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We introduce a general framework for consistent linear reconstruction in infinite-
dimensional Hilbert spaces. We study stable reconstructions in terms of Riesz bases and
frames, and generalize the notion of oblique dual frames to infinite-dimensional frames.
As we show, the linear reconstruction scheme coincides with the so-called oblique pro-
jection, which turns into an ordinary orthogonal projection when adapting the inner
product. The inner product of interest is, in general, not unique. We characterize the
inner products and corresponding positive operators for which the new geometrical inter-
pretation applies.
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1. Introduction

Sampling is the process of representing a signal f by a sequence of numbers, which
can be interpreted as measurements of f . The classical approach is to choose the
measurements as samples of f . A more recent approach1,5–7,9,11–15 is to consider
measurements that can be expressed as inner products of f with a set of sampling
vectors that span a subspace S, which is referred to as the sampling space. The
problem then is to reconstruct f from these measurements, using a set of recon-
struction vectors that span a subspace W , which is referred to as the reconstruction
space. If f does not lie in W , then it cannot be perfectly reconstructed using only
reconstruction vectors that span W . Therefore, if we allow for signals out of W , we
must relax the requirement for perfect reconstruction.
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Recently,5 a general framework for sampling with arbitrary sampling and recon-
struction spaces has been developed. This framework is based on a consistency
requirement, introduced in the context of sampling in Ref. 13. Specifically, the
reconstructed signal has the property that although it is in general not equal to f , it
nonetheless yields the same measurements. Based on this notion, in Ref. 5, sampling
procedures were developed for the case in which W and S are finite-dimensional
spaces with equal dimension.

In this paper, we extend the results of Ref. 5 in two ways. First, we expand
the results to a broader framework that does not require S and W to be finite-
dimensional spaces, but rather can be applied to arbitrary infinite-dimensional sub-
spaces of an arbitrary Hilbert space H such that H = W ⊕ S⊥. Throughout the
paper we apply the symbol ⊕ whenever W∩S⊥ = {0}. We consider both the case of
non-redundant sampling and the case of redundant sampling. In both cases, we show
that consistent reconstruction is always possible, and develop stable reconstruction
algorithms, using the concepts of Riesz bases and frames. As we show, the recon-
struction schemes are the same as in the finite-dimensional case. We then generalize
the notion of the oblique dual frame, introduced in Ref. 5, to infinite-dimensional
frames. Specifically, we show that any w ∈ W can be expressed as w =

∑
i〈s̃i, w〉wi,

where {wi} forms a frame for W , and {s̃i} forms a frame for S. The frame vectors s̃i

are the oblique dual frames, and have the property that they lead to minimal norm
coefficients. The concept of oblique dual frames allows for frame expansions in which
the analysis and synthesis frame vectors are not constrained to lie in the same space,
as in conventional frame expansions. Complete reconstruction of a subclass of sig-
nals by means of frames and dual frames that do not necessarily belong to this sub-
class is the basic idea of the concept of the so-called pseudo-frames.8 Our motivation
in this article, however, is consistency which is not a priori guaranteed by pseudo-
frames.

Secondly, we develop a new geometric interpretation of the sampling and recon-
struction scheme that provides further insight into the problem. Specifically, we
show that the linear consistent reconstruction scheme can be expressed as an orthog-
onal projection when adapting the underlying inner product. The inner product of
interest is, in general, not unique. We first characterize the inner products and
the corresponding positive operators for which the new geometrical interpretation
applies. We then show that by imposing further constraints on the inner product,
we can express the reconstruction in a particularly simple form in terms of an
orthogonal basis expansion.

The paper is organized as follows. In Sec. 2, we provide a brief overview of
consistent sampling and state necessary and sufficient conditions for the unique
existence of the consistent reconstruction. In Sec. 3, we develop explicit stable
reconstruction algorithms, using Riesz bases and frames. In Sec. 5, we generalize
the concept of oblique dual frames to infinite-dimensional spaces. Section 6 considers
a geometric interpretation of the sampling and reconstruction.
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2. Consistent Sampling

Suppose we are given measurements ci of an unknown signal f belonging to a Hilbert
space H, endowed with an inner product 〈·, ·〉. The measurements are assumed to
be of the form

ci = 〈f, si〉 (2.1)

for a set of sampling vector {si} that span a subspace S ⊆ H. We want to recon-
struct f from the measurements ci using a given set of reconstruction vectors {wi},
that span a subspace W ⊆ H. For designing the reconstruction algorithm, we start
with the following natural requirements:

(i) uniqueness of the reconstructed signal f̂ ∈ W with 〈f̂ , si〉 = ci,
(ii) consistent sampling (interpolation) in the sense that 〈f̂ , si〉 = 〈f, si〉.

The first requirement is a requirement on the sampling process. Specifically, we
want the sampling vectors si to be such that if 〈f, si〉 = 〈g, si〉 for all i, where
f, g ∈ W , then f = g or, equivalently, for f, g ∈ W ,

〈f − g, si〉 = 0 ⇒ f = g. (2.2)

If 〈f − g, si〉 = 0 for all i, then f − g ∈ S⊥. Therefore, to satisfy (2.2), we must
have that

W ∩ S⊥ = {0}. (2.3)

If the second requirement is also satisfied, so that 〈f̂ , si〉 = 〈f, si〉, then for any
f ∈ W , we must have that f̂ = f . Otherwise we will have two signals f and f̂ in W ,
that have the same measurements, which contradicts the uniqueness requirement.

In our development, we focus our attention on linear reconstruction methods.
In this case, the reconstruction f̂ is of the form

f̂ =
∑

i

diwi (2.4)

for some coefficients di that are a linear transformation of the measurements ci.
In other words,

d = Hc (2.5)

for some linear mapping H . With S and W denoting the synthesis operators
corresponding to {si} and {wi}, respectively, defined by

S : �2 → H, Sc =
∑

i

cisi, (2.6)

and

W : �2 → H, Wc =
∑

i

ciwi, (2.7)

we have that f̂ = Wd = WHc = WHS∗f.



December 8, 2005 11:13 WSPC/181-IJWMIP 00098

500 Y. C. Eldar & T. Werther

It was shown in Ref. 5, that under the assumption

H = W ⊕S⊥, (2.8)

where S and W are closed subspaces of H, a linear reconstruction is consistent if
and only if it has the form f̂ = EWS⊥f , where EWS⊥ is the oblique projection onto
W along S⊥, and is the unique operator satisfying

EWS⊥w = w, (w ∈ W),

EWS⊥v = 0, (v ∈ S⊥).
(2.9)

Specifically, we have the following theorem.

Theorem 2.1. 5 Let (〈f, si〉) denote measurements of f ∈ H with sampling vectors
{si} that span a subspace S ⊆ H, and let the reconstruction vectors {wi} span a sub-
space W ⊆ H such that H = W⊕S⊥. Then, f̂ is a linear consistent reconstruction
of f in W if and only if f̂ = EWS⊥f .

Theorem 2.1 establishes the existence of consistent reconstruction by means of
the oblique projection. Alternatively, we can establish the existence by applying
elementary set-theoretical arguments. Specifically, the consistent reconstruction is
the unique element of the intersection

W ∩ Vf ,

where Vf = f + S⊥ is the affine linear space containing all elements in H that
interpolate 〈f, si〉 for all i. From the assumption (2.8), it immediately follows that
the intersection is not empty and contains only one element, as illustrated in Fig. 1.

The viewpoint of the oblique projection will be the key concept of our further
development. In order to obtain the reconstruction in practice, we need to develop
an explicit reconstruction method, which is the focus of the next section. Explicit
reconstruction algorithms for the finite-dimensional case were developed in Ref. 5
both for the case in which {si} and {wi} are linearly independent vectors, and for

Fig. 1. Illustration of consistent reconstruction.



December 8, 2005 11:13 WSPC/181-IJWMIP 00098

General Framework for Consistent Sampling in Hilbert Spaces 501

the case in which they are linearly dependent. For linearly independent vectors, it
was shown that consistent reconstruction is obtained with

H = (S∗W )−1, (2.10)

and for linearly dependent sets,

H = (S∗W )†, (2.11)

where (·)† denotes the Moore–Penrose pseudo-inverse.
In the infinite-dimensional case, stability becomes an issue, so that H defined

by (2.10) and (2.11) may no longer lead to stable reconstruction algorithms. In the
next section, we show that using Riesz bases and frames will allow us to overcome
instability problems.

3. Stable Reconstruction

We now develop stable reconstruction algorithms for the case in which W and S
are two closed infinite-dimensional subspaces of a Hilbert space H, such that

H = W ⊕S⊥. (3.1)

To this end, we need to impose conditions on the sampling and reconstruction
vectors. We want to emphasize that the splitting of H in the direct sum (3.1)
allows for consistent sampling as stated in Theorem 2.1.

To ensure a stable reconstruction, we assume that the vectors {si} and {wi}
form frames for S and W , respectively.

Definition 3.1. A family of vectors {hi} in a Hilbert space H is called a frame for
H if there exist 0 < a ≤ b < ∞ such that

a‖h‖2 ≤
∑

i

|〈h, hi〉|2 ≤ b‖h‖2 (3.2)

for all h ∈ H.

In our derivation, we make use of the following properties of a frame {hi}.2

(i) Let C denote the synthesis operator of {hi}. The so-called frame-operator
T = CC∗ is invertible on H, and defines the canonical dual frame {h̃i} through

h̃i = T−1hi. (3.3)

(ii) Every element h ∈ H can be represented as h =
∑

i〈h, h̃i〉hi =
∑

i〈h, hi〉h̃i .

(iii) The range of C∗ is closed in �2.

In the finite-dimensional case, reconstruction is obtained with H = (S∗W )†.
In general, for arbitrary systems {si} and {wi}, (S∗W )† is not guaranteed to be
bounded, which may lead to unstable reconstruction algorithms. However, as we
show in the following proposition, if the vectors form a frame, then (S∗W )† is
bounded.
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Proposition 3.1. Let S and W be closed subspaces of a Hilbert space H with
frames {si} and {wi} defining the synthesis operators S and W, respectively. Then
H = W ⊕S⊥ if and only if S∗W is continuously invertible on R(W ∗) → R(S∗).

Proof. By the frame property (iii), both R(S∗) and R(W ∗) are closed subspaces
of �2. Therefore, by virtue of the inverse mapping theorem,3 it suffices to show that
S∗W is bijective on R(W ∗) → R(S∗).

Let S∗w = 0 with w = Wc for some c ∈ R(W ∗). It follows that w ∈ S⊥, thus,
w = 0 because of W ∩ S⊥ = {0}. This implies c ∈ Null(W ) = R(W ∗)⊥. Hence,
c = 0 and S∗W is injective.

Let c ∈ R(S∗). Then, there exists an element h = w + s⊥ ∈ H with S∗h =
S∗w = c. Since {wi} constitutes a frame, for w ∈ W we can find a sequence
d ∈ R(W ∗) such that Wd = w. Hence, S∗Wd = c and S∗W is surjective.

Conversely, let h ∈ H be decomposed into h = sh + s⊥h according to the orthog-
onal splitting H = S ⊕ S⊥. For {s̃i} be the dual frame of {si}, we have sh =∑

j cj s̃j with c = S∗sh ∈ R(S∗). By hypothesis, we can define wh = W (S∗W )−1c.
It follows that sh − wh ∈ S⊥ because

S∗(sh − wh) = S∗sh − S∗W (S∗W )−1c = S∗sh − c = 0. (3.4)

Thus, h = wh + (sh − wh + s⊥h ) is in W + S⊥.
Let h ∈ W ∩ S⊥. For {w̃i} be the dual frame of {wi}, we have h =

∑
i ciwi

with ci = 〈w̃i, h〉. Since w̃i = (WW ∗)−1wi, we derive 〈w̃i, h〉 = 〈wi, (WW ∗)−1h〉 .

Thus, c ∈ R(W ∗). By hypothesis, S∗Wc = S∗h = 0 which implies c = 0, hence,
h = 0. Altogether, we have H = W ⊕S⊥.

Due to Proposition 3.1, we can now define the bounded pseudo-inverse operator

(S∗W )† (3.5)

which coincides with the inverse of S∗W on R(W ∗). We claim that

f̂ = W (S∗W )†S∗f (3.6)

is the consistent reconstruction of f . Indeed, f̂ is in W and from the property of
the pseudo-inverse operator that S∗W (S∗W )† is the identity on R(S∗), we have
S∗f̂ = S∗f. Since all the operators in (3.6) are continuous, the reconstruction is
stable.

When considering linearly independent stable systems (Riesz bases), we can
replace the pseudo-inverse by the inverse operator just as indicated in (2.10).

Definition 3.2. A family {hi} in a Hilbert space H is called a Riesz basis of H if
it spans a dense subspace of H and there exist 0 < a ≤ b < ∞ such that

a‖c‖2
�2 ≤

∥∥∥∥
∑

i

cihi

∥∥∥∥
2

≤ b‖c‖2
�2 (3.7)

for all finite sequences c = (ci).
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For a Riesz basis {hi}, the synthesis operator C : �2 → H, C(ci) =
∑

i cihi,

and the analysis operator, which is the adjoint of the synthesis operator, C∗ : H →
�2, C∗h = (〈h, hi〉), are bounded.

For Riesz bases, we simply have R(W ∗) = R(S∗) = �2 and therefore, we obtain
the following corollary.

Corollary 3.1. Let S and W be closed subspaces of a Hilbert space H with Riesz
bases {si} and {wi} defining the synthesis operators S and W, respectively. Then,

H = W ⊕S⊥ if and only if S∗W is continuously invertible on �2.

With the assumptions of Corollary 3.1 and H = W ⊕ S⊥, it can easily be seen
that the consistent reconstruction is given by

f̂ = W (S∗W )−1c ,

as in the finite-dimensional case.

Remark 3.1. In contrast to Ref. 1, where the authors treat consistent sam-
pling for the shift invariant case without stating sufficient conditions on sta-
ble reconstruction, Proposition 3.1 shows in a more general setting that the
reconstruction algorithm is stable if and only if the direct sum condition is
satisfied.

4. Oblique Pseudo-Inverse Interpretation

In Ref. 5, it is shown that the consistent reconstruction f̂ can be represented in
terms of the oblique pseudo-inverse. We now extend this notion to the infinite-
dimensional case. According to Refs. 4 and 10, we define the oblique pseudo-inverse
as follows.

Definition 4.1. Let T : K → U be a bounded linear transformation between two
Hilbert spaces with closed range, and let K = G ⊕ N (T ) and U = R(T ) ⊕ Z.
The oblique pseudo-inverse of T on G along Z, denoted by T#

GZ , is the unique
transformation satisfying

TT #
GZ = ER(T )Z , (4.1)

T #
GZT = EGN (T ), (4.2)

R(
T #
GZ

)
= G. (4.3)

As can be verified,4 (4.1)–(4.3) imply that T #
GZ inverts T between G and R(T ),

while nulling out any vector in Z. This interpretation is illustrated in Fig. 2, from
which it follows that the pseudo-inverse T † is a special case of the oblique pseudo-
inverse T #

GZ for which G = N (T )⊥ and Z = R(T )⊥.
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Fig. 2. The action of T and T#
GZ on the subspaces G,N (T ),R(T ) and Z.

In order to show that (S∗W )†S∗ is the oblique pseudo-inverse of W on V =
N (W )⊥ along S⊥, we have to verify the following properties:

W (S∗W )†S∗ = EWS⊥ , (4.4)

(S∗W )†S∗W = PV , (4.5)

R(S∗W )†S∗ = V . (4.6)

This can be verified in the same manner as in Ref. 5. It thus follows that
f̂ = WW#

VS⊥f.

5. Oblique Dual Frame

The consistent reconstruction framework leads to new frame expansions in which
the analysis and synthesis vectors are not constrained to lie in the same space.
Specifically, for S and W finite-dimensional, it was shown in Ref. 5 that if
H = W ⊕S⊥, then any f ∈ W can be expressed as

f =
∑

i

〈f, s̃i〉wi, (5.1)

where s̃i are the oblique dual frames of wi on S, and correspond to the synthesis
operator (W#

VS⊥)∗ = S(W ∗S)†. We now show that this definition holds true also in
the infinite-dimensional case.

Definition 5.1. Assume that W and S are closed subspaces of a Hilbert space
H such that H = W ⊕S⊥. Let {wi} and {si} be frames of W and S, respectively.
The oblique dual frame of {wi} on S is the frame s̃i in S defined by

s̃i =
(
W#

VS⊥
)∗

ei, (5.2)

where {ei} denotes the standard basis of �2 and V is as in (4.6).

To show that oblique dual frame is well defined, note that by assumption,
W#

VS⊥ : l2 → H is given by (S∗W )†S∗. Since R((W#
VS⊥)∗) = N (W#

VS⊥)⊥ = S,
we have s̃i ∈ S. Now,

∑
i |〈s, s̃i〉|2 =

∑
i |〈(S∗W )†S∗s, ei〉|2 = ‖(S∗W )†S∗s‖2

�2 for
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any s ∈ S. Since {si} is a frame and S∗W is continuously invertible on R(S∗) by
virtue of Proposition 3.1, there exist positive constants a and b such that

a‖s‖2 ≤
∑

i

|〈s, s̃i〉|2 ≤ b‖s‖2, (s ∈ S). (5.3)

Hence, {s̃i} is a frame for S.
The following result reveals the minimal norm property of the canonical dual

frame which justifies the choice of terminology.

Proposition 5.1. Assume that W and S are closed subspaces of a Hilbert space H
such that H = W ⊕S⊥. Let {wi} and {si} be frames of W and S, respectively, and
{s̃i} the oblique dual frame of {wi} on S. Then, for all possible coefficient sequences
d = (di) that satisfy

f =
∑

i

diwi, (f ∈ W), (5.4)

the coefficient sequence d̃ = {〈f, s̃i〉} has minimal �2-norm.

Proof. We compute
∑

i〈f, s̃i〉wk =
∑

i〈W#
VS⊥f, ei〉wi = W (S∗W )†W ∗f =

EWS⊥f. Thus, d̃ satisfies (5.4). The proof of the minimal norm property is straight-
forward and can be found in Ref. 5 .

6. Geometrical Interpretation of Consistent Reconstruction

In the special case in which W = S, the reconstructed signal f̂ is simply the
orthogonal projection of f on W , or in other words, it is the minimal norm element
of Vf . It is therefore not surprising that if we change the inner product of H such
that the oblique projection turns into an orthogonal projection, then the resulting
reconstruction is the minimal norm element in Vf for the changed norm.

Definition 6.1. Let 〈·, ·〉1 and 〈·, ·〉2 be two inner products for a Hilbert space H.
They are said to be equivalent if there exist 0 < a ≤ b such that

a〈h, h〉1 ≤ 〈h, h〉2 ≤ b〈h, h〉1, (h ∈ H). (6.1)

In what follows, A always denotes a bounded linear positive operator acting
on H. Such an operator defines an equivalent inner product on H by

〈h, k〉A = 〈h, Ak〉, (h, k ∈ H). (6.2)

Conversely, for every equivalent inner product 〈·, ·〉2, there exists a unique operator
A such that

〈h, k〉2 = 〈h, Ak〉, (h, k ∈ H). (6.3)

The operator A can be defined as T ∗T where T transfers an orthonormal basis with
respect to 〈·, ·〉1 into an orthonormal basis with respect to 〈·, ·〉2.
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Our goal now is to look for inner products which transfer W and S⊥ into
orthogonal spaces. The above observations imply that we can turn our attention
to continuous positive operators. Suppose that wk is a frame for W . Then we want
to define an inner product on H so that the orthogonal projection onto W with
respect to this inner product is equal to EWS⊥ , i.e.

PA
W = W (W ∗AW )†W ∗A = EWS⊥ . (6.4)

Now, W ∗A is the unique operator satisfying

〈x, W ∗Ay〉�2 = 〈Wx, y〉A = 〈Wx, Ay〉 (6.5)

for any x ∈ �2, y ∈ H. Using the fact that 〈Wx, Ay〉 = 〈x, W ∗Ay〉�2 , from (6.5)
we have

W ∗A = W ∗A. (6.6)

Since any w ∈ W can be written as w = Wa for some a ∈ �2,

PA
Ww = W (W ∗AW )†W ∗AWa = WPN (W )⊥a = Wa = w, (6.7)

so that to satisfy (6.4), we must have that W ∗Av = 0 for any v ∈ S⊥. From (6.6),
this implies that Av must lie in W⊥ for any v ∈ S⊥. We therefore have the following
theorem.

Theorem 6.1. Let W and S⊥ denote subspaces of a Hilbert space H such that
H = W ⊕ S⊥, and let A be a positive operator. Then the orthogonal projection
onto W with respect to the inner product 〈·, ·〉A satisfies PA

W = EWS⊥ if and only if
A : W → S, or equivalently, A : S⊥ → W⊥.

The action of A is illustrated in Fig. 3.
Theorem 6.1 characterizes the class of operators that turn W and S⊥ into

orthogonal spaces. From the theorem it is obvious that the choice of A is not unique.
Actually, the class is closed under linear combinations with positive coefficients.

Fig. 3. The action of A.
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If we choose an inner product for which EWS⊥ becomes an orthogonal pro-
jection, then f̂ is a minimal norm approximation to f with respect to this inner
product. Specifically, for any w ∈ W ,

‖f − f̂‖A ≤ ‖f − w‖A. (6.8)

We conclude that the oblique projection performs an orthogonal projection with
respect to a whole class of inner products. In other words, the consistent solution
is the minimal norm interpolation of the measurements ci for the corresponding
sampling vectors si with respect to any norm defined by a positive operator A

of the form illustrated in Fig. 3. The interesting observation is that, although we
have many different but equivalent norms, the minimal norm interpolation always
remains the same.

Assume that we have a Riesz basis {wi} for W whose synthesis operator will be
denoted by W . Our next goal is to find an inner product on H which turns {wi}
into an orthonormal basis of W , out of the class of all inner products which make
W orthogonal to S⊥. If A defines such an inner product, then we have

EWS⊥ = PA
W = WW ∗A =

∑

i

〈·, wi〉A wi. (6.9)

For Riesz bases {si}, {wi}, {s⊥i }, and {w⊥
i } of S, W , S⊥, and W⊥, respectively,

with corresponding synthesis operator S, W , S⊥, and W⊥, simple linear algebra
arguments induce that the operator

A = S(W ∗S)−1(S∗W )−1S∗ + W⊥(S⊥∗W⊥)−1(W⊥∗S⊥)−1W⊥∗ (6.10)

defines an inner product on H for which {wi} turns into an orthonormal basis and
W is orthogonal to S⊥. This explicitly shows how one can construct such a positive
operator.

There are many other operators A satisfying (6.9). However, it is interesting to
observe that the action of such operators on W is unique. Indeed, since for any
w ∈ W , w = WW ∗Aw = WW ∗Bw, we have that Aw = Bw for all w ∈ W . Thus
any operator B satisfying EWS⊥ = WW ∗B must be of the form

B = S(W ∗S)−1(S∗W )−1S∗ + C, (6.11)

where Cw = 0 for any w ∈ W . In addition, to satisfy Theorem 6.1, C must map
S⊥ to W⊥. We therefore have the following theorem.

Theorem 6.2. Let W and S⊥ denote subspaces of a Hilbert space H such that
H = W ⊕ S⊥, let {wi} denote a Riesz basis for W corresponding to W, and let A

denote an arbitrary positive operator. Then EWS⊥ = PA
W = WW ∗A if and only if

A = S(W ∗S)−1(S∗W )−1S∗ + C where C : W → {0} and C : S⊥ → W⊥.

Note that any operator A satisfying the requirements of Theorem 6.2 has
the additional property that W ∗A is the oblique pseudo-inverse on V = N (W )⊥
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along S⊥. To see this, we have to verify that

WW ∗A = EWS⊥, (6.12)

W ∗AW = PV , (6.13)

R(W ∗A) = V . (6.14)

Property (6.12) is (6.9). The second property follows from the easily verifiable fact
that W ∗AW (V) = V and W ∗AW (V⊥) = {0}. Property (6.14) is a consequence of
R(W ∗A) = R(W ∗) = N (W )⊥ = V which is fulfilled for any positive operator A.

Let {si} be a Riesz basis for S. If we want to linearly reconstruct a signal f ∈ H
in W from the samples 〈f, si〉 requiring consistency, then we recall that

f̂ = EWS⊥f = W (S∗W )−1(S∗f), (6.15)

which is equivalent to the orthogonal projection

f̂ = PA
Wf =

∑

i

〈f, Awi〉wi (6.16)

for an operator A satisfying the properties of Theorem 6.2. Here, we see that for
reconstruction, A needs only to be applied on W , so that for all practical purposes,
A is actually unique.
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