
1 

 A Grey Wolf Optimization-Based Method for Segmentation and 

Evaluation of Scaling in Reinforced Concrete Bridges 

ABSTRACT 

Bridges are prone to severe deterioration agents which promote their degradation over the course 

of their lifetime. Furthermore, maintenance budgets are being trimmed. This state of 

circumstances entails the development of a computer vision-based method for the condition 

assessment of bridge elements in an attempt to circumvent the drawbacks of visual inspection-

based models. Scaling is progressive local flaking or loss in the surface portion of concrete that 

affects the functional and structural integrity of reinforced concrete bridges. As such, the present 

research study proposes a self-adaptive three-tier method for the automated detection and 

assessment of scaling severity levels in reinforced concrete bridges. The first tier relies on the 

integration of cross entropy function and grey wolf optimization algorithm for the segmentation 

of scaling pixels. The second tier is designated for the autonomous interpretation of scaling area. 

In this model, a hybrid feature extraction algorithm is proposed based on the fusion of singular 

value decomposition and discrete wavelet transform for the efficient and robust extraction of the 

most dominant features in scaling images. Then, an integration of Elman neural network and 

grey wolf optimization algorithm is proposed for the sake of improving the prediction accuracies 

of scaling area though optimization of both structure and parameters of Elman neural network. 

The third tier aims at establishing a unified scaling severity index to assess the extent of 

severities of scaling according to its area and depth. The developed method is validated through 

multi-layered comparative analysis that involved performance evaluation comparisons, statistical 

comparisons and box plots. Results demonstrated that the developed scaling detection model 

significantly outperformed a set of widely-utilized classical segmentation models achieving 

mean squared error, mean absolute error, peak signal to noise ratio and cross entropy of 0.175, 

0.407, 55.754 and 26011.019, respectively. With regards to the developed scaling evaluation 

model, it accomplished remarkable better and more robust performance that other meta-heuristic-

based Elman neural network models and conventional prediction models. In this context, it 

obtained mean absolute percentage error, root-mean squared error and mean absolute error 

1.513%, 29.836 and 12.066, respectively as per split validation. It is anticipated that the 

developed integrated computer vision-based method could serve as the basis of automated, 

reliable and cost-effective inspection platform of reinforced concrete bridges which can assist 

departments of transportation in taking effective preventive maintenance and rehabilitation 

actions.     
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1. INTRODUCTION   

Bridges are critical elements of civil infrastructure systems that are vital for economic 

developments and public welfare. As such, they should be continuously monitored to preserve 

their performance condition statuses and prevent them from further degradation despite 

encountered severe operating and environmental conditions. Deterioration of bridges is one of 

the major concerns for transportation agencies over the last few years. Recently, the number of 

bridges has increased drastically. Additionally, there are large numbers of existing bridges in 

transportation networks. On top of that, there are limited funds available for maintenance, repair 

and rehabilitation actions. This state of affairs motivated researchers to give particular attention 

to the condition assessment of bridges, which paves the way for the efficient planning and 

prioritization of their maintenance activities. In Canada, the instantaneous and serious economic 

and environmental impacts of bridge collapses besides the high owner and user costs have drawn 

the attention to the importance of bridge management systems. Bridges experience accelerated 

aging and extensive deterioration and larger portion of them require urgent rehabilitation or 

replacement. The deterioration agents encompass variable traffic overloading, chloride ingress, 

cycles of the freeze and thaw, poor construction practices, earthquakes, etc. 

According to the Canadian infrastructure report card, 26% of the bridges are either in a “Fair”, 

“Severe” or “Very Severe” conditions. One-third of Canada’s bridges were reported to 

experience structural or functional deficiencies with short remaining service life, such that 

15,000 public transits, 750,000 trucks and 20 million light vehicles utilize the Canadian bridges 

annually. It was reported that average age of bridges reached 24.5 years in 2007 while their 

average age was 43.3 years. Thus, fifty seven percentage of the estimated service life has already 

been consumed. It is worth mentioning that the average age of bridges is considered as the 

second highest among the five main assets, namely roads, bridges, water supply systems, 

wastewater treatment facilities and sewer systems. Bridges in Quebec reached higher levels of 

deterioration such that they consumed 72% of their useful lifetime, which is regarded as a higher 

average age than any other province in Canada. On the other side, Prince Edward Island had the 

smallest average age of 15.6 years. This can be explained by the fact that approximately 70% of 

Quebec’s bridges were constructed between the 1960s and 1980s.1,2,3,4 
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Visual inspection is considered as the common practice adopted by transportation agencies to 

monitor condition of the bridge decks. These inspections are carried out at equal time intervals 

by engineers to evaluate the severities of the bridge defects. The condition assessment models 

established based on the visual inspection are error-prone because of the inherent subjectivity 

arising from being highly dependent on the skills and experience of inspectors, which creates 

wide variations among the evaluations of the inspectors. Furthermore, routine visual inspection is 

criticized for being laborious, costly, time-consuming and dangerous. As such, these 

circumstances necessitate the development of computer vision-based method that aids in 

enhancing the condition assessment accuracy and minimizing the costs elicited from visual 

inspection.5,6,7 

Surface defects are the most observable indication of possible structural deterioration. They are 

viewed as the cornerstone of most inspection manuals since they implicate an accurate reflection 

of the condition of the structural member. Scaling is a surface deterioration mechanism which 

can be defined as flaking or peeling of finished hardened concrete surface more often due to the 

exposure to cycles of freezing and thawing and the utilization of de-icer chemicals, whereas 

concrete pores near the surface thaws and freezes as a result of the temperature fluctuations. The 

freezing of water in saturated concrete establishes substantial expansive forces that cause the 

concrete surfaces to be scaled off mainly when it is not well-protected with entrained air. It starts 

with small patches and it progresses with time to extend to large areas, whereas its severity 

varies from light scaling to severe scaling. Light scaling doesn’t involve exposure of coarse 

aggregate. Severe scaling involves loss of mortar and coarse aggregate particles up to a depth 

greater than 20 mm. Scaling affects the functional performance of the structural element because 

it influences the riding quality and safety of traffic. Moreover, it has been reported that scaling 

can expose the concrete to ready ingress of moisture and aggressive salts, which accelerates the 

deterioration of concrete and may influence the structural durability at the latter stages. 

Therefore, it can be interpreted that efficient mapping and evaluation of scaling can eventually 

lead to the accurate assessment of the condition of the bridge element.8,9 
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2. LITERATURE REVIEW  

Several previous machine learning-based and deep learning-based models were developed for 

the detection and recognition of surface defects in reinforced concrete bridges. Wang et al.10 

proposed an integrated approach for the detection of cracks in reinforced concrete bridges. In it, 

non-linear median filter was applied in the form of three continuous groups for removing noises 

from the original gray images. Then, an improved threshold segmentation model was proposed 

based on the integration of Otsu algorithm and modified Sobel operator. It was found that the 

developed approach managed to achieve an absolute error of 0.02 mm in the crack width. Yu et 

al.11 presented a crack detection algorithm for the detection of cracks in bridges based on a set of 

digital image processing techniques. In the developed model, a visual comparison between a set 

of filtering techniques was carried out, and it was inferred that orientation filtering was able to 

efficiently remove the noise to the maximum extent while retaining cracks’ edge information. 

Gamma transformation was used to correct the image and improve its contrast. Otsu algorithm 

was utilized to detect the crack through computing local thresholds for the different regions of 

the image. Zhang and Suen algorithm was implemented to extract the crack’s skeleton and 

Hough line algorithm was used to identify the different fragments and trends of multiple cracks. 

It was highlighted that the developed algorithm was able to provide engineers with a platform to 

measure widths of irregular cracks.  

Lei et al.6 developed a method for the crack detection based on the crack central point (CCPM) 

algorithm. Gaussian filter was applied to remove noise from images and restore them. They 

highlighted that the designated crack can be distinguished capitalizing on the existing minimum 

gray value in the row of crack area, which usually takes the form of parabolic distribution. They 

also urged that the developed method can accurately compute a separating threshold that can 

efficiently extract the crack from the images collected using the unmanned aerial vehicle. Zhang 

and Wang12 introduced a combined model for the classification of bridge cracks. Median filter 

and contrast enhancement were applied to reduce the corrupting noises and lessen the effects of 

background texture and details. Morphological analysis was then carried out to segment the 

crack details and eliminate noise bocks. Visual geometry group network (VGG16) was used to 

extract and realize features of the input segmented images. Finally, the extracted features were 

fed into support vector machines model to classify the images to either horizontal cracks, vertical 
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cracks, slope cracks and block cracks. It was concluded that the developed model outperformed 

support vector machines, convolutional neural network and projection algorithm providing 

detection accuracies above 90% for the four types of cracks.    

Noh et al.13 proposed a method for the automated detection of fine concrete cracks in bridges. 

Segmentation was performed using fuzzy C-means clustering to differentiate between cracked 

and non-cracked regions according to the average brightness of the pixels. Dilation 

morphological operation, grassfire search algorithm and connected component labeling were 

used for noise removal and better representation of the cracks’ information. Experimental results 

indicated that the developed model accomplished higher precision and recall when compared 

against edge detection algorithms. Xu et al.14 presented a deep learning-based model for concrete 

bridge crack detection. In the proposed model, the output feature map of the convolutional layers 

was fed into Atrous Spatial Pyramid Pooling (ASPP) module to identify the multi-scale crack 

feature information. The ASPP module encompassed depthwise separable convolution for 

reducing the computational complexity of the model while maintaining an appropriate prediction 

performance. The proposed model outperformed a set of transfer learning-based deep neural 

networks such as Resnet18, Resnet34, Resnet50, VGG16 and VGG19 providing accuracy, 

precision, sensitivity, specificity and F1 − score of 96.37%, 78.11%, 100%, 95.83% and 0.8771, 

respectively.     

Kim et al.5 identified bridge cracks using unmanned aerial vehicles equipped with a high 

resolution vision sensor. A 3D point cloud-based background model was generated in the 

preliminary flight to create the damage map. Region-based convolutional neural network 

(RCNN) was then implemented for the localization of cracks and quantification of their sizes. 

The developed crack quantification algorithm was able to achieve a relative error ranging from 

1% to 2%. Li et al.15 presented automated bridge crack detection and evaluation model based on 

the fusion of fully convolutional neural network and naïve Bayes algorithm. Label-maintaining 

transformation was applied to augment the original dataset using sliding window, rotation and 

slipping. In this regard, the output feature map of the convolutional neural network model was 

passed into naïve Bayes model to determine whether concrete images contain cracks. The 

developed detection model surpassed crack tree algorithm, random structured forest, relatively 

competitive convolutional neural network and deep fusion convolutional neural network 
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obtaining error rate of 1.28%. Furthermore, the developed quantification model yielded accuracy 

rates of 93.2% and 92.8% in interpreting cracks width and length, respectively.        

Yan et al.16 developed an encoder-decoder model for the autonomous detection of bridge cracks. 

The encoder comprised convolutional layers convolutional layers and pooling layers to generate 

the input feature map and reduce the computational burden, respectively. The decoder utilized 

the de-convolution method to restore the feature map. A residual module is added to the Res −

Unet network to better realize crack pixels and background pixels. It was found that the 

developed model succeeded in localizing and identifying the different fragments of cracks. 

Zhang et al.17 introduced computer vision-based model for bridge crack classification. Wavelet 

transform filter was used for de-noising and enhancing the quality of the input images. Otsu 

algorithm was applied for threshold segmentation based on the brightness and color of pixels in 

the images. Convolutional neural network was then applied to classify the types of cracks. 

Simulation results demonstrated that the developed model attained a correct classification rate of 

92%, 95% and 90% in detecting small cracks, larger cracks and serious cracks, respectively.  

Xie and Ming18developed a machine vision-based method for the detection of bridge cracks. 

Histogram equalization was carried out to obtain more uniform and continuous gray histogram. 

Median filtering, Gaussian filtering and Laplacian edge enhancement were deployed to remove 

salt and pepper noises as well as Gaussian noises. Otsu algorithm was then used to determine the 

optimum threshold value and detect the cracking features. Alexnet and Caffenet were utilized to 

identify the bridge cracks. It was concluded that the developed model could achieve a detection 

accuracy of 91.7%. Zhang et al.19 proposed an improved YOLO − V3 algorithm for bridge 

surface crack detection. In the developed model, depthwise separable convolution replaced the 

standard convolution to reduce the network’s parameters and computational effort. A 

convolutional block attention module was presented to create more effective adaptive learning of 

the features through multiplying the attention map with input feature map. The improved 

YOLO − V3 algorithm achieved precision and recall of 89.16% and 91.16%, respectively. 

Ye et al.20 presented a fully convolutional network model for the automated detection of 

structural cracks in bridges. The architecture of the fully convolutional network model comprised 

seven convolution layers, two up-sampling layers, two max-pooling layers, six deconvolution 

layers and a softmax layer. Pixel-level labeled images were used for training and testing the 
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developed model. Results showed that the developed deep learning model yielded precision, 

recall, intersection over union and F-measure of 0.84, 0.82, 0.73 and 0.6, respectively. Droguett 

et al.21 introduced a modified Densenet-based model for the semantic segmentation of crack 

images of concrete bridges. The modified topology of Densenet consisted of thirteen layers, one 

stage of feature extraction, and two stages of upsampling and downsampling. In the feature 

extraction module, each dense block represented a concatenation of convolutional units, whereas 

each convolutional unit dealt with a concatenation of all the previous units and the block unit. 

The modified architecture performed very well in crack segmentation attaining intersection over 

union of 94.51%.    

Vignesh et al.22 established a convolutional neural network-based model for the detection of 

bridge cracks. Gabor filter was employed to remove the noises, and enhanced adaptive 

thresholding module based on Otsu algorithm was proposed to better identify the crack edges. 

The convolutional neural network module included arous space pyramid pool to obtain the multi-

dimensional context data, and depthwise separable convolution to reduce the number of model 

parameters and computational loss without adversely affecting the prediction results. The 

developed crack detection model outperformed the standard Resnet50 obtaining recall rate, 

accuracy rate, false alarm rate and missed alarm rate of 99.55%, 96.69%, 3.31% and 94.64%, 

respectively. Tian et al.23 presented a concrete crack detection and evaluation model based on 

image processing techniques. Estimation of crack size was performed using scale algorithm and 

object-based algorithm Double edge statistical algorithm was then used to compute the cracking 

length. An improved scale invariant feature transform algorithm was introduced to deal with 

crack image mosaic. Results highlighted that the object-based algorithm performed better than 

the scale algorithm yielding accuracy above 90%. Also, the developed crack estimation 

algorithm was able to achieve 92% accuracy.    

It can be inferred that most of the previous studies focused on the recognition and assessment of 

cracking, which reveals that there is lack of investigation of other surface defects such as scaling 

and spalling. The absence of spalling and scaling assessment models which can look at the 

evaluation of their severity levels, create incomprehensive and unreliable condition assessment 

models that in return can substantially influence the maintenance planning and prioritization 

models in the different managerial levels. Furthermore, most of the previous publications relied 
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on Otsu algorithm followed by K-means clustering and then fuzzy C-means clustering and 

watershed algorithm for the segmentation of the defects from the background. Detection of 

scaling in images is an exhaustive task due to their complex texture patterns, presence of noise, 

uneven illumination and existence of low contrast between scaling and the background. These 

encountered conditions create multi-modal histograms which are difficult to be explored by the 

classical segmentation models and causes them to fail in segmenting scaling images efficiently. 

In this regard, it should be noted that searching multimodal histograms to find the optimum 

threshold is more exhaustive and sophisticated task to be achieved more than the unimodal 

histograms. It can be also inferred that there is lack of investigation of the optimization-based 

methods which are less invariant to the noise that may corrupt the images and yield more 

accurate results when compared against the classical segmentation methods mostly in the 

complex images.24,25  

Some previous models utilized back propagation artificial neural networks for the detection and 

classification of cracks. In this context, their training process is normally carried out using 

gradient descent algorithm, which is based on finding the partial derivative of the error function 

with respect to each weight in an attempt to minimize the distances between the predicted and 

actual values. However, learning using gradient descent algorithm is highly vulnerable to poor 

convergence rate, local minima stagnation, over-fitting issues and low global search abilities. 

This restrains the neural network model from obtaining the most optimum configuration of 

weights.26,27      

3. PROPOSED METHOD  

The ultimate objective of the present study is to provide transportation agencies with an 

automated decision-making platform that aids in evaluation of scaling severities in reinforced 

concrete bridges capitalizing on a unified scaling severity index. This is addressed through 

establishing a three-tier paradigm for the detection and synthetic analysis of scaling. The 

framework of the proposed method is depicted in Figure 1. As can be seen, it encompasses three 

main models, namely scaling detection, scaling evaluation and scaling severity index. The first 

model is designed for the purpose of detection of scaling in reinforced concrete bridges. In it, the 

first step is to standardize the images to size of 200×200 in order to facilitate the further 

processing stages. The next stage involves conversion of true-color image RGB to the grayscale 
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image to minimizing the computational effort meanwhile preserving the important features in the 

image. In the true-color RGB image; R G and B stand for red, green and blue, respectively. The 

lowest possible intensity value of R, G and B is zero while the highest possible value is 255. The 

conversion to grayscale image is performed through weighted average of the R, G and B colors as 

follows.28  

G(i, j) = 0.299 × R(i, j) + 0.587 × G(i, j) + 0.114 × B(i, j)                                                              (1) 

Where; 

G(i, j) stands for the grayscale image.  

Noise represents unwanted information that degrades the quality of the image and has adverse 

implication on the further stage of detection and evaluation of scaling. Image restoration can be 

performed in several domains such as spatial domain and frequency domain. Spatial domain 

techniques deal directly with the pixel intensities present in the image. Nevertheless, frequency 

domain filters are based on the Fourier transform of the image. The proposed method utilizes 

Wiener filer as a frequency domain filter to remove the maximum noise from the corrupted 

images while maintaining the significant characteristics and important features of the image. In 

this regard, the frequency domain filter is preferred over the spatial domain filter because it 

demonstrated higher restoration capacity with respect to other spatial domain filters in dealing 

with different types of noises.29,30,31 

Bridges are complex structures due to the substantial and exhaustive amount of details and 

information present in images. Furthermore, they experience low contrast, color distortion, 

irregular texture pattern and inhomogeneous illumination conditions. Thus, min-max gray level 

discrimination approach is applied to magnify the differences between the scaling and the 

background. The min-max gray level discrimination approach increases the gray level intensities 

of the scaling pixels causing them to become darker, and it increases gray level intensities of 

non-scaling pixels causing them to become lighter. The enhanced image capitalizing on the min-

max gray level discrimination approach can be obtained as follows.32  

Ia(x, y) = {
      min(M, T)  if  Io(x, y) >  Iomin + τ × (S)      

max(N, F) if  Io(x, y) ≤  Iomin + τ × (S)
                                                             (2) 

Such that;  
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T = Io(x, y) × Ra,   

F = Io(x, y) × Ra
−1 

S = Iomax − Iomin 

M = Iomax 

N = Iomin 

Where; 

Ia(x, y) and Io(x, y) represent the adjusted image and original image, respectively. Iomin and 

Iomax represent the minimum and maximum gray level intensities in the original image. τ and 

Ra denote the margin parameter and adjusted ratio, respectively. In this context, τ and Ra are set 

as 0.5 and 1.1, respectively.   

The next stage is the image segmentation, whereas in it bi-level thresholding is performed to 

generate a single threshold T that classifies the image pixels into two classes, namely foreground 

(scaling) and background (surface). The bi-level thresholding function can be defined as follows.  

B(x, y) = {
               1, if F(x, y) ≥ T           

0 , otherwise
                                                                                               (3) 

Where; 

B(x, y) represents the binary image. F(x, y) represents the gray image. T denotes the threshold 

that separates the foreground scaling pixels from the background non-scaling pixels, whereas if 

the image pixels are above the threshold, they are appended to the foreground scaling pixels 

otherwise, they are appended to the background 

Image segmentation methods can be categorized into five main clusters, namely edge detection-

based methods, clustering-based methods, region-based methods, histogram-based methods, and 

optimization-based methods. In the recent few years, optimization-based methods have received 

considerable attention by researchers, and they demonstrated their superior segmentation 

capacities against other image segmentation methods. In this regard, image segmentation is 

formulated as optimization problems, whereas the optimum threshold is computed based on a 

predefined objective function such as maximizing of the between-class variance, maximization 
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of the Kapur entropy, maximization of the Renyi’s entropy and minimization of the Bayesian 

error.33,34,35  

The proposed scaling segmentation model (MCE − GWO) utilizes grey wolf optimization (GWO) 

algorithm to search for the optimum threshold capitalizing on minimization of the cross entropy 

(MCE) between the original image and segmented image. Minimum cross entropy approach 

proved its higher segmentation capacity in different bi-level thresholding and multi-level 

thresholding applications. Furthermore, it requires less parameters to be calibrated when 

compared against other image segmentation approaches.36,37,38 Grey wolf optimization algorithm 

is a newly-developed and efficient meta-heuristic in the area of swarm intelligence that exhibits 

proper trade-off between exploration and exploitation process which enables it to avoid local 

minima entrapment and this leads to improved convergence rate.39,40 It has been previously-

utilized in exploring complex and multi-local search spaces in diversified real-world applications 

such as designing reinforced concrete cantilever retaining wall41, vehicular ad-hoc networks42, 

water resources allocation43, and economic load dispatch problems.44 Furthermore, it 

outperformed some of the well-performing state of art meta-heuristics including genetic 

algorithm, particle swarm optimization algorithm, artificial bee colony algorithm, cuckoo search 

algorithm, bat algorithm, improved bat algorithm and gravitational search algorithm.45,46,47,48 

Another competitive advantage of grey wolf optimization algorithm is that it requires fewer 

control parameters to be calibrated which leads to less effort in the tuning process. This also 

implies that grey wolf optimization algorithm experiences less perturbations and more robust 

search performance.49,50 Furthermore, grey wolf optimization is characterized by its simplicity, 

less memory requirements and ease of implementation.51,52 As such, the characteristics of grey 

wolf optimizer make it suitable for the implementation in scaling detection and evaluation. 

Several improvements in the literature have been proposed to the classical grey wolf 

optimization algorithm in order to search for the global optimum solution in a faster and more 

efficient manner through integration with other meta-heuristics53,54, adding new search 

strategies55,56,57,58 and using chaotic operators.59 Thus, the present study relies on the classical 

grey wolf optimization algorithm for the automated segmentation of scaling pixels and 

interpretation of scaling area.       
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The validation process of the scaling detection model is three-folded. The first fold is to 

substantiate the deployment of grey wolf optimization algorithm through comparison with high-

performing state of art meta-heuristics, namely genetic algorithm (GA), particle swarm 

optimization (PSO) algorithm, harmony search (HS) algorithm, differential evolution (DE) 

algorithm and shuffled frog-leaping (SFL) algorithm. The second fold is conducted to justify the 

employment of the proposed optimization-based method. This encompasses its comparison 

against other types of segmentation models including: Otsu, K-means clustering (KM), fuzzy C-

means clustering (FCM) and expectation maximization (EM). K-means aims at dividing the data 

observations into homogenous groups through minimizing the sum of squared error between the 

data points and their respective cluster’s centroid over all clusters. Expectation maximization 

algorithm involves two stages, namely expectation and maximization. The expectation stage 

encompasses computing the cluster probability for every data instance. The maximization stage 

obtains the parameters of the distribution based on the clusters’ probabilities through maximizing 

the likelihood of the distribution given the data instances.60 The third fold is for the purpose of 

evaluating the statistical significance of the output of the proposed MCE − GWO model against 

the afore-mentioned segmentation models. In this regard, Shapiro-Wilk test is applied first to 

study the normality of the data at significance level (α) of 0.05. Afterwards, parametric or non-

parametric tests are performed relying on the assessment of normality of the data. Assessment of 

the performances of the optimization-based models is a complicated task because it usually 

comprises several conflicting performance indicators that need to be considered.61 In this regard, 

the scaling segmentation models are evaluated as per three performance indicators which are: 

mean-squared error, mean absolute error, peak signal to noise ratio and cross entropy.    

The second model aims at evaluation of scaling based on area whereas feature extraction plays a 

very fundamental role in it. Feature extraction is a dimensionality reduction algorithm that 

transforms a higher dimension dataset into a lower one meanwhile preserving the model 

prediction performance through eliminating redundant and uninformative attributes.62 Feature 

extraction can be performed based on spatial domain analysis or frequency domain analysis. 

Spatial domain approach deals with physical parameters such that spatial domain features 

include texture, size, color, shape and edge intensity. Frequency domain approach relies on 

measuring parameters from an image, and the frequency domain features encompasses the 

coefficients of fast Fourier transform, discrete cosine transform (DCT) and discrete wavelet 
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transform (DWT). Frequency domain represents a space in which each image value at a certain 

position F constitutes the amount that the intensity values in spatial domain image I vary over a 

specific distance with respect to position F. Thus, frequency domain demonstrates the rate at 

which image intensity values are changed in the spatial domain image I. High frequency 

components correspond to pixel values that transit rapidly across the image such as text and 

edges. Strong low frequency components correspond to large scale features in the images such as 

smooth regions, homogenous objects that dominate the image, and slow-varying character. It is 

worth mentioning that the DCT and DWT transformation algorithms enable the transition from 

the spatial domain to frequency domain, and the inverse transformation enables returning back to 

the original spatial space.63,64 

The present study proposes a novel feature extraction method that capitalizes on cascading the 

higher efficiency capabilities of singular value decomposition (SVD) in capturing the intrinsic 

information and the robustness of discrete wavelet transform against proportion variance and 

rotation variance. In this context, singular value decomposition and discrete wavelet transform 

are adopted to model the spatial domain features and frequency domain features, respectively. 

This concatenation of features (SVD − DWT) is expected to establish a trade-off that minimizes 

the complexity of the training process and computational time alongside enhancing the 

computational capacity of the machine learning model elicited from its ability in providing an 

accurate representation for the information in images.  

The fusion of the singular value decomposition and discrete wavelet transform creates a feature 

vector that is then utilized to feed the machine learning model. In this regard, a hybrid Elman 

neural network-grey wolf optimization (ENN − GWO) model is established to autonomously 

evaluate the scaling area in reinforced concrete bridges. This model can be deployed by 

transportation agencies without domain knowledge in machine learning and meta-heuristics.  

Training Elman neural networks  with meta-heuristic optimization  algorithms is a powerful 

mechanism to improve the search engine of Elman recurrent neural networks through addressing 

the exploration– exploitation trade-off dilemma, which is expected to yield a significant 

enhancement in the prediction accuracy of scaling area. The proposed method utilizes grey wolf 

optimization algorithm for both parametric and structural learning, i.e., to automatically optimize 

the weights and define the best possible architecture of the Elman recurrent neural network. The 
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Elman neural network is trained by designing a variable-length single-objective optimization 

problem which encompasses a fitness function of minimization of the mean absolute percentage 

error of the scaling area. The steps of the grey wolf optimization algorithm are repeated until 

satisfying the convergence criteria, i.e., reaching maximum designated number of iterations. The 

optimized Elman neural network is saved and utilized to simulate the testing dataset. 

The validation of the proposed scaling area evaluation model is conducted through three phases 

of comparisons. The first phase constitutes validating the employment of grey wolf optimization 

algorithm. This is achieved through comparing the proposed ENN − GWO model against hybrid 

Elman neural network-genetic algorithm (ENN − GA) model, hybrid Elman neural network-

particle swarm optimization algorithm (ENN − PSO) model, hybrid Elman neural network-

harmony search algorithm (ENN − HS) model, hybrid Elman neural network-differential 

evolution algorithm (ENN − DE) model and hybrid Elman neural network-shuffled frog-leaping 

algorithm (ENN − SFL) model. The second phase involves comparing ENN − GWO model 

against seven state of art machine learning and deep learning models reported for their higher 

accuracies, namely back-propagation artificial neural network (ANN), Elman neural network, 

radial basis neural network (RBNN), generalized regression neural network (GRNN), 

convolutional neural network (CNN), support vector machines (SVM) and decision tree (DT). 

Evaluation of prediction models is one of the crucial issues in any data mining process, and it 

needs to be carried out based on multiple performance measures to create a comprehensive 

assessment of the prediction models.65 Thus, the performances of the prediction models are 

assessed as per mean absolute percentage error (MAPE), root-mean squared error and mean 

absolute error (MAE). It is worth mentioning that the performances were assessed using split 

validation and 10-fold cross validation. The K-fold cross validation is used to ensure the training 

and testing of the entire dataset, which truncates the possibility of encountering over-fitting or 

over-learning in the scaling evaluation phase. The second phase aims at evaluating the robustness 

and stability of the scaling evaluation models using box plot analysis. The third phase is 

designated for the evaluation of the statistical significance levels of the outcome of prediction 

models using the performances of the different folds at a significance level of 0.05. 

The third model is developed for the purpose of establishing a unified scaling severity index to 

evaluate scaling in reinforced concrete bridges based on its area and depth. It should be 
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mentioned also that the proposed index can aid transportation agencies in prioritizing bridge 

decks for maintenance. The scaling area is interpreted from the previous model while the scaling 

depth is adopted from the third-order polynomial regression function developed by Dawood et 

al.66. The severity of scaling area is expressed in the form of percentage of the scaling area with 

respect to the whole zone area. Sufficient amount of record needs to be available for the sake of 

creating accurate severity rating systems of both area and depth. In this context, both scaling 

depth and area are simulated as random variables that follow certain probability distributions 

relying on the available dataset. Then, the best-fit probability distribution is determined 

according to Anderson Darling test goodness of fit test. Afterwards, Latin hypercube sampling is 

adopted to create numerous scenarios in order to establish the rating system for both scaling area 

and depth. Latin hypercube is stratified sampling scheme that offers better space coverage and 

scanning of the domain of the multi-dimensional design space. It is preferred over Monte Carlo 

sampling because it exhibits faster convergence rate within less number of samples and less 

variance.67,68 

Fuzzy C-means clustering is adopted to compute the thresholds of the severity levels for both 

scaling area and depth. In this context, fuzzy C-means clustering is preferred over other 

clustering algorithms due to its ability to deal with inherent uncertainties encountered during the 

capturing and processing of the scaling images. Additionally, it produces more compact and 

better-separated clusters than hard K-means clustering algorithm.69,70,71 The input images are 

then evaluated based on area and depth to determine the degree of scaling severity based on the 

obtained thresholds. The worst case scenario yielded from both scaling area and depth is selected 

and appended to create a more conservative model. Finally, the unified scaling severity index can 

be computed based on the weighted average computation of the different condition categories 

using Equation (4). The previous models are automated using a computerized platform that 

encompasses a hybridization of visual C#.net and Matlab programming languages. It is expected 

that the automated platform is capable of exploiting the compatibility and versatility capabilities 

of C#.net and the superior computational capacity of the Matlab.        

USSI =
∑ Qc×Wc

4
c=1

∑ Qc
4
c=1

                                                                                                                                         (4)                                                                                                                             

Where; 
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Qc represents the number of zones in condition category c. Wc represents the weighting factors 

for a bridge element in condition category c. The weighting factors for the “good”, “medium”, 

“severe”, and “very severe” condition categories are assumed 100%, 70%, 50%, and 20%, 

respectively. 

INSERT FIGURE 1 

4. SCALING DETECTION MODEL 

The proposed segmentation model (MCE − GWO) capitalizes on accommodation the minimum 

cross entropy approach and grey wolf optimization algorithm for the discrimination of scaling 

from background pixels. This section describes the basic theories of minimum cross entropy 

approach and grey wolf optimization algorithm.   

4.1 Minimum cross entropy approach  

Cross entropy is known as “Divergence”, which is information metric that is used to measure 

the distance between two probability distributions. Assume A = {A1, A2, A3, A4, …… . . AN} and 

B = {B, B2, B3, B4, …… . . BN}, which represent two probability distributions. The cross entropy 

between A and B can be computed using Equation (5).72,73 D(A, B) =

log (∑ Ai (
Ai

Bi
)

N

i=1
                                                                                                                     (5) 

Where; 

D(A, B) represents the cross entropy between the two probability distributions.  

The minimum cross entropy thresholding algorithm is based on finding the optimum threshold 

T between the original image the segmented image. Assume an image I that contains L gray-

levels {0, 1, 2, 3, …… . . L − 1}. Then the segmented image It obtained based on the threshold T 

can be defined using the following Equation. 

 It (x, y) = {
               µ(0, T − 1), if I(x, y) < T               

 µ(T, L − 1), if I(x, y) ≥ T
                                                                       (6)  

The normalized value of the cross entropy between the ranges c and d can be computed using 

Equation (7). 
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µ(c, d) =
∑ iH(i)d−1

i=c

∑ H(i)d−1
i=c

 , i = 0, 1, 2, 3, …… . . L − 1                                                                            (7) 

The minimum cross entropy thresholding algorithm finds the optimum threshold by minimizing 

the cross entropy of the image (objective function) as shown in Equation (8). 

D(T) = min [∑ih(i) × log(i) −

L

i=1

∑ih(i) × log(µ(1,  t)) −

t−1

i=1

∑ih(i) × log(µ(t,  L))

L

i=t

]               (8) 

Since the first term is constant for a given digital image, the objective function can be re-

formulated as follows. 

 D(T) = min [−∑ih(i) × log(µ(1,  t)) −

t−1

i=1

∑ih(i) × log(µ(t,  L))

L

i=t

]                                              (9) 

Where; 

D(T) = min [− ∑ i × h(i) × log (

T−1

i=0

∑ i × h(i)T−1
i=0

∑ i × h(i)T−1
i=0

)

− ∑i × h(i) × log (

L−1

i=T

∑ i × h(i)L−1
i=T

∑ i × h(i)L−1
i=T

)]          (10) 

4.2 Basic theory of grey wolf optimization algorithm  

Grey wolf optimization algorithm is a recently-developed nature-inspired algorithm that was 

proposed by Mirjalili et al. in 2014.40 The GWO algorithm is characterized by its capability to 

offer a proper trade-off between exploration and exploitation. This algorithm is based on 

simulation of the behavior of a pack of grey wolves, which follow distinct steps while hunting 

in nature. Each pack hierarchy consists of four levels of grey wolves which are: alpha (α), beta 

(β), delta (δ) and omega (ω). Alpha wolves are the leaders of the pack and the ones responsible 

for making decisions. The next level in the hierarchy is the beta grey wolves, whereas they act 

as the subordinates of the alpha grey wolves and they support them in the decision-making 

process. Delta grey wolves follow the dictated orders of both alpha and beta grey wolves but 

they dominate the omega grey wolves. Delta grey wolves can be scouts, hunters, elders, 

sentinels or caretakers. Omega grey wolves are the least prioritized wolves in the hierarchy, 
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whereas they have to submit to all other dominant wolves. They play the role of scapegoat and 

they are the last ones allowed to eat.  

The hunting mechanism of the GWO algorithm is discussed in the following sections40,74:  

The social hierarchy of the GWO algorithm is as follows: a specific number of grey wolves in 

the pack explore the multi-dimensional search space to hunt a prey. The positions of the grey 

wolves are deemed as different position variables such that the distances of the prey from the 

grey wolves determine the fitness function values. Alpha is considered as the fittest solution 

while beta is the second best solution. Finally, delta is the third fittest solution. The individual 

grey wolf adjusts its position and moves towards a better position over the course of iterations 

in order to reach the prey with the shortest possible route.    

Encircling prey is one of the main operators in the GWO algorithm, whereas grey wolves 

encircle prey during the hunting process. Equation (11) and Equation (12) are used to update 

the position of the grey wolf from the current location to a new location. The encircling 

behaviour can be mathematically expressed as follows.     

D⃗⃗ = [C⃗ . Xp
⃗⃗ ⃗⃗ (t) − X⃗⃗  (t)]                                                                                                                              (11) 

X⃗⃗ (t + 1) = [Xp
⃗⃗ ⃗⃗ (t) − A⃗⃗ . D⃗⃗ ]                                                                                                                        (12) 

Where; 

t indicates the current iteration. Xp
⃗⃗ ⃗⃗  and X⃗⃗  are the position vectors of the prey and grey wolf, 

respectively. C⃗  and A⃗⃗  are the coefficient vectors and they can be expressed as follows.  

 A⃗⃗ = 2a⃗ . r1⃗⃗  ⃗ − a⃗                                                                                                                                              (13) 

 C⃗ = 2. r2⃗⃗  ⃗                                                                                                                                                       (14) 

Where; 

a⃗  is a motion vector linearly decreasing from 2 to 0 over the course of iterations in order to 

model approaching the prey. r1⃗⃗  ⃗ and r2⃗⃗  ⃗ are two random vectors within the interval [0, 1]. The 

vector C⃗  simulates the effect of the obstacles close to the prey in nature.  

The hunting is a main operator in the GWO algorithm, whereas grey wolves are capable of 

determining the position of the prey and encircle it for hunting. Alpha grey wolf guides the 

pack during the hunting process. Beta and delta wolves might also participate in the hunting 

process. The alpha wolf which represents the best candidate solution in addition to the beta and 
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delta wolves are assumed to have better knowledge about the position of the prey. Then, the 

best three positions obtained so far are appended and other search agents including the omega 

wolves are enforced to update their positions as per the positions of the best search agents. The 

mathematical formulation of the hunting behavior and positions of various categories of grey 

wolves can be expressed as follows.   

Dα
⃗⃗⃗⃗  ⃗ = |C1

⃗⃗⃗⃗ . Xα
⃗⃗ ⃗⃗  − X⃗⃗ |                                                                                                                                        (15) 

 Dβ
⃗⃗ ⃗⃗  = |C2

⃗⃗⃗⃗ . Xβ
⃗⃗ ⃗⃗ − X⃗⃗ |                                                                                                                                       (16) 

Dδ
⃗⃗ ⃗⃗  = |C3

⃗⃗⃗⃗ . Xδ
⃗⃗⃗⃗ − X⃗⃗ |                                                                                                                                        (17) 

 X1
⃗⃗⃗⃗ = Xα

⃗⃗ ⃗⃗  − A1
⃗⃗ ⃗⃗ . (Dα

⃗⃗⃗⃗  ⃗)                                                                                                                                   (18) 

 X2
⃗⃗⃗⃗ = Xβ

⃗⃗ ⃗⃗ − A2
⃗⃗ ⃗⃗  . (Dβ

⃗⃗ ⃗⃗  )                                                                                                                                   (19) 

X3
⃗⃗⃗⃗ = Xδ

⃗⃗⃗⃗ − A3
⃗⃗ ⃗⃗  . (Dδ

⃗⃗ ⃗⃗  )                                                                                                                                     (20) 

X⃗⃗ (t + 1) =
X1
⃗⃗⃗⃗ + X2

⃗⃗⃗⃗ + X3
⃗⃗⃗⃗ 

3
                                                                                                                         (21) 

Where; 

Xα
⃗⃗ ⃗⃗  , Xβ

⃗⃗ ⃗⃗  and Xδ
⃗⃗⃗⃗  represent the position vectors of the alpha, beta and delta fray wolves, 

respectively. The coefficient vectors C1
⃗⃗⃗⃗  , C2

⃗⃗⃗⃗ , C3
⃗⃗⃗⃗ , A1

⃗⃗ ⃗⃗ , A2
⃗⃗ ⃗⃗   and A3

⃗⃗ ⃗⃗   are computed using Equation 

(13) and Equation (14). X⃗⃗ (t + 1) represents the updated position of the grey wolf.   

Attacking the prey is an important operator in the grey wolf optimization algorithm. The 

hunting process of the grey wolf optimization algorithm is terminated by attacking the prey 

when it stops moving. The fluctuation range of A⃗⃗  is assumed to decrease by a⃗ , which implies 

that A⃗⃗  is a random value in the interval [-2a, 2a]. It was found that when |A⃗⃗ |<1, the grey 

wolves are forced to attack the prey which implies exploitation or local search of the grey wolf 

optimization algorithm. Search of prey is an essential operator in the hunting strategy of the 

GWO algorithm, whereas based on the positions of the alpha, beta and delta wolves, the grey 

wolves diverge from each other to search for the prey. It was noticed that when |A⃗⃗ |>1, the grey 

wolves diverge to search for a better prey in the search space which implies exploration or the 

global search of the grey wolf optimization algorithm. This avoids stagnation of the GWO 

algorithm in local solutions. It is worth mentioning that the coefficient vector in Equation (14) 

enables the GWO algorithm to behave more randomly and emphasize efficient exploration of 
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the solution space by avoiding local optima. Finally, the GWO algorithm is terminated when 

the convergence criteria is satisfied.     

5. SCALING EVALUATION MODEL  

The scaling evaluation model is divided into two main sections, namely hybrid feature 

extraction model and Hybrid ENN − GWO model for scaling area interpretation.  

5.1 Hybrid feature extraction model 

The framework of the proposed SVD − DWT model for feature extraction is depicted in Figure 

2. As shown in Figure 2, the spatial and frequency domain features are extracted using singular 

value decomposition and discrete wavelet transform, respectively. With respect to singular 

value decomposition, an input image of size 200×200 is reduced to a feature vector of size 

1×200 that represents the singular values of the image. For discrete wavelet transform, the size 

of the input image is modelled using a sub-band energy vector of size 1×10 that is obtained 

from the wavelet decomposed scaling image. The two feature vectors are fused to create a 

resultant feature vector of size 1×210 to speed up the computational process by eliminating the 

insignificant features and appending the most dominant information in scaling images. An 

overview of the use of discrete wavelet transform in feature extraction of scaling images is 

presented in as follows.   

INSERT FIGURE 2    

Discrete wavelet transform is a multi-resolution representation that splits the input image into 

multiple frequency sub-bands that carry coarse approximation and detailed information of the 

image by convolving its rows and columns through a set of band pass filters.75 The detailed 

information of the image is represented in three directions, namely vertical, horizontal and 

diagonal. In the present study, two dimensional discrete wavelet transform (2D − DWT) is 

applied to decompose the input scaling image, whereas a single level of decomposition using  

2D − DWT results in four frequency sub-band images.76 These frequency sub-bands are 

referred to as low-low (LL), low-high (LH), high-low (HL) and high-high (HH). In this regard, 

each of these frequency sub-bands denotes different characteristics of the image. The 
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frequency sub-images can be derived through the implementation of scaling functions and 

wavelet functions as shown in Equations (22), (23), (24) and (25).77      

ψLH(x, y) = Φ(x)ψ(y)                                                                                                                              (22) 

ψHL(x, y) = ψ(x)Φ(y)                                                                                                                              (23) 

ψHH(x, y) = ψ(x)ψ(y)                                                                                                                              (24) 

ΦLL(x, y) = Φ(x)Φ(y)                                                                                                                              (25) 

Where; 

Φ(. ) and ψ(. ) stand for scaling function (low-pass filter) and wavelet function (high-pass filter), 

respectively. Φ(x) and Φ(y) represent 1D scaling functions in row direction and column 

direction, respectively. ψ(x) and ψ(y) signify 1D wavelet functions in row direction and column 

direction, respectively. The high-pass filter extracts the high frequency components which 

contain detailed image’s coefficients while the low pass filter induces the low frequency 

information which involve most of the image’s energy (approximation coefficients). The sub-

band image LH preserves the horizontal details of the image and it is obtained by implementing 

low-pass filter for rows and high-pass filter for columns. The sub-band image HL exhibits the 

vertical knowledge of the image and it is generated by passing the columns through low-pass 

filter and the rows by high-pass filter. The diagonal information of the image is stored in the 

sub-band image HH and it is produced by passing both rows and columns through low pass and 

high pass filters. LL is a coarse approximation of the image and it is created by passing both 

rows and columns through low pass filtering. 

In each level of decomposition, the 2D − DWT generates the previously-mentioned four sub-

band frequency images of LH, HL, HH and LL. In this context, at the primary level of 

decomposition, the four sub-band images are referred to as LH1, HL1, HH1 and LL1. The 

coefficient of the sub-image of LL1 are used as an input for the subsequent second level of 

decomposition, whereas the sub-image is further decomposed into LH2, HL2, HH2 and LL2.In 

the third level of decomposition, the frequency sub-image LL2is further divided into LH3, HL3, 

HH3 and LL3. The process continues until reaching the desired number of wavelet 

decomposition. At L levels of decomposition of 2D − DWT, there are (3 × L)+1 sub-bands. In 
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the developed method, the scaling images undergo three levels of decomposition. This, results 

in obtaining ten frequency sub-band images.78 Three levels of decomposition are found to 

provide an optimal trade-off between computational accuracy and computational 

efficiency.79,80 Figure 3 illustrates a visualization of three level decomposition of the input 

scaling image using 2D − DWT. As can be seen, the dimensions of the host scaling images are 

decreased by half during each level of decomposition. The frequency domain feature vector is 

composed of the energy values of the ten sub-images obtained from the three levels of 

decomposition. Thus, the size of the frequency domain feature vector is 1×10. The energy of 

each sub-band frequency image can be computed using Equation (26).78,81      

INSERT FIGURE 3    

ENEs =
1

W × H
∑∑|

H

j=1

W

i=1

Ps(i, j)|                                                                                                             (26) 

Where; 

ENEs stands for the energy of the s − th sub-band image. Ps(i, j) denotes the pixel value of 

coordinates i and j in the s − th sub-band image. W and H are the width and height of the sub-

band image, respectively.   

The developed method gives the user the flexibility to select between Haar, Daubechies 3, 

Symlet 2and Coiflet 5 wavelet transforms to build the frequency domain feature vector set. In the 

current case study, Haar wavelet transform is selected over other wavelets because it is one of 

the most important and frequently utilized wavelets that has been successfully implemented in 

several and diverse applications that demand high levels of accuracies. This encompasses its use 

in fingerprint recognition in document images82, cloud detection from satellite images83, 

monitoring driver fatigue84 and image compression.85 Haar wavelet is also characterized by 

being symmetric, orthogonal, and conceptually simple to compute and understand.86,87 

Furthermore, it is compactly supported, a computationally efficient wavelet and able to extract 

features well in the presence of noises.88,89,90  
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5.2 Hybrid 𝐄𝐍𝐍 − 𝐆𝐖𝐎 model for scaling area interpretation  

The present study introduces a self-adaptive hybrid ENN − GWO model for the sake of 

automated evaluation of scaling present in images retrieved from reinforced concrete bridges. 

Elman neural network is a recurrent neural network that was proposed by Jeffrey Locke Elman 

in 1990. Elman neural network is known by its additional context layers, which helps in 

providing a memory about the results of the computations done so far in the network. The main 

distinct feature between the conventional feed-forward neural networks and recurrent neural 

networks is that in the case of RNNs, the output at each time step depends on memorizing 

previous inputs and computations while in the feed-forward neural network, outputs are 

independent of each other and the network output depends only on the current time step.91,92   

In the proposed method, grey wolf optimization algorithm is applied to train the Elman neural 

network for the purpose of circumventing the slow learning rate, inferior accuracy of the 

gradient descent algorithm and the manual tuning of hyper parameters of Elman neural 

network. This is expected to achieve the global convergence accurately efficiently through 

amplifying the exploration and exploitation of the search space. The convergence of the 

gradient descent algorithm is highly sensitive to the initial setting of weight values, and this 

may yield significant different performances from one setting to the other. Additionally, 

starting with incorrect values results in slow learning progress. As such, the training process 

based on the gradient descent algorithm usually gets the network to converge to local minima. 

The convergence of the network before global minima often hinders its exploration of the 

whole search space and training set, which results in inferior network performance.26,27    

With regards to the manual tuning of the hyper parameters of Elman neural network, Elman 

neural networks are characterized by the presence of large number of hyper parameters such as 

number of context layers, number of hidden layers, number of context neurons, number of 

hidden neurons and type of activation transfer function. Manual tuning is based on trial and 

error iterations to come up with the optimum configuration of the hyper parameters. In this 

context, manual tuning of these hyper parameters is error-prone, tedious, and highly reliable on 

engineers’ expertise and understanding of the features of the underlying problem. Moreover, it 

is incapable of capturing non-linear hyper parameters’ interactions and it is impractical in 

complex large-scale problems.93,94      
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In view of the above, the developed method relies on grey wolf optimization algorithm for the 

simultaneous tuning of parameters and hyper parameters of Elman neural network. With 

respect to the parametric learning, the developed method aims at optimizing the weight values 

of the connections between neurons. At the level of structural learning, the developed method 

automatically optimizes number of context layers, number of context neurons, number of 

hidden layers, number of hidden neurons and type of transfer function. In this regard, the 

developed method explores the implementation of eight different types of activation transfer 

function. This encompasses triangular basis transfer function, normalized radial basis transfer 

function, radial basis transfer function, positive linear transfer function, linear transfer 

function, Elliot symmetric sigmoid transfer function, log-sigmoid transfer function and 

hyperbolic tangent sigmoid transfer function. As a result of the hyper parameter optimization 

feature of the developed method, the number of weighted connection changes during each 

training iteration according to the numbers of context layers, hidden layers, context neurons 

and hidden neurons. Therefore, an estimator is created for the automated computation of the 

number of weighted connections according to the explored hyper parameters in this iteration. 

The designed estimator can be mathematically expressed using Equation (27).  

Num_W = ((IN + 1) × HN) + ((HN × CN × HL + ((HN + 1) × HN × (HL − 1))

+ ((HN + 1) × ON)                                                                                                       (27) 

 Where; 

 Num_W is the number of weighted connections between neurons. IN and ON represent 

numbers of input neurons and output neurons, respectively. HN and CN denote numbers of 

hidden neurons and context neurons, respectively. HL stands for number of hidden layers. In 

this regard, the number of hidden layers is assumed to be equal to the number of context layers. 

It is worth mentioning that the developed automated platform enables to set the maximum 

numbers of hyper parameters according to the desired user’s preference.            

The automated parameter and hyper parameter optimization is carried out based on designing a  

single-objective optimization function that minimizes the mean absolute percentage error of 

scaling area. In this context, the automated calibration of Elman neural network is triggered by 

the spatial domain and frequency domain features of the input scaling images. Mean absolute 

percentage error is chosen as training function because it is a widely-utilized performance 
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indicator for the evaluation of prediction models. Furthermore, it is more robust and practical 

performance metric.95,96 The mean absolute percentage error of scaling area can be defined 

using Equation (28). 

MAPE =
100

N
× ∑

|Pi − Ai|

Ai

K

i=1

                                                                                                                   (28) 

Where; 

K  denotes number of input images. Ai and Pi stand for actual and predicted scaling areas of i −

th image , respectively.  

6. METHOD IMPLEMENTATION  

The images utilized to train and test the proposed scaling detection and evaluation method are 

captured from three bridge decks in Montreal and Laval, Canada using Sony DSC-H300 digital 

camera of 20.1 megapixel resolution. The dimensions of the captured images are of size 

5152×3864, and the resolution of the image is 350 ppi (pixels per inch). The dataset is 

comprised of 60 images such that 50 images were used for training and the remaining 10 

images were utilized for testing purpose. All the computations of the machine learning and 

optimization algorithms are carried out on a laptop with an Intel Core i7 CPU, 2.2 GHz and 16 

GB of memory. The images are standardized to 200×200 to speed up the computation process 

and enhance the learning capacity of the developed machine learning model. Sample of the 

scaling images is shown in Figure 4. Different positions and orientations of scaling are 

considered for the sake of investigating the robustness of the proposed  MCE − GWO model. 

Wiener filter of size 3×3 is applied to restore the images by removing noises present in images. 

Then, the min-max gray level discrimination approach is applied for the purpose of contrast 

enhancement of scaling.   

INSERT FIGURE 4    

The proposed scaling segmentation model relies on the integration of minimum cross entropy 

approach and grey wolf optimization algorithm for the purpose of segmentation of scaling in 

reinforced concrete bridges. The cross entropy is the objective function that GWO algorithm 

seeks its minimization to explore the search space for the optimum threshold. The number of 

iterations and search agents of the GWO algorithm are assumed 10 and 40, respectively. The 
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convergence curves of the proposed MCE − GWO model for image “A”, image “B”, image 

“C”, image “D” and image “E” are presented in Figures 5, 6 and 7. As can be seen, the cross 

entropy function stabilizes after iteration 14, 3, 16, 3 and 11 for image “A”, image “B”, image 

“C”, image “D” and image “E”, respectively. The optimum threshold values obtained using the 

MCE − GWO model for image “A”, image “B”, image “C”, image “D” and image “E” are 153, 

111, 118, 153 and 127, respectively. This manifests the superior capability of the grey wolf 

optimization algorithm in exploring the histogram-based search space to find the optimum 

threshold. The segmented images using the proposed MCE − GWO model for images “A”, “B”, 

“C”, “D” and “E” are depicted in Figure 8. Any pixel that has a value more than the optimum 

threshold, it is appended as a scaling (blue mask). Otherwise, it is considered as a non-distress 

pixel in the background. These images provide a visual understanding and evaluation of the 

qualities of the proposed segmentation model. As shown in the Figure 8, the proposed MCE −

GWO successfully recognized the scaling in the images, such that the scaling pixels are very 

well-discriminated from the background.  

INSERT FIGURE 5    

INSERT FIGURE 6    

INSERT FIGURE 7    

INSERT FIGURE 8    

The proposed MCE − GWO is compared against MCE − GA, MCE − PSO, MCE − HS, MCE − DE 

and MCE − SFL to test the performance of the grey wolf optimization algorithm. Different 

initializations of parameters of the meta-heuristics were experimented in order to search for their 

optimum setting Each meta-heuristic was run ten times independently in order to avoid unstable 

solutions due to random initialization of population. In order to establish a fair comparison 

between the different meta-heuristic optimization algorithms, the population size and number of 

iterations are assumed 10 and 40, respectively. For the genetic algorithm, tournament selection 

is the parent selection strategy. Two-point crossover is utilized, and the crossover rate is 

assumed 0.8. Mutation rate is assumed 0.1. With respect to the particle swarm optimization 

algorithm, the cognitive learning and social parameters are assumed two, and the inertia 

weight is assumed 0.5. With respect to the harmony search algorithm, the harmony search 
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consideration rate and the pitch adjustment rate are assumed 0.9 and 0.1, respectively. For 

the differential evolution algorithm, the crossover probability is assumed 0.2, and the 

mutation is assumed to follow a uniform distribution between 0.2 and 0.8. For the shuffled 

frog-leaping algorithm, the number of memeplexes is assumed 2 and there are 5 frogs per 

each memeplex.  

The convergence curves of the meta-heuristic-based scaling segmentation models of image “C” 

are depicted in Figure 9. It can be observed that the proposed MCE − GWO model achieved the 

lowest cross entropy followed by MCE − DE. On the other hand, MCE − HS provided the least 

performance among the meta-heuristic-based segmentation models for the detection of scaling in 

image “C”. The least minimum cross entropy achieved by MCE − GWO, MCE − DE and MCE −

PSO are 59379.5593, 59382.1686 and 59475.5606, respectively. As such, it can be concluded 

that the proposed MCE − GWO model outperformed other meta-heuristic-based segmentation 

models in the detection of scaling in image “C”. A quantitative comparative analysis between the 

different meta-heuristic-based segmentation models for scaling detection of the fifty images is 

shown in Table 1. The performances of the meta-heuristic-based scaling segmentation models 

are evaluated capitalizing on average mean-squared error (AMSE), average mean absolute error 

(AMAE), average peak signal to noise ratio (APSNR) and average cross entropy (ACE). The cross 

entropy represents the fitness function of the meta-heuristic-based scaling segmentation models.  

INSERT FIGURE 9    

As shown in Table 1, MCE − GWO performed better than other meta-heuristic-based scaling 

segmentation models achieving AMSE, AMAE, APSNR and ACE of 0.175, 0.407, 55.754 and 

26011.019, respectively. Nevertheless, MCE − GA showed the lowest segmentation 

performance attaining AMSE, AMAE, APSNR and ACE of 0.191, 0.43, 55.364 and 27309.737, 

respectively. It can be also inferred that MCE − HS and MCE − PSO accomplished an 

acceptable segmentation performance. In this regard, MCE − HS achieved AMSE, AMAE, 

APSNR and ACE of 0.181, 0.42, 55.555 and 30353.82, respectively. Moreover, MCE − PSO 

generated AMSE, AMAE, APSNR and ACE of 0.187, 0.426, 55.426 and 26120.03, respectively     

. In the light of forging, it can be derived that MCE − GWO achieved the best segmentation 

performance in terms of the four performance indicators. 

INSERT TABLE 1    
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The proposed MCE − GWO is further validated through its comparison against some of the 

state of art well-performing image segmentation models, namely Otsu, K-means clustering, 

fuzzy C-means clustering and expectation maximization. The segmented images using Otsu, 

K-means clustering, fuzzy C-means clustering and expectation maximization for images “A”, 

“B” and “C” are shown in Figures 10, 11 and 12. It can be projected that the classical 

segmentation models failed to establish clear and well-separated scaling pixels. Their 

segmented images encompass noises and unwanted pixels in the foreground elicited form the 

failure of the classical segmentation models to search for the optimum thresholds. 

Furthermore, it can be concluded that the proposed MCE − GWO model yielded a consistent 

superior segmentation capacity demonstrated in the form of homogenous and well-separated 

histogram corresponding to each class of the image, i.e., scaling and background. Table 2 

provides a comprehensive performance comparison of the proposed scaling segmentation 

models against the conventional models. As shown in Table 2, the proposed MCE − GWO 

model provided better segmentation capacity when compared against other models in the 

literature. K-means clustering generated the second highest performance achieving AMSE, 

AMAE, APSNR and ACE of 0.232, 0.471, 54.495 and 35876.343, respectively. It can be also 

derived that Otsu generated the lowest segmentation performance achieving AMSE, AMAE, 

APSNR and ACE of 0.273, 0.512, 53.813 and 40621.781, respectively.     

INSERT FIGURE 10    

INSERT FIGURE 11    

INSERT FIGURE 12           

INSERT TABLE 2    

Figures 13 and 14 provide a visualization of the meta-heuristic-based segmentation models and 

classical segmentation models based on their average mean squared error, average mean absolute 

error, average peak signal to noise ratio and average cross entropy. It can be noticed that meta-

heuristic-based segmentation models obtained lower AMSE, AMAE, ACE and higher APSNR than 

classical segmentation models. At the level of meta-heuristic-based segmentation models, the 

developed  MCE − GWO model accomplished the lowest AMSE, AMAE, ACE and the highest 

APSNR. MCE − GA attained the highest AMSE, AMAE and the lowest APSNR. Additionally, 
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MCE − HS yielded the highest ACE. With regards to the classical segmentation models, the 

smallest values of AMSE, AMAE, ACE and the highest value of APSNR were obtained by K-

means clustering. Furthermore, Otsu and fuzzy c-means clustering algorithms failed to detect 

scaling appropriately such that Otsu provided the highest AMSE, AMAE and the lowest APSNR. 

Also, fuzzy c-means clustering algorithm exhibited the highest value of ACE.      

INSERT FIGURE 13    

INSERT FIGURE 14            

A third comparative analysis is carried out to evaluate the significance levels of the output of the 

scaling segmentation models. Shapiro-Wilk test is applied to study the normality of the data at 

significance level of 0.05. It examines the null hypothesis (H0), which implies that the random 

variable follows a normal distribution. On the other hand, the alternative hypothesis (H1) 

assumes that the random variable doesn’t follow a normal distribution. Hence, if the P − value is 

less than the significance level, then the outcome of the segmentation models don’t follow 

normal distribution. Nonetheless, if the P − value is more than the significance level, then the 

outcome of the segmentation models follow normal distribution. Table 3 describes the P −

values of the mean absolute error and peak signal to noise ratio. As shown in Table 3, all the P −

values are more than 0.05, which imply that the null hypothesis is accepted and therefore the 

performance indicators of the scaling segmentation models follow normal distributions.  

In the view of the above, a parametric student’s t-test is applied to examine the statistical 

significance levels of the outcome of the scaling segmentation models at significance level of 

0.05. The performed student’s t-tests examine the null hypothesis (H0), which is that there is no 

significant difference between the segmentation capacities of the scaling detection models. On 

the other hand, the alternative hypothesis (H1) assumes that there is a significant difference 

between the segmentation capacities of the scaling detection models. Tables 4 and 5 describe the 

student’s t-test based on MAE and PSNR, respectively. As can be seen, the P − values of the 

proposed MCE − GWO model against other models are less than 0.05. For instance, the P −

value of the pair (MCE − GWO, Otsu) based on is 0 while the P − value of the pair (MCE −

GWO, K-means clustering) is 1×10-5. This implies that the null hypothesis is rejected. Thus, there 

is significant difference between the proposed scaling segmentation model and other models. In 
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the light of forgoing analysis, it can be derived that the developed MCE − GWO model 

successfully investigated the solution space of the multimodal histogram of scaling images 

globally and it was able to find the optimum threshold values that distinguished scaling from the 

background, whereas the developed model exemplified comprehensive and significant superior 

segmentation capabilities against other scaling detection models. This results from the higher 

exploration and exploitation abilities of the integration of cross entropy function grey wolf 

optimization algorithm, such that other meta-heuristics were not able to maintain same level of 

segmentation accuracies due to local minima trapping effect. Also, conventional segmentation 

models failed to deal with the uneven illumination and low contrast nature of scaling images, and 

thus they were unable to find the optimum threshold.  

INSERT TABLE 3    

INSERT TABLE 4    

INSERT TABLE 5    

The second model is the hybrid ENN − GWO which is designed for the purpose of evaluating 

scaling area in reinforced concrete bridges. The proposed SVD − DWT model is formulated to 

generate the feature vector set by mapping the most dominant features and information present 

in images. The interface of the feature extraction module in the automated platform is shown in 

Figure 15. In this regard, the user is asked to identify the type of wavelet function, which is 

selected to be Haar function for the case in-hand. By clicking “View” button, the computerized 

platform computes the spatial domain features and frequency domain features of the images 

relying on the singular values and the energies of all Haar discrete wavelet transform sub-

bands.    

INSERT FIGURE 15 

The performance capacity of the Elman neural network is heavily influenced by its setting 

hyper-parameters which include: number of hidden layers, number of context layers, number 

of hidden neurons, number of context neurons, type of transfer functions and weights of the 

connections between neurons. Thus, the present study adopts the grey wolf optimization 

algorithm to autonomously optimize the parameters and topography of the Elman neural 

network. In the automated platform, the user is asked to specify the optimization parameters of 
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the proposed self-adaptive scaling assessment. The interface of the developed scaling 

evaluation model is presented in Figure 16. As can be seen, the maximum number of hidden 

and context layers are eight. Also, the maximum number of hidden and context neurons are 

eight. Eight transfer functions are investigated and the values of weights are real numbers 

between -1 and 1. Therefore, the maximum length of the decision variables is 2716, which is 

regarded as an exhaustive search space that substantiates the employment of extensive training 

mechanism. For the parameters of the grey wolf optimization algorithm, number of search 

agents and number of iterations are assumed 100 and 200, respectively. The output of this 

model is obtained by pressing the “View” button. This constitutes the maximum length of the 

variable-length optimization model, minimum mean absolute percentage error, and optimum 

parameters and configuration of the Elman neural network. The lowest MAPE achieved by the 

ENN − GWO model is 0.7144%. Moreover, the optimum numbers of hidden and context layers 

are three while the optimum numbers of hidden and context neurons are eight. The optimum 

transfer function is the hyperbolic tangent sigmoid function. The optimum transfer function is 

the hyperbolic tangent sigmoid function.     

INSERT FIGURE 16    

A three-fold comparison is carried out for the validation of the proposed ENN − GWO model. 

The first fold involves its comparison against a set of meta-heuristic-based Elman neural 

network models, namely ENN − GA, ENN − PSO, ENN − HS, ENN − DE, and ENN − SFL. The 

MAPE is the fitness function adopted to train the Elman neural network models. The 

convergence curves of the meta-heuristic-based Elman neural network models are depicted in 

Figure 17. It can be derived that ENN − GWO achieved the lowest MAPE followed by ENN −

PSO while ENN − GA generated the highest MAPE among the meta-heuristic-based Elman 

neural network models. The lowest  MAPE obtained by ENN − GA, ENN − PSO, ENN − HS, 

ENN − DE, and ENN − SFL are 8.2207%, 1.9253%, 6.9765%, 4.2292% and 4.663%, 

respectively. This demonstrates that the proposed ENN − GWO model accomplished the lowest 

training error among the other meta-heuristic-based Elman neural network models.   

INSERT FIGURE 17           

The performances of the thirteen prediction models as per split validation and 10-fold cross 

validation are shown in Tables 6 and 7, respectively. The mean absolute error and root-mean 
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squared error are measured in terms of cm2. As shown in Tables 6 and 7, the hybrid meta-

heuristic-based Elman neural network models outperformed the well-performing state of art 

machine learning models. It can be derived that the proposed ENN − GWO model 

outperformed other machine learning models as per split validation and 10-fold cross 

validation. ENN − PSO obtained the second lowest prediction error. On the other hand, ENN −

GA model obtained the least prediction performance among the meta-heuristic-based Elman 

neural network models. This state of affairs substantiates the use of grey wolf optimization 

algorithm in exploring the relationships between the input images and scaling area. With 

respect to the conventional machine learning models, ENN generated the least prediction error 

while ANN model obtained the highest prediction error. For instance, as per the cross-

validation model, the proposed ENN − GWO model achieved MAPE, RMSE and MAE of  

1.513%, 29.836 and 12.066, respectively. Nevertheless, MAPE, RMSE and MAE of ANN model 

are 23.306%, 232.823 and 194.135, respectively.  

INSERT TABLE 6   

INSERT TABLE 7    

An illustration of the obtained MAPE, RMSE and MAE by the meta-heuristic-based Elman neural 

network models and the conventional prediction models based on split validation are depicted in 

Figures 18, 19 and 20. In the grand scheme of things, the meta-heuristic-based Elman neural 

network models performed better than the conventional prediction models in terms of MAPE, 

RMSE and MAE. At the level of the meta-heuristic-based Elman neural network models, it is 

found that the developed ENN − GWO accomplished considerable lower MAPE, RMSE and MAE 

than the remainder of the meta-heuristic-based Elman neural network models. Furthermore, 

ENN − PSO and ENN − SFL attained satisfactory MAPE, RMSE and MAE. It is also observed 

that ENN − GA had the highest MAPE and RMSE while ENN − HS provided the highest MAE. At 

the level of conventional prediction models, it can be derived that they were unable to accurately 

interpret scaling area. In this regard, ENN had the lowest MAPE and RMSE while SVM generated 

the lowest MAE, On the contrary, ANN generated the highest MAPE and MAE while CNN yielded 

the highest RMSE.  

INSERT FIGURE 18    
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INSERT FIGURE 19    

INSERT FIGURE 20    

In order to synthesize the performances of the meta-heuristic-based Elman neural network 

models, the box plot of the mean absolute percentage error is presented in Figure 21. The box 

plots facilitate analysing the robustness of the different meta-heuristics through mapping the 

distribution and skewness of the numerical data. It displays the minimum, first quartile, third 

quartile and maximum values of the multiple runs. The solid line in the box encodes the second 

quartile or the median value. The height of the box (space between the first and third quartiles) 

delineates the robustness of the algorithm, which is regarded as one of the main aspects to 

evaluate their performance. Lower spread in the box plot signifies more robustness 

performance of the model. Figure 21 demonstrates that the developed ENN − GWO model 

exhibited more stable and consistent results compared to the reminder meta-heuristic-based 

Elman neural network models, On the contrary, ENN − PSO provided unstable results, such 

that it experiences large perturbations in the different runs. It can be also projected that ENN −

GWO model sustains the lowest mean absolute percentage with respect to other models over 

the course of the different runs.  

INSERT FIGURE 21    

A further comparison is carried out to investigate the significance levels of the prediction 

capabilities of the machine learning models. Shapiro-Wilk test is deployed to study the 

normality of the mean absolute percentage generated from the different folds of the machine 

learning models (see Table 8). As presented in Table 8, the P − values of the output variable 

(MAPE) is less than 0.05, which implicates that the MAPE doesn’t follow normal distribution. 

In this context, non-parametric tests are employed to evaluate the statistical significant levels 

of the performances of the machine learning models. These tests include Wilcoxn test, Mann-

Whitney-U test, Kruskal–Wallis test, binomial sign test and Mood’s median test. The non-

parametric tests of the machine learning models are shown in Table 9. Results indicate that the 

P − values of the ENN − GWO model against other models are less than 0.05 for all tests. For 

example, the P − values of the pairs (ENN − GWO, ENN − GA) and (ENN − GWO, ENN) are 

8.5×10-4 and 4.12×10-2, respectively. This reveals that the proposed ENN − GWO model 
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significantly outperformed the meta-heuristic-based Elman neural network models and state of 

prediction models.        

INSERT TABLE 8    

INSERT TABLE 9   

In view of the above multi-layered comparative analysis, it can be concluded that the developed 

ENN − GWO model exhibited significant better and more robust performance than other meta-

heuristic-based Elman neural network models and conventional prediction models. In this regard, 

the developed SVD − DWT managed to extract the most essential underlying features in the 

scaling images. Furthermore, the developed hybrid ENN − GWO model sustained adequate 

trade-off between exploration and exploitation search abilities which allowed it to efficiently 

sweep the entire design space of parameters and hyper parameters of Elman neural network 

globally while avoiding being trapped in local minima and premature convergence. It was also 

noticed that the remainder of the meta-heuristic-based Elman neural network models provided 

higher prediction error than the developed ENN − GWO model as a result of the low exploration 

capabilities of GA, PSO algorithm, HS algorithm, DE algorithm and SFL algorithm. Conventional 

prediction models did not perform well also because of the absence of the automated hyper 

parameter optimization and their low training efficiency in scaling area prediction.   

The third model focuses on establishing a unified scaling severity index. A sample of the 

cluster memberships of scaling obtained from the FCM algorithm is shown in Table 10. In the 

fuzzy C-means clustering algorithm, the data point is assigned to the cluster that has the 

maximum degree of membership. For instance, the data point of scaling area 71.013 is 

assigned to “Cluster 1” because it has the maximum degree of membership of 0.557. 

Furthermore, the data point of scaling area 1059.227 is assigned to “Cluster 3” since it is 

accompanied with the maximum degree of membership of 0.81. The thresholds used to 

describe the severity levels of scaling area and depth are shown in Table 11. It can be 

interpreted that if the scaling area is between 40% and 50% of the zone area, this implies that 

the bridge deck is in a “Poor” Condition from an area perspective. Furthermore, if the scaling 

depth is more than 4 mm, this means that the bridge deck is in a “Very Poor” condition from a 

depth perspective. As such, the percentages of the “Good”, “Medium”, “Poor”, and “Very 

Poor” categories are: 10%, 75%, 15%, and 0%, respectively. The unified scaling severity index 
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based on Equation (4) is 73.75%, which indicates that the bridge deck is in a “Medium” 

category based on scaling. In the view of the afore-conducted comparative analysis, it is 

expected that the developed method can provide an efficient decision-making platform that 

aids transportation agencies in evaluating scaling in reinforced concrete bridges.     

INSERT TABLE 10   

INSERT TABLE 11           

7. Conclusion  

Routine inspections are diagnostic methods that are executed on equal time intervals to 

monitor the deterioration of reinforced concrete bridges. Nevertheless, visual inspection-based 

models are biased resulting from being subjective, labour-intensive, time-consuming and 

hazardous in some circumstances. This state of affairs adversary affect the quality of the 

decision-making process exemplified in the form of error-prone condition assessment models 

and inefficient maintenance prioritization plans at the various managerial levels. In this regard, 

the present study proposes a novel three-tier platform for the automated detection and 

evaluation of scaling in reinforced concrete bridges. The first model (MCE − GWO) is 

envisioned on the accommodation of the minimum cross entropy approach coupled with grey 

wolf optimization algorithm the segmentation of scaling. In this regard, Wiener filter and, min-

max gray level discrimination approach are applied for the purpose of restoration of the 

degraded images noise and contrast enhancement.  

The second model is a newly-developed ENN − GWO hybridization for the automated 

evaluation of scaling area present in images. In this context, a variable-length grey wolf 

optimization model is formulated for both parametric and structural learning of Elman neural 

network that amplified the exploration and exploitation of its training mechanism. The second 

model comprises a hybrid SVD − DWT model to create the feature vector set by mapping the 

most dominant features in images. In this model, singular value decomposition and discrete 

wavelet transform are utilized to capture the spatial domain features and frequency domain 

features, respectively. The third model is designated for establishing a unified scaling severity 

index to evaluate scaling in reinforced concrete bridges capitalizing on its area and depth. In it, 

Anderson Darling test is employed to identify the best-fit distribution of scaling area and 
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depth. Additionally, fuzzy C-means clustering is applied to establish their severity levels. A 

computerized platform is designed to facilitate the implementation of the developed method by 

the users.   

The first model is validated through both performance evaluation and statistical significance 

comparison against image segmentation models reported for their higher accuracies. It was 

inferred that the developed scaling segmentation model significantly outperformed the afore-

mentioned models such that it achieved AMSE, AMAE, APSNR and CE of 0.175, 0.407, 55.754 

and 26011.019, respectively. In this regard, it was found that the developed MCE − GWO 

model managed to improve the scaling detection accuracies by 24.01%, 10.25% and 8.1% 

when compared against the widely-utilized Otsu, K-means clustering and fuzzy c-means 

clustering algorithms, respectively. This evinces that the developed MCE − GWO model 

successfully investigated the solution space-based histogram of thresholds globally while 

conventional segmentation models failed to deal with the uneven illumination and low contrast 

nature of scaling images.     

With regards to the developed scaling evaluation model, it was projected that the developed 

model achieved notable superior and more robust prediction accuracies than a set of meta-

heuristic-based Elman neural network models and state of art conventional prediction models 

as per split validation and ten-fold cross validation. In this context, the developed ENN − GWO 

model obtained MAPE, RMSE and MAE of  1.513%, 29.836 and 12.066, respectively as per ten-

fold cross validation. As such, the developed ENN − GWO model was able to accomplish a 

reduction in the prediction error of scaling area by 81.38% and 45.65% with respect to ENN −

GA and ENN − PSO, respectively. Furthermore, it obtained results that are 91.23% and 89.34% 

better than highly acknowledged artificial neural network and support vector machines, 

respectively. This demonstrates the higher efficiently of grey wolf optimizer in exploring the 

entire design space of parameters and hyper parameters without getting trapped in local 

minima. The third model interpreted that the severity levels of the scaling area are 30%, 40% 

and 50% of the zone area. Furthermore, it clarified that the USSI of the bridge deck is 73.75%, 

which implies that the severity level of scaling of the bridge deck is in a “Medium” category.  

In the light of forgoing, it can be argued that the developed automated method performed 

competently in detection and evaluation of scaling in reinforced concrete bridges, which 

enables it to establish a reliable decision-making paradigm for assessing and prioritizing bridge 
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decks based on the extent of severities of scaling. This in return can pave the way for less labor 

intensive, more accurate and cost-efficient inspection process of reinforced concrete bridges.  

However, the developed method has some limitations. It could misclassify water marks, 

expansion joints, dirt, oil stains and as scaling pixels. Thus, further processing needs to be 

conducted in order to remove these noises from the input images. Another limitation in the 

current developed method is the long processing time resulting from the high computational 

effort required for optimizing the architecture of the Elman neural network. Future research 

directions include exploring of some remote sensing technologies such as unmanned aerial 

vehicles equipped with light detection and ranging (LIDAR) sensors and global positioning 

systems (GPS) for evaluating scaling severities of the different zones of the bridge and 

comparing it against image-based models. This also comprises studying the possibility of 

fusing the heterogeneous data of LIDAR and digital camera for more accurate interpretation of 

scaling severities. Future work may also include developing a mobile application that is able to 

provide practical and real time analysis of scaling images.       
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(a) Illustration of the obtained average 

mean squared error 

(b) Illustration of the obtained average 
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(a) Performances of the meta-heuristic-based Elman neural network models 

(b) Performances of the conventional prediction models  
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Table 1: Performance comparison between the meta-heuristic-based models for scaling 1 

detection  2 

Segmentation model 
Average mean-

squared error 

Average mean 

absolute error 

Average peak 

signal to noise 

ratio 

Average cross 

entropy 

MCE − GA 0.191 0.43 55.364 27309.737 

MCE − PSO 0.187 0.426 55.426 26120.03 

MCE − HS 0.181 0.42 55.555 30353.82 

MCE − DE 0.187 0.426 55.428 26741.602 

MCE − SFL 0.186 0.425 55.445 26233.768 

MCE − GWO 0.175 0.407 55.754 26011.019 
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 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 
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Table 2:  Overall comparative analysis between the different scaling detection models 1 

Segmentation model 
Average mean-

squared error 

Average mean 

absolute error 

Average peak 

signal to noise 

ratio 

Average cross 

entropy 

MCE − GWO 0.175 0.407 55.754 26011.019 

Otsu 0.273 0.512 53.813 40621.781 

K-means clustering 0.232 0.471 54.495 35876.343 

Fuzzy C-means 

clustering 
0.266 0.505 53.898 40626.631 

Expectation 

maximization 
0.249 0.488 54.174 37078.934 
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 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 
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Table 3: 𝐏 − 𝐯𝐚𝐥𝐮𝐞𝐬 of the different performance indicators of the segmentation models 1 

using Shapiro-Wilk test for normality  2 

Model Description 𝐏 − 𝐯𝐚𝐥𝐮𝐞 

Otsu Mean absolute error 7.82×10-1 (H0) 

K-means clustering Mean absolute error 5.19×10-2 (H0) 

Fuzzy C-means clustering Mean absolute error 7.6×10-1 (H0) 

Expectation maximization Mean absolute error 5.23×10-2 (H0) 

MCE − GA Mean absolute error 5.3×10-2 (H0) 

MCE − PSO Mean absolute error 6×10-2 (H0) 

MCE − HS Mean absolute error 8.11×10-2 (H0) 

MCE − DE Mean absolute error 3.05×10-1 (H0) 

MCE − SFL Mean absolute error 6.53×10-2 (H0) 

MCE − GWO Mean absolute error 7.87×10-2 (H0) 

Otsu Peak signal to noise ratio 6.77×10-1 (H0) 

K-means clustering Peak signal to noise ratio 2.84×10-1 (H0) 

Fuzzy C-means clustering Peak signal to noise ratio 6.54×10-1 (H0) 

Expectation maximization Peak signal to noise ratio 3.86×10-1 (H0) 

MCE − GA Peak signal to noise ratio 6.33×10-2 (H0) 

MCE − PSO Peak signal to noise ratio 4.77×10-2 (H0) 

MCE − HS Peak signal to noise ratio 6.1×10-2 (H0) 

MCE − DE Peak signal to noise ratio 2.82×10-1 (H0) 

MCE − SFL Peak signal to noise ratio 2.24×10-1 (H0) 

MCE − GWO Peak signal to noise ratio 6.04×10-2 (H0) 

 3 

 4 
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Table 4: Statistical comparison of the developed scaling segmentation model against other 1 

models for 𝐌𝐀𝐄  based on student’s t-test 2 

Pair of segmentation models 𝐏 − 𝐯𝐚𝐥𝐮𝐞 

(MCE − GWO, Otsu) 
H1 

(P − value =0) 

(MCE − GWO, K-means clustering) 
H1 

(P − value =0) 

(MCE − GWO, Fuzzy C-means clustering) 

H1 

(P − value =0) 

(MCE − GWO, Expectation maximization) 
H1 

(P − value =0) 

(MCE − GWO, MCE − GA) 
H1 

(P − value =1.2×10-2) 

(MCE − GWO, MCE − PSO) 
H1 

(P − value =0) 

(MCE − GWO, MCE − HS) 
H1 

(P − value =2.6×10-3) 

(MCE − GWO, MCE − DE) 
H1 

(P − value =0) 

(MCE − GWO, MCE − SFL) 
H1 

(P − value =0) 

 3 

 4 

 5 

 6 

 7 

 8 

 9 
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Table 5: Statistical comparison of the developed scaling segmentation model against other 1 

models for 𝐏𝐒𝐍𝐑  based on student’s t-test 2 

Pair of segmentation models 𝐏 − 𝐯𝐚𝐥𝐮𝐞 

(MCE − GWO, Otsu) 
H1 

(P − value =0) 

(MCE − GWO, K-means clustering) 
H1 

(P − value =1×10-5) 

(MCE − GWO, Fuzzy C-means clustering) 

H1 

(P − value =0) 

(MCE − GWO, Expectation maximization) 
H1 

(P − value =0) 

(MCE − GWO, MCE − GA) 
H1 

(P − value =6.79×10-3) 

(MCE − GWO, MCE − PSO) 
H1 

(P − value =2×10-5) 

(MCE − GWO, MCE − HS) 
H1 

(P − value =4.6×10-4) 

(MCE − GWO, MCE − DE) 
H1 

(P − value =3×10-5) 

(MCE − GWO, MCE − SFL) 
H1 

(P − value =4×10-5) 

 3 

 4 

 5 

 6 

 7 

 8 
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Table 6: Comparative analysis of the performance metrics of the prediction models based 1 

on split validation  2 

Prediction model 
Mean absolute 

percentage error 

Root-mean squared 

error 

Mean absolute 

error            

ENN − GWO 1.513% 29.836 12.066 

ENN − GA 10.145% 122.627 72.602 

ENN − PSO 2.907% 47.875 24.794 

ENN − HS 9.854% 110.087 73.187 

ENN − DE 5.987% 81.255 54.348 

ENN − SFL 5.183% 61.23 45.529 

ANN 22.627% 225.963 188.306 

ENN 17.026% 205.539 125.760 

GRNN 18.276% 210.309 130.873 

RBNN 17.789% 213.304 128.027 

SVM 17.807% 215.447 125.272 

DT 18.237% 217.996 134.530 

CNN 17.199% 265.646 137.141 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 
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Table 7: Comparative analysis of the performance metrics of the Prediction models based 1 

on 10-fold cross validation  2 

Prediction model 
Mean absolute 

percentage error 

Root-mean squared 

error 

Mean absolute 

error            

ENN − GWO 1.521% 29.992 12.137 

ENN − GA 10.241% 123.815 73.326 

ENN − PSO 2.936% 48.361 25.047 

ENN − HS 9.943% 111.164 73.878 

ENN − DE 6.035% 81.958 54.779 

ENN − SFL 5.22% 61.696 45.881 

ANN 23.306% 232.823 194.135 

ENN 17.196% 207.731 127.081 

GRNN 18.551% 213.517 133.007 

RBNN 18.145% 217.737 130.642 

SVM 18.377% 222.356 129.371 

DT 18.839% 225.317 139.033 

CNN 17.594% 271.828 140.401 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 
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Table 8: 𝐏 − 𝐯𝐚𝐥𝐮𝐞𝐬 of the mean absolute percentage error of the prediction models using 1 

Shapiro-Wilk test for normality  2 

Prediction model 𝐏 − 𝐯𝐚𝐥𝐮𝐞 Prediction model 𝐏 − 𝐯𝐚𝐥𝐮𝐞 

ENN − GWO 1.09×10-3 (H1) ANN 4.12×10-2 (H1) 

ENN − GA 8.5×10-4 (H1) ENN 3×10-5 (H1) 

ENN − PSO 1.04×10-2 (H1) GRNN 1.19×10-2 (H1) 

ENN − HS 4.9×10-4 (H1) RBNN 4.57×10-2 (H1) 

ENN − DE 8.9×10-4 (H1) SVM 4.29×10-2 (H1) 

ENN − SFL 2.8×10-3 (H1) DT 3.62×10-2 (H1) 

  CNN 4.79×10-2 (H1) 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 
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Table 9: Statistical comparison of the developed  𝐄𝐍𝐍 − 𝐆𝐖𝐎 model against other 1 

prediction learning models based on non-parametric tests 2 

Pair of machine 

learning models 

Wilcoxn Mann-

Whitney-U 

Kruskal–

Wallis 

Binomial sign Mood’s 

median 

(ENN − GWO 

, ENN − GA) 

H1 

(P − value 

=4.95×10-3) 

H1 

(P − value 

=1.42×10-4) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

(ENN − GWO, 

ENN − PSO) 

H1 

(P − value 

=4.95×10-3) 

H1 

(P − value 

=1.37×10-4) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

ENN−GWO, 

 ENN − HS) 

H1 

(P − value 

=5.06×10-3) 

H1 

(P − value 

=1.46×10-4) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

(ENN − GWO, 

ENN − DE) 

H1 

(P − value 

=4.78×10-3) 

H1 

(P − value 

=1.28×10-4) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

(ENN − GWO, 

ENN − SFL) 

H1 

(P − value 

=4.98×10-3) 

H1 

(P − value 

=1.37×10-4) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

(ENN − GWO, 

ANN) 

H1 

(P − value 

=5.06×10-3) 

H1 

(P − value 

=1.46×10-4) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

(ENN − GWO, 

ENN) 

H1 

(P − value 

=5.06×10-3) 

H1 

(P − value 

=1.46×10-4) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

(ENN − GWO, 

GRNN) 

H1 

(P − value 

=5.06×10-3) 

H1 

(P − value 

=1.42×10-4) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

(ENN − GWO, 

RBNN) 

H1 

(P − value 

=5.03×10-3) 

H1 

(P − value 

=1.37×10-4) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 
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(ENN − GWO, 

SVM) 

H1 

(P − value 

=5.06×10-3) 

H1 

(P − value 

=1.46×10-4) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

(ENN − GWO, DT) 

H1 

(P − value 

=5.06×10-3) 

H1 

(P − value 

=1.45×10-4) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

(ENN − GWO, 

CNN) 

H1 

(P − value 

=5.06×10-3) 

H1 

(P − value 

=1.46×10-4) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 
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 17 
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Table 10: Sample of the cluster memberships of scaling area obtained from the 𝐅𝐂𝐌 1 

algorithm  2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

Data point 
Degree of membership Assigned 

Cluster Cluster 1 Cluster 2 Cluster 3 Cluster 4 

710.013 0.557 0.343 0.072 0.027 Cluster 1 

1217.916 0.002 0.005 0.015 0.979 Cluster 4 

775.289 0.131 0.775 0.072 0.022 Cluster 2 

827.366 0.007 0.980 0.011 0.003 Cluster 2 

1059.227 0.011 0.050 0.810 0.129 Cluster 3 

930.423 0.028 0.414 0.515 0.043 Cluster 3 



81 

 

Table 11: Severity levels of scaling area and depth  1 

Condition category  Scaling area Scaling depth 

Good Less than 30% Less than 1.7 mm 

Medium Between 30% and 40% Between 1.7 and 3 mms 

Poor Between 40% and 50% Between 3 and 4 mms 

Very Poor More than 50% More than 4 mm 

 2 

 3 

 4 
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