the data points in the same way. We select the first NV,
= p-N, data points (V is the total number of data points)
and label them as normal; where N is the total number
of data points and  is the percentage of normal data
points. The parameter g is given or estimated fraction
of all data points as normal ones.
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Figure 2. The proposed 3-step approach for reusing learned local
models to detect abnormal data for new data.

Next, in step 2, we transform all local anomaly
detection models into a uniform format and use four
measures to compare qualities of the transformed
models. We select the best qualified model from each
site and save them into a knowledge base for the next
step. Here, we use several algorithms to build different
models from the same local data site, and we transform
them into a uniform format. This step would allow us
to compare the algorithms” anomaly detection qualities
with each other, and to choose the best one.

Finally, in the third step, we reuse the knowledge
that is learned from all local sites by effectively
combining them. When a new data point arrives, we
compute the anomaly score and label the new data
point by using uniform anomaly detection models in
the knowledge base. The anomaly score is computed
by comparing the distance from the new data point to
all cluster centroids with the corresponding distance
thresholds. The value, for all centroids, is the minimum
rate of {distance from new data to centroid / centroid
distance threshold}, while the label {normal, abnormal}
is decided by the anomaly score. If the anomaly score
is higher than 1, then the new data point is an anomaly.
From a global viewpoint, detecting new data by
combining all these results into final anomaly scores is
the main contribution of our work. The quality and
diversity of the model are considered in the
combination process. Since we have computed the
quality of each model in the second step, we can reuse
it in the final step. For diversity, we apply three



measures. Furthermore, we also consider the model
diversity spread in assigning the diversity weights to
each model. We determine the final weights for each
model using both the equality and the diversity metrics.
Since they are both important factors, we give them the
same emphasis. Note that all weights are normalized
into (0,1).

3.2. Uniform model format

Combining unsupervised anomaly detection models
is a variant of the distributed anomaly detection
problem. We combine the models learned from each
local site in order to build the global model. Since a
uniform model is necessary, we develop it based on the
k-means algorithm. We evaluate the anomaly detection
models by comparing the measure of the clustering
quality. To transform a model into the uniform k-
means model, we need to do two things. First, we need
to remove the anomalies that the model has detected in
the dataset. Second, we apply k-means algorithm on
each cluster that some other anomaly detection
algorithm has learned. When the initial anomaly
detection model, such as DBSCAN, does not provide
information about centriods and diameters of clusters,
we consider it the case that all the normal data are in
the same cluster. After that, all the models are
transformed into the uniform k-means model. The
uniform model examines distances between new data
with centroids of the model to distinguish anomalies.
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pairs to be compatible with clusterbased
approaches

Results obtained by using LOF (Local
Outlier Factor), a density-based approach

Figure 3. Example: results obtained by using DBSCAN (left) and
from transformation (right)

DBSCAN is a density-based unsupervised learning
approach and it is different from cluster-based
approaches, in which a cluster is determined by its
center and diameter and each data point is assigned to
(at least) one cluster. In order to regularize the storage
format in the knowledge base, we apply a
transformation to results learned by DBSCAN. Figure
3 gives an example for this transformation. The left-
hand side of Figure 3 illustrates results obtained by
using DBSCAN. Grids are used to characterize the
density-based approach. On the other hand, the right-
hand side of Figure 3 demonstrates the transformed
results that are compliant with those in cluster-based
approaches. The concept behind the transformation is
to keep sufficient information (centroids and diameters)
used to describe clusters, e.g., position and size of a
cluster.

3.3. Anomaly detection algorithms

We employ three unsupervised learning (clustering)
algorithms to perform anomaly detection. We also
study how to effectively combine results given by
these algorithms.

k-means. [14] This method aims to find k& clusters
such that the average distance between a data point and
a cluster center is minimized. We determine a data
point as an anomaly if it does not belong to any cluster
in the given threshold.

Self-Organizing Maps (SOMs). [16] In this method,
all data objects in the feature space retain as much as
possible their distance and neighborhood relations in
the mapped space. The mapping is performed by a
specific type of neural network, equipped with a
special learning rule. In this process, each neuron in
this neural network stores d-dimensional vector that
serves as a cluster center C. To evaluate if a new test
data point is anomaly, we use a procedure similar to
one in K-means clustering approach.

DBSCAN Approach [5]. is a density based approach
for clustering data. It can find arbitrary shaped clusters
along with noisy outliers. DBSCAN clustering is based
on two input parameters the size of epsilon
neighborhood e and the minimum points in a cluster.
Points are declared to be outliers if there are few other
points in the e-Eucledean neighborhood. Thus,
DBSCAN method can be viewed as a modified
nearest-neighbor algorithm [18].

3.4. Combining methods

We propose a novel approach for combining
unsupervised anomaly detection models by considering
both the quality and diversity of models.

There are approaches to combine the different
clustering results (for example [21]). In our scenario,
we combine the multiple diverse local models learned
from distributed sites by exchanging the uniform
models.

For each new data record y, this method takes
predicted anomaly scores $% from all the anomaly
detection models M; that are built at local sites and
computes a global anomaly score S by a weighted
voting scheme to determine the final label for y.

34.1. Quality. The performance of anomaly
detection is related to the clustering quality of the
uniform model. A higher clustering quality typically
corresponds to a better description of normal data
behavior and hence leads to a better performance of
anomaly detection algorithm. In our work, four
internal measures are used to evaluate the clustering
quality of uniform model. All measures are usually
used when the true data labels are unknown. They
include Silhouette index, Davies-Bouldin, Dunn index
[1] and Calinski-Harabasz [10].

Silhouette index [1], is a composite index
reflecting the compactness and separation of clusters.



The Silhouette index of the i-th data record in the
cluster Cj = { Xj;, Xpp,..., Xju}of = 1, ..., N, is defined as

Sty O =al) (1
max{a(i),b(i)}

where afi) is the average distance between the i

data record and all the records included in Cj, and b(i)
is the minimum average distance between the i* data
record and all of the records that are located in other
clsuters Cy, k= 1, ...,N. , k#j. A larger Silhouette
value indicates a better quality of a clustering result.

Davies-Bouldin Index [1] was used as the primary
measure of merit. It is the average similarity between

each cluster and aims at identifying if the clusters are
compact and well separated. It is defined as

L&
= - - @)
DB =— 2 max((S, (k) +S.(/))/ d,y (K, )
where S, and d. denote the centroid intra-cluster
and inter-cluster distances respectively. A low Davies-
Bouldin index value indicates good cluster structures.
Calinski-Harabasz index [10] is the pseudo F
statistic, which evaluates the clustering results by
looking at how similar the objects are within each
cluster and how well the objects of different clusters
are separated. For the i-th cluster C;, Calinski Harabasz
index is defined as
_ rB,/(N;-1) 3)
' trW,/(n—N,)
where B; and W, are p*p matrices of between and
within N;-clusters, tr denotes the trace of a matrix,
which means the sum of the diagonal entries.
Dunn index [1] was used to identify sets of clusters
that are compact and well separated. It is defined as
DU = min( min (—Je ) 4

I<isN, 1<j<N..j# max S
1<k<N, ©

c J=1

where S. and d. again denote the centroid intra-
cluster and inter-cluster distances respectively. Large
Dunn ndex values indicate the presence of compact
and well-separated clusters.

The final quality weight Quality; of the model i is
computed by all the clusters’ average values. Due to
the difference of four internal measures, we compute
four quality weights by each of them.

1%

Quality; :N_ZQJ

c j=1

where N, is the total cluster number learned by
uniform k-means model i, Q; denote j-th cluster’s
quality value with any quality index described in
section 3.4.1.

3.4.2. Diversity. Since diversity plays a significant
role in combining prediction models, this method also
uses three metrics to measure the diversity of local
anomaly detection models. The metrics include

Adjusted Rand index, Jaccard index [17], Fowlkes-
Mallows (FM) index [10].

Let A and B correspond to two anomaly detection
models that provide prediction label vectors A'“ and
A?). Assume there are N data records in the test data
set T, the model A predicts N, ;¢ data records as normal
and N,” data records as anomalies, and the model B
predicts ij data records as normal and sz data
records as anomalies. Assume also that Ngzab denotes
the number of data records that are predicted as
anomalous by both models A and B. These three
diversity measures are defined using the following
equations:

Adjusted Rand index

2 (N? 2 (N? 211,
{ = J L : f, =— =
] 2{2]2 2(2]3 N(N-D)

i=1 i=1

v
Z; Zj:] [ 2J ] 1

AR(A,B) = ®)
E(t‘ +5,)— 1
Jaccard index
ab ab
JA(A, B) = Ny, +Ny, 6)

N7 +Ng + N3 + N5
Fowlkes-Mallows (FM) index.
(Vi +N33) 7

SR

For these three indices, the higher the index, the
higher the diversity between the models.

As we all known, if the local models have more
diversity then we can get more accuracy in anomaly
detection by combining their results. Furthermore, for
each anomaly detection model M; the average
diversity O is computed as
o, = 1 . Z Index(?u(k),l(“)’ i=1,2,...,n

n-1 57

where Index(A, B) could be any of the diversity
metrics defined in section 3.3.2, and » is the total
number of local anomaly detection models. The value
of o; indicates the diversity of this model; the larger o;
the more diverse the model is.

In our studies, we found that for a better model
combination not only there is a need for the higher
diversity but also a need for a large spread of
individual diversities. If there is some very bad model,
it also can have very high diversity, so the condition
should be higher diversity and lager spread of diversity.
We use the standard deviation to present the spread of
diversity, so we can get the over measure of diversity
by taking the average diversity of m local models.

1
U—;;Ui

FM(A,B) =




Then the measure can be adjusted as

l-o,+ ’%Z(I—O‘—O‘i)
Div, = A ®)

2

Therefore, when we consider the diversity of
anomaly detection models, we should assign the
weights based on Div;.

34.3. Combination. Finally, the weights
(considering both quality and diversity) of local model
i are defined as:

9, = a* Quality, + (1-a)* Div,

where the first term of the equation in the right
weigh the qualities of the distributed anomaly
detection models while the second term measures the
diversities. @ indicates how much emphasis we put on
both factors. In our work, a is set to be 0.5 since there
is no clear evidence to give more emphasis on one of
the factors. The future work is to study the sensitivity
of a, to get the better choice for it. The value &
indicates the qualified information that the local model
M; shares with other anomaly detection models. The
larger &;, the more qualified information is shared from
individual models M;. Therefore, the best local model
with high quality and diversity should have the largest
value 4.

Finally, the combination model gives the final result
as label vector A={A1, Ay, ..., A, } and anomaly score
vector S= {8y, Sy, ... , 8,} by using the weight voting
considered both quality and diversity of local models.
The predicted label vector and anomaly score vector of

local model i are denoted by A9 = (MY A0 )
and S = {s:%, 8,9, ., sm(l);.For all prediction
anomaly scores vector S={S(1), S Y eees S(")} provided

by individual models with weight &. respectively.

L
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3.5. Evaluation methods

Anomaly detection algorithms are typically
evaluated using the detection rate, the false alarm rate,
and the ROC curves [9]. In order to define these
metrics, let’s look at a confusion matrix, shown in
Table I. In the anomaly detection problem, assuming
class “C” as the anomaly, and “NC” as a normal
(majority) class, there are four possible outcomes when
detecting anomalies (class “C”), namely true positives
(TP), false negatives (FN), false positives (FP) and true
negatives (TN).

TABLE I
CONFUSION MATRIX DEFINES FOUR POSSIBLE SCENARIOS
WHEN CLASSIFYING ANOMALOUS CLASS “C”

Predicted C Predicted NC
Actual C True Positives (TP) False Negatives (FN)
Actual NC False Positives (FP) True Negatives (TN)

From Table 1, recall, precision and F-value may be
defined as follows:

Precision = TP/ (TP + FP)
Recall = TP/(TP +FEN)
F-value = (1+ 8% )-Recall - Precision ,

B*-Recall + Pr ecision

where f corresponds to relative importance of
precision vs. recall and it is usually set to 1. The main
focus of all learning algorithms is to improve the recall,
without sacrificing the precision. However, the recall
and precision goals are often conflicting and attacking
them simultaneously may not work well, especially
when one class is rare. The F-value incorporates both
precision and recall, and the “goodness” of a learning
algorithm for the anomalous class can be measured by
the F-value. While ROC curves represent the trade-off
between values of TP and FP, the F-value basically
incorporates the relative effects/costs of recall and
precision into a single number.

To confirm the effectiveness of weighted voting for
combining unsupervised anomaly detection models,
we train the global model by collecting all the data
record together to compare with the combination
models result and use the true label of the data records
to compute the F-value for evaluation.

4. Experiments

Our experiments were performed on synthetic data
and several real life datasets, all of which are
summarized in Table II. In all the experiments, we
used only the unlabeled data for building local
anomaly detection models and assumed that we have
no knowledge about failure and other anomalous
behaviors. The anomalies’ labels were only used in
evaluating the final anomaly detection performance. In
the first step, all 3 unsupervised learning algorithms
(K-means, SOM and DBSCAN) were used to build the
anomaly detection models in a distributed dataset.
Then, we select the best qualified model according the
model quality which is computed by the Quality
Measures and put it into the knowledge base. In
particular, when the best model was built by density-
based algorithm such as DBSCAN, we should use the
transformation approach proposed in the knowledge
reusing section to transfer the model into a new
applicable model. In the second step, we employed all
anomaly models in the knowledge base to the test
dataset and obtained a label vector as well as an
anomaly score vector. The next step is to compute the
diversity of each model with diversity measures. The
final step is to compute the combination weight by
considering both quality and diversity of each model
and combining the anomaly score vector. Then we
found a final label for each test data point.

Performances of all the anomaly detection models
are evaluated by the comparison with global anomaly
detection model, which is built by collecting all the



data together. However, a global model is not available
in most real-life cases. The true anomalies’ labels of
test data are used only in computing F-measure of both
models.

4.1. Experiments on Synthetic Data Sets

Our first experiment was performed on synthetic
data consisting of five datasets that were used for
building our unsupervised anomaly detection models.
The test dataset is generated by the same emulator.
Both have about 1.96% percentage of anomalies.

Figure 4. Synthetic data set r'epresented using two features obtained
through PCA (Principal Component Analysis) (blue points represent
normal behavior, while red crosses represent anomalies).

Each distributed dataset has four continuous features
and four discrete features. All together, there are 5000
data records that correspond to normal behavior and
100 data records corresponding to anomalies. Normal
behavior (represented by blue points in Figure 4) is
modeled as a skewed distribution with exponential
drop-off, while the anomalies (red crosses in Figure 4)
that correspond to a background noise are modeled by
a uniform distribution. The whole dataset was
randomly divided into six parts, where five parts are
considered to be five distributed datasets, while the
sixth one is used for testing.

We build unsupervised anomaly detection models
on all five disjoint training datasets and store the best
model into the knowledge base. Afterwards, we apply
all models in the knowledge base to the test dataset and
then employ proposed combination techniques to
combine their prediction anomaly scores.

Table III presents the performance by F-measure
used to compare with the global anomaly detection
model. The global model can be built only when all the
distributed datasets are collected together which is not
always applicable due to the privacy or property
protection policy. Here, we study different
combinations of model quality measures as well as
diversity measures. The high F-measure means the
model has good performance both in precision and in
recall. From the experiment results on synthetic
datasets, we can find that a better quality often comes
with a larger diversity. Therefore, a higher model
weight in the combination will lead to a better
performance of the combination anomaly detection
model.

Table IV reports the quality value in the knowledge
base after we select the best unsupervised anomaly
detection model in each site and transform them into

uniform format models. The quality of a model is
computed by equation (1), (2), (3) and (4) individually,
and the value is the average of all clusters in the
uniform model. Large values of Silhouette, Calinski
Harabasz and Dunn indicate better qualities of a local
unsupervised anomaly detection model. For Davies-
Bouldin the low value indicates a good cluster
structure which can be considered a metric of better
qualified model.

Table V gives the diversity value of all local models
with different measures .Values in Table V are
computed by equation (5), (6), (7) and (8). For
comparison, we normalize every value into (0,1) where
all values sum to one. For the three indexes, a large
value indicates the presence of high diversity.

4.2. Experiments on Real Life Data Sets

All real life datasets used in our experiments have
been widely used by other researchers for anomaly
detection. Table II gives a summery of them. KDD
CUP 1999 dataset includes a set of 41 features derived
from each connection and a label that specifies the
status of a connection record which is either normal or
presents a specific attack type. Attacks fall into four
main categories: DoS (Denial of Service), R2L
(Remote to Local), U2R (User to Root) and Probe. We
selected U2R, which covers only 246 instances, to
detect the smallest intrusion class. Since the anomalies
are detected as deviations from the normal behavior,
we modified the original dataset (311029 records), and
collected only normal class (60593) and U2R attack
records for the experiment. Considering the large-scale
volume of the KDD CUP dataset, we divided the
whole experiment dataset into 10 parts, 9 of them are
considered to be 9 distributed local sites, and the other
1 is used for testing. For satimage dataset we chose the
smallest class to represent anomalies and collapsed the
remaining classes into one class as was done in [7].
This procedure gave us a skewed 2-class dataset, with
5809 majority class examples and 626 minority class
examples (anomalies). When performing experiments
on mammography [7] and rooftop [19] datasets, we did
not change any class distribution.

Like the synthetic experiment procedure described
above, local unsupervised anomaly detection model are
employed and five best models are stored into the
knowledge base. Following that, we get the diversity
values and accordingly compute the combination
weights. Finally, we distinguish the anomalies in test
data by gathering all the anomaly detection model
knowledge from all sites.

Our experiment was also performed on the flight
record data sets obtained from the NASA Advanced
Diagnostics and Prognostics Testbed (ADAPT) project.
ADAPT, a facility developed at NASA, aims for
supporting the development of diagnostic and
prognostic models, for evaluating advanced warning



systems, and for testing diagnostic tools and
algorithms against a standardized testbed. The facility's
hardware consists of an electrical power system with
components for power generation, storage, and
distribution. Over a hundred sensors report the status
of the system to the test article that monitors the health
status of the system. The testbed provides a controlled
environment to inject failures, either through software
or hardware, in a repeatable manner.

The data that we have used simulates an electrical
power subsystem (EPS) in which faults have been
injected by manual or software means. The dataset is
available as a set of conducted experiments. In each
experiment, testers inject an anomalous condition
within a system to cause the system to get into a faulty
state. We have used datasets from five experiments
where five different types of system faults were
injected. The entire dataset had 1029 flight data
records collected from 194 sensors, where 555 data
records corresponded to normal operation, and 474
data records corresponded to different failures. We
extracted 90% of data records with normal operation
and injected failures, and then we randomly split them
into five distributed datasets. Each of the datasets had
46% abnormal data records; they are used to construct
local anomaly detection models by unsupervised
learning algorithms. The left dataset is used for testing;
it remains 46% abnormal data records corresponded to
failures (50 data records).

For example, Figure 5 and Figure 6 present the
process, where a fault was injected into the system at
around 58.5 second, and then the sensor output for
both Light Intensity and Fan Speed changed
abnormally. The fault is described as the antagonist
commanded relay EY141 sensor, which connects the
battery to the load bank, to open and thus break the
circuit. This was one of the faults detected by all
anomaly detection models.
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Figure 5. Fan Speed vs. Time

Figure 6. Light Intensity vs. Time

We build unsupervised anomaly detection models
on all five disjoint training datasets, apply all the best
models from all sites on the test dataset, and finally use
our combination techniques to combine their
prediction anomaly scores. Similar to experiments on
synthetic data sets, we first report the quality values of
models in the knowledge base and then give the
diversity value of each model. Finally, we give the
performance in F-measure to compare with a global
anomaly detection model. From the result we can see
the best model is not adhered to any unsupervised
learning algorithm, regardless of the different
distributions of data and different shapes or sizes of
normal behavior clusters. Particularly, when the local
model has various qualities, the combination method
can improve the performance of anomaly detection.
Frankly, the combination could potentially have a
global point of view by combining the knowledge (i.e.,
models) learned from all distributed datasets. In
general, the combined model provides a comparable
performance even when the global model is not
available. Please note that, the assumption of an
available global model is not always true and here we
introduce the global model only for evaluating our
combination techniques.

5. Conclusion

A general framework for unsupervised distributed
anomaly detection was proposed. It is intended to
efficiently learn stable anomaly detection models over
large and distributed datasets that cannot be merged
into a single one. Experimental results on synthetic and
real-life datasets indicate that the proposed techniques
for distributed anomaly detection can effectively
achieve the same or even better performance,
compared to a global anomaly detection model built
from a centralized data site. One of future works is to
fully characterize the proposed method especially in a
distributed environment with heterogeneous databases.
New algorithms for selectively combining anomaly
detection models from multiple heterogeneous sites
with different distributions are worth considering. It
would also be interesting to examine the performance
and the scalability against the influence of the larger
number of local sites and their sizes.
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TABLEII
SUMMARY OF DATA SETS USED IN EXPERIMENTS
Modification made Size of Numbers of features Number of anomalies Percentage
Dataset R A
in the data set Dataset Continuous Discrete (rare class records) of anomalies
Synthetic - 5100 4 4 100 1.96%
KDDCUP 1999 U2R vs. normal 60839 34 7 246 0.4%
Mammography - 11183 6 0 260 2.32%
Rooftop - 17829 9 0 781 4.38%
Satimage Smallest class vs. rest 16435 36 0 626 9.73%
NASA data - 1029 194 0 474 46%




TABLE III
F-MEAUSURE COMPARISON FOR COMBINATION MODEL AND GLOBAL MODEL ON ALL DATA SETS

Quality | Silhouette index Davies-Bouldin Calinski-Harabasz Dunn index
PlAR A PM O |AR JA FM |AR  JA FM |AR JA EM
Dataset ode
Synthetic CoM [ 0.9843 009873 09867  0.9885 09836 09836 09861 09836 09861 09824 0983  0.985
GIM | 0.987(DBSCAN) 0.973(SOM) 0.976(K-means )
KDD CoM | 0.9963 0.9965 0.9963 0.9968 0.9968 0.9970 0.9963 0.9968 0.9968 0.9963 0.9968 0.9965
GIM 0.99667 (DBSCAN) 0.99632 (SOM) 0.99489 (K-means)
Mg CoM | 0.9795 0.9723 0.9783 0.9717 0.9759 0.9686 0.9767 0.9677 0.9669 0.9791 0.9739 0.9783
GIM | 0.97949(DBSCAN) 0.98033(SOM) 0.97932(K-means)
Rooftop CoM | 0.9656 0.9653 0.9653 0.9648 0.9650 0.9650 0.9651 0.9650 0.9705 0.9624 0.9625 0.962
GIM | 0.97663(DBSCAN) 0.96836(SOM) 0.96283(K-means)
Satimage CoM | 09196 0.9289 0.933 0.9333 0.9368 0.9272 0.9325 0.9338 0.9285 0.9196 0.9289 0.933
GIM | 0.93294(DBSCAN ) 0.9271(SOM) 0.9306(K-means)
NASA CoM | 0.65 0.7373 0.66 0.6326 0.65 0.632 0.7655 0.6294 0.6764 0.6326 0.6532 0.6567
GIM 0.70518(DBSCAN) 0.70368(SOM) 0.69214(K-means)

Legend: KDD = KDDCUP 1999, Mg = Mammo-graphy , CoM = Combined Model(The model combined by distributed models), GIM = Global Model(The
model built by collecting all the distributed data sets, the global model is not available in most cases, here we build it just for performance evaluation), AR =
Adjusted Rand index, JA = Jaccard index, FM = Fowlkes-Mallows index

TABLE IV
QUALITY -MEAUSURE OF 9 DISTRIBUTED LOCAL MODELS ON 5 DATASETS
Datasot Ouality Model | Model_1 Model_2 Model_3 Model_4 Model_5
Silhouette Index 0.2219 0.2125 0.2209 0.2203 0.2466
Svntheti Davies-Bouldin 0.7583 0.7429 0.7481 0.7613 0.6955
ynthetie Calinski-Harabasz 0.2021 0.1856 0.2009 0.1978 0.2134
Dunn index 2.441 2.349 2.312 2.248 2.632
Silhouette Index 0.6353 0.7489 0.8058 0.7543 0.7893
Mammography ngies.—Bouldin 1.421 0.3505 0.2352 0.2336 0.2258
Calinski-Harabasz 0.1311 0.2244 0.2906 0.1811 0.1726
Dunn index 0.2357 1.8841 3.5097 1.4745 2.0781
Silhouette Index 0.4078 0.3932 0.4093 0.4101 0.5044
Rooftop Davies-Bouldin 1.1679 1.3058 1.4902 1.0549 0.2631
Calinski-Harabasz 0.2146 0.2203 0.2323 0.1701 0.1625
Dunn index 0.1072 0.0943 0.1269 0.1090 4.1635
Silhouette Index 0.7471 0.7704 0.5645 0.7543 0.7990
Satimage Davies-Bouldin 0.3015 0.1763 0.5921 0.2036 0.2483
Calinski-Harabasz 0.2284 0.1907 0.0353 0.2174 0.3280
Dunn index 1.6205 1.9307 1.4328 1.4745 2.985
Silhouette Index 0.4567 0.4023 0.3314 0.3647 0.4902
Davies-Bouldin 0.5011 0.5018 0.5502 0.4313 0.4279
NASA data A
Calinski-Harabasz 0.2378 0.2384 0.2135 0.0798 0.2302
Dunn index 2.8555 3.6236 3.4063 2.369 2.9903
TABLE V
DIVERSITY-MEAUSURE OF 5 DISTRIBUTED LOCAL MODELS ON 5 DATA SET
. Model Model_1 Model_2 Model_3 Model_4 Model_5
Dataset iversity
Adjusted Rand 0.1955 0.1817 0.1997 0.1736 0.2494
Synthetic Jaccard Index 0.2084 0.1973 0.1618 0.2702 0.1621
Fowlkes-Mallows 0.1900 0.1879 0.1010 0.2666 0.2543
Adjusted Rand 0.2753 0.1276 0.2550 0.2496 0.0922
Mammography | Jaccard Index 0.1595 0.1821 0.2081 0.2475 0.2025
Fowlkes-Mallows 0.1528 0.2461 0.2351 0.2300 0.1359
Adjusted Rand 0.2186 0.1988 0.2002 0.1831 0.1991
Rooftop Jaccard Index 0.2189 0.2004 0.2013 0.1852 0.1940
Fowlkes-Mallows 0.2191 0.2008 0.1994 0.1854 0.1950
Adjusted Rand 0.1577 0.2188 0.2487 0.2351 0.1395
Satimage Jaccard Index 0.0916 0.2521 0.2507 0.1766 0.2287
Fowlkes-Mallows 0.2705 0.1006 0.2261 0.1496 0.2530
Adjusted Rand 0.2997 0.1642 0.1028 0.1325 0.3006
NASA data Jaccard Index 0.3555 0.1514 0.2043 0.0076 0.281
Fowlkes-Mallows 0.2431 0.2053 0.2050 0.1160 0.2304




TABLE VI
QUALITY -MEAUSURE OF 9 DISTRIBUTED LOCAL MODELS ON KDD CUP 1999 DATA

Quatiy— % iogel 1 Model2  Model3  Model 4 Modcl S Modl 6 Modl 7  Modcl 8  Model 9

Silhouette Index 0.5988 0.6372 0.6590 0.6617 0.6309 0.647 0.6188 0.6364 0.6067

Davies-Bouldin 0.7484 0.5703 0.5351 0.6101 0.5032 0.6065 0.4559 0.5885 0.4416

Calinski-Harabasz ~ 0.0778 0.1038 0.1081 0.1410 0.132 0.0982 0.1010 0.139 0.0988

Dunn index 0.5492 0.5310 0.5834 0.6240 0.5445 0.5768 1.5571 0.58112 1.7257
TABLE VII

DIVERSITY-MEAUSURE OF 9 DISTRIBUTED LOCAL MODELS ON KDD CUP 1999 DATA

m Model_1 Model_2 Model_3 Model_4 Model_5 Model_6 Model_7 Model_8 Model_9
Adjusted Rand 0.1411 0.0629 0.1274 0.1052 0.0893 0.1431 0.0982 0.1108 0.1217
Jaccard Index 0.0910 0.0995 0.0832 0.1078 0.1089 0.1127 0.1434 0.1048 0.1482
Fowlkes-Mallows  0.1277 0.0922 0.1105 0.1091 0.1044 0.0985 0.1194 0.1087 0.1291




