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Abstract

In this paper we design a new family of biorthogonal wavelet transforms that are

based on polynomial and discrete splines. The wavelet transforms are constructed from

various types of interpolatory and quasi-interpolatory splines. The transforms use finite

and infinite impulse response filters and are implemented in a fast lifting mode. We

analyze properties of the generated wavelets. We describe successful applications of

the designed transforms to still image compression.

1 Introduction

In this paper we describe a new generic technique for the design of biorthogonal wavelet

transforms. Some of the results that are presented in this paper have already appeared in

[6]–[9]. However, this paper contains a unified theory that combines a full theoretical justifi-

cations of the previous results with new facts about the spline-based wavelet transforms. The

developed technique enables us to construct a wide family of transforms with various prop-

erties. It supports flexible adaptation of the transforms to the problems under consideration.

In particular, the newly designed transforms prove to be efficient for distinct computational

problems such as image compression, feature extraction for signal identification, to name a

few. The performance of the suggested transforms for still image compression is similar to the

performance of the transform with 9/7 wavelets ([4]) on most of the benchmark images. Our
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approach combines custom-design capabilities which are inherent in the lifting schemes [46]

with the usage of the well-developed theory of interpolatory, quasi-interpolatory, continuous

and discrete splines [34, 43, 55, 56].

Polynomial splines are a common source for wavelet constructions. Until recently, two

approaches governed the construction of wavelet schemes that use splines. One is based on

orthogonal ([10, 26]) and semi-orthogonal wavelets in spline spaces [12, 49, 57]. This approach

produces, in particular, compactly supported spline wavelets. However, their dual wavelets

have infinite support. The other approach, which employs splines in wavelet analysis, was

introduced by Cohen, Daubechies and Feauveau [14], who constructed symmetric compactly

supported spline wavelets whose dual wavelets remain compactly supported and symmetric

but do not belong to a spline space.

However, since the introduction of the lifting scheme for the design of wavelet trans-

forms [46], a new way has been opened for the use of splines as a tool for devising wavelet

transforms.

The basic lifting scheme for the wavelet transform of a discrete-time signal consists of

three steps:

Split – The signal is split into even and odd subarrays.

Predict – The filtered even array is used to predict the odd array. Then, the odd array

is redefined as the difference between the existing array and the predicted one. If

the predictor is correctly chosen then this step decorrelates the signal and reveals its

high-frequency component.

Update – To eliminate aliasing, which appears while downsampling the original signal,

and to obtain the low-frequency component of the signal, the even array is updated

using the filtered new odd array.

The newly produced even and odd subarrays are the coefficients from a single decomposition

step of the wavelet transform. The inverse transform is implemented in a reverse order.

The transform generates biorthogonal wavelet bases for the signal space. The structure

of the transform and its generated wavelets are determined by the choice of the predicting

and updating filters. In the construction by Donoho [21], an odd sample is predicted from

2



a polynomial interpolation of neighboring even samples. We propose to construct a spline,

which interpolates or quasi-interpolates even samples of a signal and to use values of this

spline at midpoints between the (quasi-)interpolation points as predictions for odd samples

of the signal. By using splines of various types and orders we obtain a variety of filters for

the predict step. After a proper modification, these filters can be used for the update step

in the lifting scheme. Different combinations of the prediction and update filters that are

derived from splines, generate a wide family of biorthogonal symmetric wavelet transforms

with diverse properties. In the following we specify how to use different types of splines for

the design of filters.

Continuous interpolatory splines: There is a difference between using interpolatory

splines of even and odd orders for prediction. A spline of order p (degree p− 1), which

interpolates a polynomial of degree p − 1, coincides identically with this polynomial.

In particular, it exactly restores values of the polynomial at midpoints between the

interpolation points. This property results in p vanishing moments of the analysis

wavelets. However, the interpolatory spline of odd order (even degree) with equidistant

nodes possesses the so-called super-convergence property at the midpoints [55]. To be

specific, if a spline of order p = 2r−1 interpolates a polynomial of degree p = 2r−1 on

the grid {2kh} then it predicts exactly the values of the polynomial at points {2kh+1}.
Here h is a step of the grid. Thus, the spline of order p = 2r− 1 generates an analysis

wavelet with the same number 2r of vanishing moments as a spline of order p = 2r.

But the computational cost of the implementation of the filter derived from the spline

of order p = 2r−1 is lower than the cost for computing with the spline of order p = 2r.

Discrete interpolatory splines: Another option is to use the discrete interpolatory splines

[31]. Discrete splines are functions that are defined on Z, which are the counterparts

of polynomial splines. In this case, explicit formulas for the transforms that have any

number of vanishing moments are established. Moreover, our investigation reveals an

interesting relation between discrete splines and Butterworth filters, which are com-

monly used in signal processing [30]. The filter banks used in our scheme, comprise

filters which act as bi-directional half-band Butterworth filters. The frequency response

of a Butterworth filter is maximally flat and we succeed in the construction of dual
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filters with a similar property.

One-directional causal Butterworth filters were used for devising orthogonal non-symmetric

wavelets [25]. The computations there were conducted in time domain using recursive

filtering. A scheme that used recursive filters for the construction of biorthogonal sym-

metric wavelets and their application to image processing was presented in [29, 33].

Unlike the construction in [21], the above transforms use pairs of causal and anticausal

filters with infinite impulse response (IIR). Fortunately, the transfer functions of the

employed filters are rational. Therefore, filtering can be performed recursively. Note

that the application of a pair of causal and anticausal filters to a signal, however fast it

may be, cannot be implemented in real-time. Therefore finite impulse response (FIR)

filters are more suitable for real-time processing.

Quasi-interpolatory splines: There is a way to devise wavelet transforms that employ

FIR filters whose properties are similar to the properties of the above mentioned in-

terpolatory transforms. It can be done using the so-called local quasi-interpolatory

polynomial splines [55]. Like the interpolatory splines, the quasi-interpolatory splines

of odd order also possess the super-convergence property.

Parametric splines: Analysis of approximation properties of interpolatory and

quasi-interpolatory splines enables us to devise parameterized sets of splines, that are

used for the prediction. In particular, specific choices of the parameters result in

increasing numbers of vanishing moments.

Lifting implementation of a wavelet transform of a signal is equivalent to processing the

signal by a perfect reconstruction filter bank. This filter bank generates analysis and syn-

thesis scaling functions which are solutions for the refinement equations [16]. These scaling

functions are constructed via a cascade algorithm, which is closely related to subdivision

schemes. We investigate convergence of the cascade algorithm and the regularity of the de-

rived scaling functions and wavelets. For this purpose we employ methods that are developed

in the theory of subdivision schemes [22, 23] for the schemes that employ FIR filters. The

extension of the technique to schemes with IIR filters requires some modifications.
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When the filter bank consists of FIR filters, the corresponding scaling functions are

compactly supported. This is not the case for IIR filters. We prove that the scaling functions

generated by filters with rational transfer functions decay exponentially as their arguments

tend to infinity. Obviously this result is not surprising there are hints to this fact in [15, 25].

But the authors never saw a proof of this result. In some sense, a reciprocal fact was

established in [17]. Under certain assumptions exponential decay of a refined function implies

exponential decay of the refinement mask.

Note that IIR filters with rational transfer functions, which allow recursive implemen-

tation, appear in signal processing algorithms using spline functions. Construction and

implementation of these filters was studied in [47, 48]. Our scheme that implements these

filters is close to that of [48].

The rest of the paper is organized as follows. In the introductory Section 2 we outline

the lifting scheme of wavelet transforms and discuss its relation to the conventional setting

of wavelet transforms. Namely, we describe filter banks and bases of the space of signals,

which originated from the prediction and update filters. In Section 3 we establish some

necessary properties of polynomial splines and describe the derivation of the prediction filters

from interpolatory and local quasi-interpolatory splines. We also construct parameterized

sets of splines and corresponding prediction filters, which have rational and polynomial

transfer functions. In Section 4 we design prediction filters using discrete splines and explain

the relation of these filters to Butterworth filters. In Section 5 we indicate that slightly

updated prediction filters can be employed as update filters. In Section 6 we discuss the

implementation of filters with rational transfer functions and, in particular, application of

recursive filters to finite-length signals. Section 7 is devoted to the analysis of the convergence

of the cascade algorithm with IIR filter banks and of the properties of the corresponding

scaling functions and wavelets. In particular, a theorem about the exponential decay of

the scaling functions is proved. We prove that when the prediction filter originates from

the polynomial interpolatory splines of even order 2r, the corresponding synthesis scaling

function coincides with the fundamental spline of order 2r. From the superconvergence

property, the scaling functions derived from splines of odd order are smoother than the

splines themselves. In Section 8 we list a number of filters that were derived from splines
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and, by combining these filters, we construct a number of biorthogonal wavelet transforms.

We provide graphical illustrations and summarize the properties of these transforms. Then,

in Section 9, we present image compression results after applying these transforms. In

Appendix I (Section 10) we describe a direct 2D implementation of a transform, which uses

FIR filters. The above theory was developed for the signals that belong to l1. However

a parallel theory can be developed for periodic signals using the discrete Fourier transform

(DFT). The construction is carried out in the Fourier domain and calculations are performed

via the fast Fourier transform (FFT). We outline briefly the periodic scheme in Appendix

II (Section 11). An advantage of the periodic scheme lies in the fact that an increase in the

order of the spline used for prediction, which leads to an increase in the number of vanishing

moments, does not affect the computational complexity of the implementation. Therefore,

periodic wavelets with any number of vanishing moments can be explicitly constructed.

2 Preliminaries: Biorthogonal wavelet transforms

In this section we outline known facts, which are needed for the construction of biorthogonal

wavelet transforms.

We call the sequences x
∆
= {xk}, k ∈ Z, which belong to the space l1, discrete-time

signals. The z-transform of a signal x is defined as

X(z)
∆
=

∑

k∈Z
z−k xk.

Throughout the paper we assume that z = eiω. We recall the following properties of the

z-transform:

xk =
∑

l∈Z
bk−lcl ⇐⇒ X(z) = B(z) C(z) (2.1)

Xe(z
2)

∆
=

∑

k∈Z
z−2k x2k =

1

2
(X(z) + X(−z)) (2.2)

Xo(z
2)

∆
=

∑

k∈Z
z−2k x2k+1 =

z

2
(X(z)−X(−z)) (2.3)

X(z) = Xe(z
2) + z−1Xo(z

2). (2.4)

The input xn and the output yn of a linear discrete time shift-invariant system are linked
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as

yn =
∑

k∈Z
fkxn−k. (2.5)

Such a processing of the signal x is called digital filtering and the sequence {fn} is called the

impulse response of the filter f. Its z-transform F (z) =
∑∞

n=−∞ z−nfn is called the transfer

function of the filter. Usually, a filter is designated by its transfer function F (z). Denote by

X̂(ω) =
∑

n∈Z
e−iωnxn, Ŷ (ω) =

∑

n∈Z
e−iωnyn, F̂ (ω) =

∑

n∈Z
e−iωnfn

the discrete-time Fourier transforms of the sequences. The function F̂ (ω) is called the

frequency response of the digital filter. Then, we have from (2.5)

Y (z) = F (z)X(z), and Ŷ (ω) = F̂ (ω)X̂(ω).

2.1 Lifting scheme of the wavelet transform

We use for the construction and implementation of biorthogonal wavelet transforms the so-

called lifting scheme, which was introduced by Sweldens [46]. The lifting scheme of a wavelet

transform of a signal x can be implemented in either primal or dual mode. We outline both

modes.

2.1.1 Primal decomposition

Generally, the primal lifting mode of the wavelet transform consists of four steps: 1. Split.

2. Predict. 3. Update or lifting. 4. Normalization.

Split - The array x is split into even and odd sub-arrays: e1 = {e1
k = x2k}, o1 = {o1

k =

x2k+1}, k ∈ Z.

Predict - The even array e1 is filtered by some filter U(z), in order for the filtered version

of e1 to predict the odd array o1. Then, the existing array o1 is replaced by the array

o1
ν , which is the difference between o1 and the predicted array. The filter U(z) is called

the prediction filter. In the z-domain the operations are described as follows:

O1
ν(z) = O1(z)− U(z)E1(z), (2.6)
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where O1
ν(z), O1(z), E1(z) are the z-transforms of the signals o1, o1

ν , e1, respectively.

From now on the subscript ν designates the new array. We assume that the function

U(z) is regular at a certain vicinity of the unit circle |z| = 1 including the circle. In

addition, we assume that z−1U(z2) is a real-valued function as |z| = 1. If the filtered

version of e1 well approximates o1 then, after this step, the signal is decorrelated.

Update (lifting) - Generally, downsampling the original signal x into e1 depletes the

smoothness of the signal. To obtain a sparse signal similar to the original x, the new

odd array is filtered by an update filter, which we prefer to denote V (z)/2. The filtered

array is used to increase the smoothness of the even array e1:

E1
ν(z) = E1(z) +

1

2
V (z) O1

ν(z). (2.7)

The assumption about the filter V (z) is similar to the assumption about U : the function

V (z) must be regular at a certain vicinity of the unit circle |z| = 1 including the circle

and zV (z2) must be a real-valued function as |z| = 1. Provided that the filter V is

properly chosen, the even array e1 is transformed into a smoothed and downsampled

replica of x.

Normalization - Finally, the smoothed array s1 and the array of details d1 are obtained

by the following operation: s1 =
√

2 e1
ν , d1 = o1

ν/
√

2.

The key issue in the lifting scheme is the proper choice of the filters U and V . We address

this issue in subsequent sections.

2.1.2 Primal reconstruction

One of the most attractive features of lifting schemes is that the reconstruction of the signal

x from the arrays s1 and d1 is implemented by the reverse decomposition:

Undo Normalization - e1
ν = s1/

√
2 o1

ν =
√

2d1.

Undo Lifting - The even array

E1(z) = E1
ν(z)− 1

2
V (z)O1

ν(z) (2.8)

is restored.
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Undo Predict - The odd array

O1(z) = O1
ν(z) + U(z)E1(z) (2.9)

is restored.

Undo Split - The last step is the standard restoration of the signal from its even and odd

components. In the z-domain it appears as:

X(z) = E1(z2) + z−1O1(z2). (2.10)

2.1.3 Dual mode

In the above primal construction the update step followed the prediction. In some applica-

tions it is preferable to apply the update before the prediction and to control the prediction

step. In particular, such a dual scheme provides an adaptive nonlinear wavelet transform

[13] by choosing different predictors for different fragments of the signal. So, in the dual

mode the update step precedes the predict step:

Update– The even array is averaged with the filtered odd array:

E1
ν(z) = (E1(z) + z−1U(z) O1(z)) /2.

Predict – The odd array is predicted by the filtered new even array:

O1
ν(z) = O1(z)− zV (z)E1

ν(z).

In the reconstruction the operations are reversed.

2.2 Filter banks

Let Φ(z)
∆
= (1 + z−1Û(z2))/2 and define the following filters

G̃(z)
∆
=
√

2z−1Φ(−z), H̃(z)
∆
=
√

2(1 + zV (z2)Φ(−z)), (2.11)

H(z)
∆
=
√

2Φ(z), G(z)
∆
=
√

2z−1
(
1− zV (z2)Φ(z)

)
. (2.12)

Here H̃(z) and G̃(z) are the low- and high-pass primal analysis filters, respectively, and

H(z) and G(z) are the low- and high-pass primal synthesis filters, respectively. These four

filters form a perfect reconstruction filter bank for any choice of the filters U and V .
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Proposition 2.1 If z−1U(z2) and zV (z2) are real valued on the unit circle z = eiω then the

decomposition and reconstruction equations can be represented as follows:

S1(z2) =
1

2

(
H̃(z) X(z) + H̃(−z) X(−z)

)
(2.13)

D1(z2) =
1

2

(
G̃(z) X(z) + G̃(−z) X(−z)

)
(2.14)

X(z) = H(z)S1(z2) + G(z) D1(z2), (2.15)

where S1(z) and D1(z) are the z-transforms of the arrays s1 and d1, respectively.

In addition the perfect reconstruction property holds

H(z) H̃(z) + G(z) G̃(z) = 2 H(z) H̃(−z) + G(z) G̃(−z) = 0, (2.16)

and the transfer functions are linked to each other as follows:

G̃(z) = z−1H(−z); G(z) = z−1 H̃(−z). (2.17)

Proof: We start with the primal decomposition formula (2.14). We modify Eq. (2.6) using

Eqs. (2.2) and (2.3). So, we have:

O1
ν(z

2) =
z

2

(
X(z)−X(−z)− z−1U(z2)

(
X(z) + X(−z)

))

=
z

2

(
X(z)

(
1− z−1U(z2)

)
−X(−z)

(
1 + z−1U(z2)

))
. (2.18)

To obtain (2.14), it is sufficient to note that the function G̃(z) = z−1(1 − z−1U(z2))/
√

2

possesses the property G̃(−z) = −z
(
1+z−1U(z2)

)
/
√

2 and z−1U(z2) is a real-valued function

as |z| = 1. Thus, we see that (2.18) is equivalent to (2.14).

To prove (2.13) we use the already proved relation (2.14). Then, the decomposition

formula (2.7) can be rewritten as

E1
ν(z

2) =
1

2

(
X(z) + X(−z)

)
+

V (z2)

4

(
G̃(z) X(z) + G̃(−z) X(−z)

)

=
1

2

(
X(z)(1 + V (z2)zΦ(−z)) + X(−z)(1 + V (z2)(−z)Φ(z))

)
.

Hence, (2.13) follows.

To verify the reconstruction formula (2.15), we first rewrite Eq. (2.9) using Eq. (2.8),

O1(z2) = O1
ν(z

2) + U(z2)

(
E1

ν(z
2)− V (z2)

2
O1

ν(z
2)

)

= O1
ν(z

2)

(
1− V (z2)

2
U(z2)

)
+ U(z2)E1

ν(z
2). (2.19)
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Then, we substitute (2.8) and (2.19) into (2.10).

From the definitions of the filters we immediately derive

H(z) H̃(z) + G(z) G̃(z) = 2(Φ(z) + Φ(−z)) = 2.

The second equation in (2.16) can be similarly checked. The relations (2.17) are apparent.

Similar facts hold for the dual transforms. Let us denote by H̃d and G̃d the transfer

functions of the dual analysis filters and by Hd and Gd the transfer functions of the dual

synthesis filters. The transfer functions of dual analysis filters coincide (up to constant

factors) with the primal synthesis filters and vice versa, i.e.

H̃d(z) = H(z)/2, G̃d(z) = G(z), Hd(z) = 2H̃(z), Gd(z) = G̃(z). (2.20)

2.3 Bases for signal space

The perfect reconstruction filter banks, described above, are associated with the biorthogonal

pairs of bases in the space of discrete-time signals.

In section 2.2 we introduced a family of filters by their transfer functions H(z), G(z),

H̃(z), G̃(z). Their impulse responses are {hk}, {gk}, {h̃k}, {g̃k}, k ∈ Z, respectively. It

means, for example, that H(z) =
∑

k∈Z z−khk. On the other hand, h
∆
= {hk} is the signal,

which emerges as a result of the application of the filter H(z) to the impulse signal δn (the

Kroneker delta). Similar relations hold for the other functions. The shifts of these impulse

response signals form a biorthogonal pair of bases for the signal space.

Proposition 2.2 Any signal x ∈ l1 can be represented as follows:

xl =
∑

k∈Z
s1

k ϕ1
l−2k +

∑

k∈Z
d1

k ψ1
l−2k,

where ϕ1
k

∆
= hk, ψk

∆
= gk, k ∈ Z.

The coordinates s1
k and d1

k are the following inner products:

s1
k =

∑

n∈Z
ϕ̃1

n−2kxn, d1
k =

∑

n∈Z
ψ̃1

n−2kxn, (2.21)

where ϕ̃1
k

∆
= h̃k, ψ̃1

k
∆
= g̃k, k ∈ Z.
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Proof: We start with the reconstruction formula (2.15), which we rewrite as:

X(z) = Xh(z) + Xg(z) where Xh(z) = H(z)S1(z2), Xg(z) = G(z) D1(z2). (2.22)

We can write

∑

l∈Z
z−lxh

l =
∑

k,n∈Z
z−n−2ks1

khn =
∑

k,n∈Z
z−n−2ks1

kϕ
1
n ⇐⇒ xh

l =
∑

k∈Z
s1

k ϕ1
l−2k.

Similarly, we derive the relation

xg
l =

∑

k∈Z
d1

k ψ1
l−2k.

Let us consider the decomposition formula (2.13). From Property (2.1) we conclude that

H̃(z) X(z) is the z-transform of the sequence

ak
∆
=

∑

n∈Z
h̃n−kxn =

∑

n∈Z
ϕ̃1

n−kxn.

Now from (2.13) and (2.2) we have s1
k = a2k =

∑
n∈Z ϕ̃1

n−2kxn, which proves the first

equation in (2.21). The second equation is similarly proved.

Proposition 2.2 justifies the following definition.

Definition 2.1 The discrete time signals ϕ1 ∆
= {ϕ1

k} and ψ1 ∆
= {ψ1

k}, k ∈ Z, are called the

low- and high-frequency synthesis discrete wavelets of the first scale, respectively. The signals

ϕ̃1 ∆
= {ϕ̃1

k} and ψ̃1 ∆
= {ψ̃1

k}, k ∈ Z are called the low- and high-frequency analysis discrete

wavelets of the first scale, respectively.

Corollary 2.1 The following biorthogonal relations hold:

∑

n∈Z
ϕ̃1

n−2k ϕ1
n−2l =

∑

n∈Z
ψ1

n−2k ψ̃1
n−2l = δl

k,
∑

n∈Z
ϕ̃1

n−2k ψ1
n−2l =

∑

n∈Z
ψ̃1

n−2l ϕ
1
n−2k = 0, ∀l, k.

We say that a discrete wavelet ψ has m vanishing moments if the following relations hold:
∑

k∈Z ksψk = 0, s = 0, 1, . . . , m− 1.

Proposition 2.3 Let the transfer functions U(z) and V (z), which are used for the predict

and update steps, respectively, be rational and have no poles on the unit circle |z| = 1. If

1 + z−1U(z2) comprises the factor (z + 2 + z−1)r then the high-frequency analysis wavelet ψ̃1

has 2r vanishing moments. If the above condition is satisfied and, in addition, 1 + zV (z2)

comprises the factor (z + 2 + z−1)p then the high-frequency synthesis wavelet ψ1 has 2s

vanishing moments, where s = min(p, r).
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Proof: It follows from the conditions of the proposition that 1 − z−1U(z2) comprises the

factor (z − 2 + z−1)r. Let us ignore for a moment the assumption |z| = 1 and examine the

function

q̃(z)
∆
= G̃(z−1) =

∑

k∈Z
zkψ̃1

k

of the complex variable z. We have q̃(z) = z−1(1−zU(z−2))/
√

2 = (1− z)2r Q̃(z), where Q̃(z)

is a regular function at the vicinity of z = 1. It is clear that q̃(s)(1) = 0, s = 0, 1, . . . , 2r− 1.

On the other hand,

q̃(s)(1) =
∑

k∈Z
k[s]ψ̃1

k, where k[s] ∆
= k(k − 1)(k − 2) · · · (k − s + 1).

Note that any monomial kl can be represented as a linear combination of the polynomials

k[n], n = 0, . . . , l. Thus, the wavelet ψ̃1 has 2r vanishing moments. Denote q(z)
∆
= G(z−1) =

∑
k∈Z zkψ1

k. If 1− zV (z2) comprises the factor (z − 2 + z−1)p then we have

q(z) = z
√

2

(
1− z−1V (z−2)(1 + zU(z−2))

2

)

=
z√
2

(
(1− z−1V (z−2)) + (1− zU(z−2)) + zU(z−2)(1− z−1V (z−2))

)
= (1− z)2s Q(z),

where s = min(p, r) and Q(z) is a regular function in the vicinity of z = 1. Thus, the wavelet

ψ1 has 2s vanishing moments.

2.4 Multiscale wavelet transforms

We described in Sections 2.1 – 2.3 one step of a wavelet transform of a signal from a fine scale

to a coarse one. Expansion of the transform to coarser scales is implemented in a recursive

way. In this transform we store the array d1 and decompose the array s1. The transformed

arrays s2 and d2 of the second scale are derived from the even and odd sub-arrays of the

array s1 with the same lifting steps as those described in Section 2.1. As a result we get that

the signal x is transformed into three subarrays: x ↔ d1 ⋃
d2

⋃
s2. The coefficients of the

transform are linked as follows:

S2(z2) =
1

2

(
H̃(z) S1(z) + H̃(−z) S1(−z)

)
, (2.23)

D2(z2) =
1

2

(
G̃(z) S1(z) + G̃(−z) S1(−z)

)

S1(z) = H(z)S2(z2) + G(z) D2(z2). (2.24)
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Again, the transform leads to expansion of the signal with a biorthogonal pair of bases.

We describe this re-expansion in more detail.

Definition 2.2 The discrete time signals

ϕ2
l

∆
=

∑

k∈Z
hkϕ

1
l−2k, ψ2

l
∆
=

∑

k∈Z
gkϕ

1
l−2k (2.25)

are called the low- and high-frequency discrete synthesis wavelets of the second scale, respec-

tively. The discrete time signals

ϕ̃2
l

∆
=

∑

k∈Z
h̃kϕ̃

1
l−2k, ψ̃2

l
∆
=

∑

k∈Z
g̃kϕ̃

1
l−2k (2.26)

are called the low- and high-frequency discrete analysis wavelets of the second scale, respec-

tively.

Proposition 2.4 The signal x can be expanded as follows:

xl =
∑

k∈Z
s2

k ϕ2
l−4k +

∑

k∈Z
d2

k ψ2
l−4k +

∑

k∈Z
d1

k ψ1
l−2k. (2.27)

The coordinates in (2.27) are the following inner products:

s2
k =

∑

n∈Z
xn ϕ̃2

n−4k, d2
k =

∑

n∈Z
xn ψ̃2

n−4k.

Proof: Using (2.24) and (2.22) we represent the z-transform of the signal x as follows:

X(z) = Xhh(z) + Xgh(z) + Xg(z), where

Xhh(z)
∆
= H(z)H(z2)S2(z4), Xgh(z)

∆
= H(z)G(z2) D2(z4).

We can write

∑

l∈Z
z−lxhh

l =
∑

k,n,m∈Z
z−n−2k−4ms2

mhkϕ
1
n =

∑

l∈Z
z−l

∑

m∈Z
s2

m

∑

k∈Z
hkϕ

1
l−2k−4m

⇐⇒ xhh
l =

∑

m∈Z
s2

mϕ2
l−4m,

and ϕ2
l is defined in (2.25). Similarly, we derive the relation xgh

l =
∑

k∈Z d2 ψ2
l−4k, where ψ2

l

is defined in (2.25).

14



It is seen from (2.23) that s2
k = b2k, where

bk
∆
=

∑

l∈Z
h̃l−ks

1
l =

∑

l∈Z
h̃l−k

∑

n∈Z
ϕ̃1

n−2lxn

=
∑

n∈Z
xn

∑

l∈Z
h̃lϕ̃

1
n−2l−2k =

∑

n∈Z
xnϕ̃

2
n−2k,

where ϕ̃2
n is defined in (2.26). Formulas for d2

k are derived similarly.

The discrete wavelets related to the subsequent scales are defined iteratively via the

two-scale equations

ϕj+1
l

∆
=

∑

k∈Z
hkϕ

j
l−2k, ψj+1

l
∆
=

∑

k∈Z
gkϕ

j
l−2k

ϕ̃j+1
l

∆
=

∑

k∈Z
h̃kϕ̃

j
l−2k, ψ̃j+1

l
∆
=

∑

k∈Z
g̃kϕ̃

j
l−2k.

3 Design of prediction filters using polynomial splines

We derive the prediction filters from splines in the following way: We construct a spline,

which interpolates or quasi-interpolates even samples of a signal and predict odd sam-

ples as the values of the spline calculated at the midpoints between the points of (quasi-

)interpolation. Analytically, this operation reduces to filtering the even array. We will show

that splines of odd order are more suitable for this design due to the property of supercon-

vergence of splines of odd order at the midpoints.

3.1 B-splines

We outline here some known properties of B-splines and establish some facts needed for our

constructions.

The central B-spline of first order is the characteristic function of the interval [−1/2, 1/2].

The central B-spline of order p is the convolution Mp(x) = Mp−1(x) ∗M1(x) p ≥ 2. Note

that the B-spline of order p is supported on the interval (−p/2, p/2). It is positive within

its support and symmetric around zero. The B-spline Mp consists of pieces of polynomials

of degree p − 1 that are linked to each other at the nodes such that Mp ∈ Cp−2. Nodes of

B-splines of even order are located at points {k} and of odd order, at points {k+1/2}, k ∈ Z.
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The Fourier transform of the B-spline of order p is

M̂p(ω)
∆
=

∫ ∞

−∞
e−iωxMp(x) dx =

(
sin ω/2

ω/2

)p

. (3.1)

We introduce two sequences which are important for further construction:

up ∆
= {Mp

k}, wp ∆
=

{
Mp

(
k +

1

2

)}
, k ∈ Z. (3.2)

Due to the compact support of B-splines, these sequences are finite. In Table 1 we present

the sequences up and wp for some values of p.

k -4 -3 -2 -1 0 1 2 3 4

u2
k 0 0 0 0 1 0 0 0 0

u3
k × 8 0 0 0 1 6 1 0 0 0

u4
k × 6 0 0 0 1 4 1 0 0 0

u5
k × 384 0 0 1 76 230 76 1 0 0

u6
k × 120 0 0 1 76 230 76 1 0 0

u7
k × 46080 0 1 722 10543 23548 10543 722 1 0

w3
k × 2 0 0 0 1 1 0 0 0 0

w4
k × 48 0 0 1 23 23 1 0 0 0

w5
k × 24 0 0 1 11 11 1 0 0 0

w6
k × 3840 0 1 237 1682 1682 237 1 0 0

w7
k × 720 0 1 57 302 302 57 1 0 0

Table 1: Values of the sequences up and wp .

The discrete-time Fourier transforms of these sequences are

ûp(ω)
∆
=

∞∑

−∞
e−iωkMp

k = P p
(
cos

ω

2

)
, (3.3)

ŵp(ω)
∆
=

∞∑

−∞
e−iωkMp

(
k +

1

2

)
= eω/2Qp

(
cos

ω

2

)
.

Here the functions P p and Qp are real-valued polynomials. If p = 2r − 1 then P p is a

polynomial of degree 2r − 2 and Qp is a polynomial of degree 2r − 3. If p = 2r then P p is a

polynomial of degree 2r − 2 and Qp is a polynomial of degree 2r − 1.
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These polynomials were extensively studied in [39, 41]. In particular the following facts

were established.

Proposition 3.1 ([39]) The polynomials P p and Qp can be derived via the recurrence re-

lations

Qp+1(y) = yP p(y) +
1− y2

p

dP p(y)

dy
, P 1(y) ≡ 1,

P p+1(y) = yQp(y) +
1− y2

p

dQp(y)

dy
, P 2(y) ≡ 1.

The z-transforms of the sequences up and wp are

up(z) =
∞∑

−∞
z−kMp

k = Eu
p (z), wp(z) =

∞∑

−∞
z−kMp(k + 1/2) = Ew

p (z), (3.4)

where Eu
p (z) and Ew

p (z) are the so-called Euler-Frobenius polynomials [41].

Proposition 3.2 ([41]) On the circle z = eiω the Laurent polynomials Eu
p (z) are strictly

positive. Their roots are all simple and negative. Each root γ can be paired with a dual root

γ̃ such that γ γ̃ = 1. Thus, if p = 2r − 1, p = 2r then up(z) can be represented as follows:

up(z) =
r−1∏

n=1

1

γn

(1 + γnz)(1 + γnz
−1), 0 < γ1 < γ1 < . . . < γr−1 < 1. (3.5)

We introduce a rational function.

Rp(y)
∆
=

Qp(y)

P p(y)
. (3.6)

Examples:

P 3(y) = (1 + y2)/2, Q3(y) = y, 1−R3(y) =
(1− y)2

1 + y2
, 1 + R3(y) =

(1 + y)2

1 + y2
.

P 4(y) =
1 + 2y2

3
, Q4(y) =

5y + y3

6
,

1−R4(y) =
(1− y)2 (−y + 2)

2(1 + 2y2)
, 1 + R4(y) =

(1 + y)2 (y + 2)

2(1 + 2y2)
.

P 5(y) =
5 + 18y2 + y4

24
, Q5(y) =

2y + y3

3
,

1−R5(y) =
(1− y)3 (−y + 5)

5 + 18y2 + y4
, 1 + R5(y) =

(1 + y)3 (y + 5)

5 + 18y2 + y4
.
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Properties of the rational functions Rp. Using Eq. (3.1) we have

Mp(x− k) =
1

2π

∫ ∞

−∞
eiω(x−k)

(
sin ω/2

ω/2

)p

dω =
∞∑

l=−∞
e2πilx

∫ 1

0
e2πiv(x−k) (sin πv)p(−1)lp

π(l + v))p
dv

=
∫ 1

0
e−2πivkmp

x(v) dv, where mp
x(v)

∆
= e2πivx(sin πv)p

∞∑

l=−∞
e2πilx (−1)lp

(π(l + v))p
. (3.7)

The relation (3.7) means that Mp(x − k) is a Fourier coefficient of the 1-periodic function

mp
x(v) and this function can be represented as a sum:

mp
x(v) =

∞∑

k=−∞
e−2πikv Mp(x + k). (3.8)

Equations (3.3) and (3.8) imply the following representations:

P p(cos ω/2) = ûp(ω) = mp
0(ω/2π) = (sin ω/2)p

∞∑

l=−∞

(−1)lp

(πl + ω/2)p
(3.9)

Qp(cos ω/2) = e−iω/2ŵp(ω) = e−iω/2mp
1
2

(ω/2π) = (sin ω/2)p
∞∑

l=−∞

(−1)l(p+1)

(πl + ω/2)p
.

It is obvious from (3.9) that

P p(1) = Qp(1) = 1. (3.10)

Proposition 3.3 If p = 2r then

1 + R2r(cos ω/2) =
2(cos ω/4)2rP 2r(cos ω/4)2r

P 2r(cos ω/2)
.

Proof: From Eqs.(3.9), (3.10) we have

1 + R2r(cos ω/2) = 1 +
Q2r(cos ω/2)

P 2r(cos ω/2)
=

2(sin ω/2)2r ∑∞
l=−∞(π2l + ω/2)−2r

P 2r(cos ω/2)

=
2(cos ω/4)2r(sin ω/4)2r ∑∞

l=−∞(πl + ω/4)−2r

P 2r(cos ω/2)
=

2(cos ω/4)2rP 2r(cos ω/4)

P 2r(cos ω/2)
.

Lemma 3.1 If p = 2r − 1 then at the vicinity of ω = 0

1−R2r−1(cos ω/2) = A2r−1

(
ω

2

)2r

+ O(ω2r+2), A2r−1
∆
=

(4r − 1)

r(2r − 2)!
|b2r|, (3.11)

where bs is the Bernoulli number of order s.
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Proof: From Eqs. (3.9), (3.10) we have

1−R2r−1(cos ω/2) =
P 2r−1(cos ω/2)−Q2r−1(cos ω/2)

P 2r−1(cos ω/2)
=
−2(sin ω/2)2r−1T2r−1(ω)

P 2r−1(cos ω/2)
,

where T2r−1(ω)
∆
=

∞∑

l=−∞

1

(π(2l + 1) + ω/2)2r−1
.

The function T2r−1(ω) is infinitely differentiable at the point ω = 0 and its vicinity and the

Taylor expansion holds

T2r−1(ω) =
∞∑

n=0

T
(n)
2r−1(0)

n!
ωn.

We can write

T
(n)
2r−1(0) = (−1)n

∞∑

l=−∞

22r−1(2r − 1) . . . (2r + n− 2)

(2π(2l + 1))2r−1+n
.

Hence, we see that

T2r−1(0) =
∞∑

l=−∞

1

(π(2l + 1))2r−1
= 0.

Similarly, T
(2k)
2r−1(0) = 0 ∀k ∈ N. This is not the case for the odd order derivatives:

T
(2k+1)
2r−1 (0) = −(2r − 1) . . . (2(r + k)− 1)

22k+1π2(r+k)

∞∑

l=0

1

(2l + 1))2(r+k)
.

Using a known formula [1]

∞∑

l=0

1

(2l + 1))2n
=

(22n − 1)π2n

2(2n)!
|b2n|,

we get

T
(2k+1)
2r−1 (0) = −(2r − 1) . . . (2(r + k)− 1)

22k+1

(22(r+k) − 1)

2(2(r + k))!
|b2(r+k)|

= − (22(r+k) − 1)

22(k+1)(r + k)(2r − 2)!
|b2(r+k)|.

Finally,

T2r−1(ω) =
∞∑

k=0

T
(2k+1)
2r−1 (0)

(2k + 1)!
ω(2k+1) (3.12)

= −
∞∑

k=0

(22(r+k) − 1)

22(k+1)(r + k)(2r − 2)!(2k + 1)!
|b2(r+k)|ω(2k+1)

= − (4r − 1)

4r(2r − 2)!
|b2r|ω + O(ω3).
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Note that the polynomial P 2r−1(cos ω/2) of degree 2r−2 can be represented as a polynomial

of the argument sin2(ω/4). For ω = 0, P 2r−1(cos ω/2) = 1, we have

P 2r−1(cos ω/2) = 1 + $2r−1
(
sin2 ω

4

)
, $2r−1

(
sin2 ω

4

)
∆
=

2r−2∑

n=1

αn sin2n ω

4
. (3.13)

Equations (3.12) and (3.13) imply (3.11).

Corollary 3.1 If p = 2r − 1 then the following factorization formulas hold

1−R2r−1(cos ω/2) = (sin2r ω/4)ρr(ω), ρr(ω) =
pr−2(sin

2 ω/4)

1 + $2r−1(sin2 ω/4)
, (3.14)

where pr−2 are polynomials of degree r − 2. The rational functions ρr can be represented as

ρr(ω) = 4rA2r−1 +
∞∑

n=1

γn sin2n ω

4
. (3.15)

The coefficients γn in (3.15) are such that the series converges absolutely for all real ω.

This claim follows from Lemma 3.1. It follows from Proposition 3.2 that in the representation

(3.13) the absolute value of the polynomial $2r−1(sin2 ω/4) remains less than 1 for all real

ω. This implies the absolute convergence of the series in (3.15).

3.2 Interpolatory splines

Shifts of B-splines form a basis in the space of splines of order p on the grid {2k}. Namely,

any spline Sp has the following representation:

Sp(x) =
∑

l

ql M
p(x/2− l). (3.16)

Denote q
∆
= {ql} and let Q(z) be the z-transform of q. We also introduce the sequences

sp
e

∆
= {sp

e,k
∆
= Sp(2k)}, sp

o
∆
= {sp,k ∆

= Sp(2k + 1)} and sp = {sp
k

∆
= Sp(k)} of values of the

spline on the grid points, on the midpoints and on the whole set {k}. The z-transform of

the sequence sp is

sp(z) = sp
e(z

2) + z−1sp
o(z

2). (3.17)

We have

sp
e,k =

∑

l

ql M
p(k − l), sp

o,k =
∑

l

ql M
p

(
k − l +

1

2

)
.
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Thus, sp
e(z) = Q(z)up(z) and sp

o(z) = Q(z)wp(z), where up(z) and wp(z) are the functions

defined in (3.4). From these formulas we can derive expressions for the coefficients of a spline

Sp
i which interpolates a given sequence e

∆
= {ek} ∈ l1 at grid points:

Sp
i (2k) = ek, k ∈ Z,⇐⇒ Q(z)up(z) = e(z)

⇐⇒ Q(z) =
e(z)

up(z)
⇐⇒ ql =

∞∑

n=−∞
λp(l − n)e(n), (3.18)

where λp ∆
= {λp

k} is the sequence which is defined via its z−transform:

λp(z) =
∞∑

k=−∞
z−kλp

k =
1

up(z)
. (3.19)

It follows immediately from (3.5) that the coefficients {λp
k} decay exponentially as |k| → ∞.

Substitution of (3.18) into (3.16) results in an alternative representation of the interpolatory

spline:

Sp
i (x) =

∞∑

l=−∞
el L

p(x/2− l), where Lp(x)
∆
=

∑

l

λp
l Mp(x− l). (3.20)

The spline Lp(x) defined in (3.20) is called the fundamental spline. It interpolates the

Kroneker delta sequence δk, i.e. it vanishes at all the integer points except x = 0, where

Lp(0) = 1. By decaying the coefficients {λp
k}, the spline Lp(x) decays exponentially as

|x| → ∞. Therefore, the representation (3.20) of the interpolatory spline remains valid for

the sequences {ek}, which may grow no faster than a power of k [42]. The values of the

fundamental spline at midpoints are

Lp
(
k +

1

2

)
=

∑

l

λp
l Mp

(
k − l +

1

2

)
. (3.21)

Denote by Up
i (z) the z-transform of the sequence {Lp (k + 1/2)}, k ∈ Z. Then, we obtain

from Eqs. (3.19) and (3.21)

Up
i (z) =

wp(z)

up(z)
. (3.22)

Hence the values of the interpolatory spline at the midpoints are

sp
o,k =

∑
n

Lp
(
k +

1

2
− n

)
en ⇐⇒ sp

o(z) = Up
i (z)e(z). (3.23)

21



Switching into the signal processing terminology, we say that, in order to derive the values of

the interpolatory spline at the midpoints {2k + 1} between the points {2k} of interpolation,

we have to filter the data {ek} by the filter Up
i whose impulse response {Lp (k + 1/2)}, k ∈ Z

is infinite but decays exponentially as |k| → ∞ (IIR filter). As we mentioned above, if a

spline interpolates even samples of a signal the values of the spline at the midpoints are used

as a prediction of the odd samples of the signal. Thus, the filters Up
i may serve as prediction

filters in the lifting scheme of a wavelet transform.

Properties of the rational functions Up
i (z). If we substitute z = eiω then we see that

z−1Up
i (z2) = Rp(cos(ω) (the function Rp was defined in (3.6)). Thus, the properties of the

functions Up
i (z) follow immediately from the properties of Rp that were established in Section

3.1. We outline these properties.

Proposition 3.4 1. The function z−1Up
i (z2) is real valued on the unit circle z = eiω.

2. If p = 2r then

1 + z−1U2r(z2) =
(1 + z)2ru2r(z)

22r−1zru2r(z2)
, 1− z−1U2r(z2) =

(z − 2 + z−1)ru2r(z)

22r−1u2r(z2)
. (3.24)

3. If p = 2r − 1 then the following factorization formulas hold

1− z−1U2r−1(z2)(z) = (z − 2 + z−1)rϑr(z) ϑ2r−1(z) =
qr−2(z − 2 + z−1)

u2r−1(z2)
, (3.25)

where qr−2 are polynomials of degree r − 2. The rational function ϑ2r−1 can be repre-

sented as

ϑ2r−1(z) = A2r−1 +
∞∑

n=1

εn(z − 2 + z−1)n, where A2r−1
∆
=

(4r − 1)

r(2r − 2)!
|b2r|, (3.26)

bs is the Bernoulli number of order s and the coefficients {εn} in (3.26) are such that

the series absolutely converges for all z, |z| = 1.

Combining these results with Proposition 2.3, we come to the following corollary.

Corollary 3.2 If the filter Up
i is used as a prediction filter in the lifting scheme then, either

by p = 2r−1 or by p = 2r, the high-frequency analysis wavelet ψ̃1 has 2r vanishing moments.
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Super-convergence property. Proposition 3.4 implies the super-convergence property of

the interpolatory splines of odd order (even degree). Recall, that in general the interpolatory

spline of order p (degree p− 1), which interpolates the values of a polynomial of degree not

exceeding p − 1, coincides with this polynomial (in other words, the spline is exact on

polynomials of degree not exceeding p− 1). However, we will show that the spline S2r−1
i of

odd order 2r − 1 (degree 2r − 2), which interpolates the values of a polynomial of degree

2r − 1 on the grid {2k} restores the values of this polynomial at the mid-points {2k + 1)}
between the grid points. Therefore, we claim that {2k + 1)} are points of super-convergence

of the spline S2r−1
i . This property results in the vanishing moments property of the wavelets

constructed using the filters U2r−1
i .

We denote by D2 the operator of central second difference: D2fk = fk−1 − 2fk + fk+1.

It is applied to a signal via filtering with the transfer function D2(z) = z − 2 + z−1. The

Laurent polynomial D2r(z) = (z− 2 + z−1)r corresponds to the difference of order 2r, which

is denoted as D2r.

Proposition 3.5 Let a function f(x), which may grow no faster than a power of x as

|x| → ∞, be sampled on the grid {k} and f
∆
= {fk}, k ∈ Z. Let the spline S2r−1

i of order

2r − 1 interpolate f on the grid {2k}. Then

S2r−1
i (2k + 1) = f (2k + 1)− A2r−1D

2rf(2k + 1)−
∞∑

n=1

εnD
2(r+n)f(2k + 1),

where A2r−1
∆
=

(4r − 1)

r(2r − 2)!
|b2r|,

bs is the Bernoulli number of order s and the set {εn} of coefficients guarantees the absolute

convergence of the series.

Proof: The difference between the odd subarray {f(2k +1)} and the array {s2r−1
o,k } of values

of the spline at the midpoints is

f(2k + 1)− s2r−1
o,k = f(2k + 1)−∑

n

Lp
(
k +

1

2
− n

)
f(2n) (3.27)

=
∑
n

ap
2k+1−nf(n), where ap

k =





δl, if k = 2l

−Lp(l + 1/2), if k = 2l + 1.
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Equation (3.27) means that to obtain the difference f(2k + 1) − sp
o(k) we must apply the

filter ap ∆
= {ap

r} to the array f and take odd samples of the generated array. The z-transform

of the filter a2r−1 is A2r−1(z) = 1 − z−1U2r−1
i (z2). Due to (3.25) and (3.26), the function

A2r−1(z) is factorized into A2r−1(z) = (z − 2 + z−1)rϑ2r−1(z), where

ϑ2r−1(z) = A2r−1 +
∞∑

n=1

εn(z − 2 + z−1)n.

The series converges absolutely as |z| = 1. Hence, the assertion of the proposition follows.

Corollary 3.3 Let the function f be a polynomial of degree 2r − 1. Then, S2r−1
i (2k + 1) ≡

f(2k + 1) ∀k ∈ Z. If f(x) is a polynomial of degree 2r + 1 then

S2r−1
i (2k + 1) = f (2k + 1)− A2r−1D

2rf(2k + 1) = f (2k + 1)− A2r−1f
(2r)(2k + 1). (3.28)

Originally this property was proved differently in [55].

Remark. It can be easily derived from (3.24) that the splines of order 2r restore only

polynomials of degree 2r − 1 at the midpoints between the points of interpolation.

Examples:

Interpolatory quadratic spline: p = 3

U3
i (z) = 4

1 + z

z + 6 + z−1
, 1 + z−1U3

i (z2) =
(z + 2 + z−1)2

z−2 + 6 + z2
. (3.29)

The corresponding analysis wavelet has four vanishing moments.

Interpolatory cubic polynomial spline: p = 4

U4
i (z) =

(z + 1)(z−1 + 22 + z)

8(z + 4 + z−1)
, 1 + z−1U4

i (z2) =
(z−1 + 2 + z)2(z + 4 + z−1)

8(z−2 + 4 + z2)
.

The corresponding analysis wavelet has four vanishing moments.

Interpolatory spline of fourth degree: p = 5

U5
i (z) =

16(z + 10 + z−1)(1 + z)

z2 + 76z + 230 + 76z−1 + z−2
, (3.30)

1 + z−1U5
i (z2) =

(z + 2 + z−1)3 (z + z−1 − 10)

z4 + 76z2 + 230 + 76z−2 + z−4
.

The corresponding analysis wavelet has six vanishing moments.
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Remark: Due to the superconvergence property of the splines of odd order, the wavelets

originating from the interpolatory splines of odd order 2r − 1 and of even order 2r have

the same number of vanishing moments. But the structure of the filter U2r−1
i is simpler

than the structure of U2r
i (compare, for example, U3

i (z) with U4
i (z)). This means that the

computational cost of implementation of the wavelet transform with the filter U2r−1
i is lower

than with the filter U2r
i . Moreover, the wavelets originating from U2r−1

i are better localized

in time domain. Therefore, for most applications it is preferable to use filters derived from

the odd-order splines.

3.3 Local quasi-interpolatory splines

We can see from Eq. (3.23) that in order to find the values at the midpoints of the spline

that interpolates the array e, the array has to be filtered with the filter whose transfer

function is Up
i (z). This filter has infinite impulse response (IIR). Further on we discuss

a fast implementation of this operation via recursive filtering, which is commonly used in

signal processing. But this procedure can not be used in real-time processing. Also the

recursive filtering is not appropriate when the length of a signal to be processed is large.

In these situations finite impulse response (FIR) filters are better suited. In this section we

describe the construction of FIR prediction filters on the base of the so-called local quasi-

interpolatory (LQI) splines. Their properties are similar to the properties of filters derived

from interpolatory splines. Even the property of super-convergence at midpoints remains

valid for the quasi-interpolatory splines of odd order.

Definition 3.1 Let a function f be sampled on the grid {k}, f
∆
= {fk}, and F (z) be the

z-transform of f . A spline Sp of order p represented in the form (3.16) is called local if the

array q of its coefficients is derived by FIR filtering of the array f :

Q(z) = Γ(z)F (z), (3.31)

where Γ(z) is a Laurent polynomial. The local spline of order p is called quasi-interpolatory

(LQI) if it is exact on polynomials of degree not exceeding p− 1.

It means that if f is a polynomial of degree p− 1, then the spline Sp(x) ≡ f(x).
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To predict the odd samples we use the values at the midpoints of the splines, which

quasi-interpolate the even samples. If wp is the sequence defined in (3.4) then the FIR

prediction filter, which stems from an LQI spline of order p, is

Up
q (z)

∆
= Γ(z)wp(z). (3.32)

Explicit formulas for the construction of quasi-interpolatory splines were given in [39].

Properties of quasi-interpolatory splines and, in particular, their approximation accuracy

were studied in [55]. In this work we are interested in splines of odd order p = 2r− 1. There

are many FIR filters, which generate quasi-interpolatory splines, but there is only one filter

whose impulse response has minimal length 2r − 1 for each order p = 2r − 1.

Proposition 3.6 ([39]) An LQI spline of order p = 2r − 1 can be produced by filtering

(3.31) with filters Γ of length no less than 2r − 1. There exists a unique filter Γm whose

impulse response is of length 2r − 1, which produces the minimal quasi-interpolatory spline

S̃2r−1
m (x). Its transfer function is:

Γm(z) = 1 +
r−1∑

k=1

β2r−1
k (z−1 − 2 + z)k, (3.33)

where the coefficients β2r−1
k are derived from the generating function

(
2 arcsin t/2

t

)p

=
∞∑

k=0

(−1)kβp
kt

2k.

Proposition 3.7 ([55]) If f is a polynomial of degree 2r and f
∆
= {f(2k)} then the following

relation holds for the minimal quasi-interpolatory spline S2r+1
m of order 2r−1 (degree 2r−2)

for t = (2k + 1 + τ), τ ∈ [0, 1]:

S2r−1
m (t) = f(t)− 22r−1f (2r−1)(t)

b2r−1(τ)

(2r − 1)!
+ 22rf (2r) ·

(
(2r − 1)b2r(τ)

(2r)!
− β2r−1

r

)
,

where bs(τ) is the Bernoulli polynomial of degree s.

We recall that the values bs
∆
= bs(0) are called the Bernoulli numbers [1]. If s > 1 is odd then

bs = 0. Hence, we obtain the super-convergence property, which is similar to the property

of interpolatory splines of odd order.
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Corollary 3.4 If f is a polynomial of degree 2r − 1 , f
∆
= {f(2k)} and S2r−1

m is a minimal

LQI spline of order 2r − 1 (degree 2r − 2 ) then S2r−1
m (2k + 1) ≡ f(2k + 1), k ∈ Z. If f is a

polynomial of degree 2r then

S2r−1
m (2k + 1) = f(2k + 1) + 22rf (2r)B2r−1, B2r−1

∆
=

(2r − 1)b2r

(2r)!
− β2r−1

r . (3.34)

3.4 Parametric splines

3.4.1 Upgrade of LQI splines

The representation (3.34) provides tools for custom design of predicting splines that retain

or even enhance the approximation accuracy of the minimal LQI spline at the midpoints.

This is achieved via an upgrade of the filter Γm.

Proposition 3.8 Let f be a polynomial of degree 2r−1 and f
∆
= {f(2k)}. If the coefficients

of a spline S2r−1
ρ of order 2r − 1 are derived using Eq. (3.31) and the filter Γρ of length

2r + 1 with the transfer function

Γρ(z) = Γm(z) + ρ(z−1 − 2 + z)r (3.35)

then S2r−1
ρ (2k + 1) ≡ f(2k + 1), k ∈ Z by any real ρ. However, if ρ = −B2r−1 then the

identity S2r−1
ρ (2k + 1) ≡ f(2k + 1) remains valid when f is a polynomial of degree 2r.

Proof: The spline S2r−1
ρ , which is constructed using the filter Γρ, can be represented by the

sum:

S2r−1
ρ = S2r−1

m + ρS2r−1
d , S2r−1

d (t)
∆
=

∑

l∈Z
(D2rf(2l)) M2r−1(t/2− l). (3.36)

We evaluate the spline S2r−1
d using the well-known asymptotic relation for a function φ ∈ C3

([40]):
∑

l

φ(hl) Mp(t/h− l) = φ(t) +
ph2φ

′′
(t)

24
+ O(h3φ(3)). (3.37)

Hence, if f is a polynomial of degree 2r then we have S2r−1
d (t) = D2rf = 22rf (2r) and

S2r−1
ρ (t) = f(t)− 22r−1f (2r−1)(t)

b2r−1(τ)

(2r − 1)!
+ 22rf (2r)

(
(2r − 1)b2r(τ)

(2r)!
− β2r−1

r + ρ

)
,
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At midpoints we have

S2r−1
m (2k + 1) = f(2k + 1) + 22rf (2r) · (B2r−1 + ρ). (3.38)

The equation (3.38) proves the proposition.

If the parameter ρ is chosen such that ρ = (−1)r−1|ρ| then the spline S2r−1
ρ possesses the

smoothing property [56]. In the case when ρ = −Br we call the spline the extended LQI

spline and denote it as S2r−1
e .

We recall that, given a filter Γ(z), the prediction filter is derived from Eq. (3.32).

Examples:

Minimal LQI quadratic spline: The filters are

Γm(z) = 1− z−1 − 2 + z

8
, U3

m(z) =
−z−1 + 9 + 9z − z2

16
, (3.39)

1− z−1U3
m(z2) =

(z−1 − 2 + z)2(z−1 + 4 + z)

16
.

The corresponding analysis wavelet has four vanishing moments.

Extended LQI quadratic spline:

Γe(z) = Γm(z) +
3

128
(z−1 − 2 + z)2,

U3
e (z) =

3z−2 − 25z−1 + 150 + 150z − 25z2 + 3z3

256
, (3.40)

1 + z−1U3
e (z2) =

(z−1 + 2 + z)3(3z−2 + 18z−1 + 38 + 18z + 3z2)

256
.

The corresponding analysis wavelet has six vanishing moments.

Remark: Donoho [21] presented a scheme where an odd sample is predicted by the

value at the central point of a polynomial of odd degree which interpolates adjacent

even samples. One can observe that our filter U3
m (3.39) coincides with the filter

derived by Donoho’s scheme using a cubic interpolatory polynomial. The filter U3
e

(3.40) coincides with the filter derived using an interpolatory polynomial of fifth degree.

Note that in Donoho’s construction the update step does not exist. On the other hand,
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the filters 1+ z−1U3
m(z2) and 1+ z−1U3

e (z2) are the autocorrelations of 4-tap and 6-tap

filters by Daubechies, respectively [37].

Minimal LQI spline of fifth order (fourth degree):

Γm(z) = 1− 5

24
(z−1 − 2 + z) +

47

1152
(z−1 − 2 + z)2,

U5
m(z) =

47(z−3 + z4) + 89(z−2 + z3)− 2277(z−1 + z2) + 15965(1 + z)

27648
(3.41)

1− z−1U5
m(z2) =

−(z−1 − 2 + z)3

27648

×
(
47(z−4 + z4) + 282(z−3 + z3) + 1076(z−2 + z2) + 3166(z−1 + z) + 5414

)
.

Like the quadratic extended spline the minimal spline of fourth degree produces an

analysis wavelet with six vanishing moments. But the computational cost of the im-

plementation of the transform with the filter U5
m is higher than that with the filter

U3
e .

3.4.2 Upgrade of interpolatory splines

We can use a similar approach for increasing the approximation accuracy of interpolatory

splines of odd order at midpoints. It can be done in two ways. Let S2r−1
i be a spline of order

2r − 1, which interpolates a sequence {ek} on the grid {2k}.

Upgrade of the numerator of the transfer function: We introduce a new spline S2r−1
ρ

as follows:

S̃2r−1
ρ = S2r−1

i + ρS2r−1
d , S2r−1

d
∆
=

∑

l

(D2rel) M2r−1(t/2− l). (3.42)

Then an assertion similar to Proposition 3.8 holds.

Proposition 3.9 Let f be a polynomial of degree 2r − 1 and ek
∆
= {f(2k)}, k ∈ Z.

Then for any real ρ the spline

S̃2r−1
ρ (2k + 1) ≡ f(2k + 1), S̃2r−1

ρ (2k) ≡ f(2k), k ∈ Z.

However, if f is a polynomial of degree 2r+1 and ρ = 4−rA2r−1, where A2r−1 is defined

in (3.11), then the spline restores values of f at the midpoints {2k + 1}, k ∈ Z.
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We denote the spline with ρ = 4−rA2r−1 by S̃2r−1
A . As before, we use values of the

spline at midpoints as prediction of the odd subarray of the processed signal. Using

(3.22) and (3.4), we get that the corresponding prediction filter is

Ũ2r−1
A (z) = U2r−1

i (z) + 4−rA2r−1w
2r−1(z)(z − 2 + z−1)r

=
w2r−1(z)(1 + 4−rA2r−1 u2r−1(z) (z − 2 + z−1)r)

u2r−1(z)
.

By this means we update the numerator of the rational transfer function of the filter

U2r−1
i (z). In other words, we change the FIR component of the filter.

Upgrade of the denominator of the transfer function: Another way consists of mod-

ifying the denominator rather than the numerator of the transfer function. As is

seen from (3.5), the Laurent polynomial u2r−1(z) can be represented as the sum

u2r−1(z) = 1 +
∑r−1

k=1 αk(z − 2 + z−1)k.

We introduce a new Laurent polynomial

u2r−1
ρ (z)

∆
= 1+

r−1∑

k=1

αk(z−2+z−1)k +ρ(z−2+z−1)r = u2r−1(z)+ρ(z−2+z−1)r (3.43)

and the rational function

Ǔ2r−1
ρ (z)

∆
=

w2r−1(z)

u2r−1
ρ (z)

. (3.44)

Similarly to the construction of the interpolatory splines we define the quasi-fundamental

spline

L2r−1
ρ (x)

∆
=

∑

l

λ2r−1
ρ,l M2r−1(x− l),

∞∑

k=−∞
z−kλ2r−1

ρ,k =
1

u2r−1
ρ (z)

. (3.45)

Given a sequence {ek}, we construct the spline

Š2r−1
ρ (t) =

∞∑

l=−∞
el L

2r−1
ρ (t/2− l). (3.46)

Proposition 3.10 Let f be a polynomial of degree 2r− 1 and f
∆
= {f(2k)}. Then for

any real real ρ such that u2r−1
ρ (eiω) 6= 0 ∀ω ∈ R, the spline

Š2r−1
ρ (2k + 1) ≡ f(2k + 1), S̃2r−1

ρ (2k) ≡ f(2k), k ∈ Z.

However, if f(t) is a polynomial of degree 2r + 1 and ρ = −Ar/4r, where A2r−1 is

defined in (3.11), then the spline restores its values at the midpoints {2k + 1}, k ∈ Z.
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Proof: Similarly to (3.27) we can represent the difference as

f(2k + 1)− Š2r−1
ρ (2k + 1) =

∑

n∈Z
ap

ρ,2k+1−nf(n),

where the z-transform of the sequence {ap
ρ,k} is Ap

ρ(z) = 1− z−1Ǔ2r−1
ρ (z2). Then, using

(3.25) we have

1− z−1Ǔ2r−1
ρ (z2) = (z − 2 + z−1)r qr−2(z − 2 + z−1) + ρ(z + 2 + z−1)r

u2r−1(z2) + ρ(z2 − 2 + z−2)r

= (z − 2 + z−1)r Ar + ρ 4r +
∑r

k=1 νk(z − 2 + z−1)k

u2r−1(z2) + ρ(z2 − 2 + z−2)r
.

Hence, the assertion of the proposition concerning the midpoints {2k + 1} follows.

As for the points {2k}, it is seen from (3.45) that the difference is

f(2k)− Š2r−1
ρ (2k) =

∑
n

bp
ρ,k−nf(2n),

where the z-transform of the sequence {bp
ρ,k} is

Bp
ρ(z) = 1− u2r−1(z)

u2r−1
ρ (z)

=
ρ(z − 2 + z−1)r

u2r−1
ρ (z)

.

Therefore, if f(t) is a polynomial of degree 2r− 1 then the spline interpolates it at the

points {2k}.

Examples:

Quadratic spline with upgraded numerator:

Ũ2r−1
A (z) =

(1 + z)(1024 + (z−1 + 6 + z)(z−1 − 2 + z)2)

256(z−1 + 6 + z)

1− z−1Ũ2r−1
A (z2) =

(z − 2 + z−1)3

256 (z2 + 6 + z−2)
×

×
(
z4 + 6 z3 + 24 z2 + 74 z + 174 + 74 z−1 + 24 z−2 + 6 z−3 + z−4

)
.

Quadratic spline with upgraded denominator:

Ǔ2r−1
A (z) =

64(1 + z)

16(z−1 + 6 + z)− (z−1 − 2 + z)2

1− z−1Ǔ2r−1
A (z2) =

−(z − 2 + z−1))3(z + 6z + 1/z)

16(z−2 + 6 + z2)− (z−2 − 2 + z2)2
.
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4 Design of prediction filters using discrete splines

In this section we derive prediction filters for lifting wavelet transforms using the so-called

discrete splines. We will show that these filters are intimately related to the Butterworth

filters which are commonly used in signal processing [30].

4.1 Discrete splines

We outline briefly the properties of discrete splines, which will be needed for further con-

structions. For a detailed description of the subject, see [31, 34]. The discrete splines are

defined on the grid {k} and present a counterpart to the continuous polynomial splines.

The discrete B-spline of first order is defined by the following sequence for k ∈ Z:

B1,n
k =





1 if k = 0, . . . , 2n− 1, n ∈ N,

0, otherwise.
(4.1)

We define by recurrence the higher order B-splines via the discrete convolutions:

Bp,n = B1,n ∗Bp−1,n. Obviously, the z-transform of the B-spline of order p is

Bp,n(z) = (1 + z−1 + z−2 + . . . + z−2n+1)p p = 1, 2, . . . .

In this paper we are interested only in the case when p = 2r, r ∈ N and n = 1. In this

case we have B2r,1(z) = (1 + z−1)2r. The B-spline B2r,1
k is symmetric about the point k = r

where it attains its maximal value. We define the central B-spline Q2r
k of order 2r as the

shift of the B-spline:

Q2r
k

∆
= B2r,1(k + r), Q2r(z) = zrB2r,1(z) = zr(1 + z−1)2r. (4.2)

The discrete spline of order 2r is defined as a linear combination, with real-valued coefficients,

S2r
k

∆
=

∞∑

l=−∞
clQ

2r
k−2l (4.3)

of shifts of the central B-spline of order 2r. Our scheme to design prediction filters using

the discrete splines remains the same as the above scheme, that is based on polynomial

interpolatory splines. Namely, we construct the discrete spline, which interpolates even

samples {ek = f2k} of a signal f
∆
= {fk}, k ∈ Z, and use the values S2r

2k+1 for the prediction
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of even samples {ok = f2k+1}. As in Section 3.2 we denote by se ∆
= {se

k
∆
= S2r

2k}, so ∆
= {so,k

∆
=

S2r
2k+1} and s = {sk

∆
= S2r

k } the values of the spline at grid points, at midpoints and in the

whole set {k}, respectively.

We construct the spline S2r
d such that

S2r
2k = (se)k = ek, k ∈ Z. (4.4)

Let [x] denote rounding the number x toward zero and E(z) be the z-transform of the

sequence {ek}.

Proposition 4.1 The z−transform of the sequence so of values of the discrete spline at

midpoints is

so(z) = U2r
d (z)E(z), where U2r

d (z)
∆
=

θ2r(z)

υ2r(z)
, (4.5)

1− z−1U2r
d (z2) =

2(−1)r (1− z−1)
2r

(1 + z−1)2r + (−1)r (1− z−1)2r , (4.6)

and υ2r(z)
∆
=

[r/2]∑

k=−[r/2]

(
2r

r − 2k

)
zk, θ2r(z)

∆
=

[(r+1)/2]∑

k=[(−r+1)/2]

(
2r

r − 2k + 1

)
zk. (4.7)

Proof: Applying the z-transform to Eq. (4.3), we get:

s(z) = C(z2)Q2r
e (z2) + z−1C(z2)Q2r

o (z2) = se(z
2) + z−1so(z

2),

where C(z) is the z-transform of the sequence of coefficients {cl} and

Q2r
e (z2) =

∑

k∈Z
z−2kQ2r

2k =
1

2

(
zr

(
1 + z−1

)2r
+ (−z)r

(
1− z−1

)2r
)

= υ2r(z2), (4.8)

Q2r
o (z2) =

∑

k∈Z
z−2kQ2r

2k+1 =
z

2

(
zr

(
1 + z−1

)2r − (−z)r
(
1− z−1

)2r
)

= θ2r(z2). (4.9)

Equations (4.4), (4.8) and (4.9) imply that

C(z) = E(z)/υ2r(z), so(z) = C(z)θ2r(z) = E(z)
θ2r(z)

υ2r(z)
.

To make sure that the ratio has no poles on the unit circle, we substitute z = eiω into υ2r(z2).

We have

υ2r(z2) =
1

2

[
eirω(1 + e−iω)2r + (−1)reirω(1− e−iω)2r

]

=
1

2

[(
2 cos

ω

2

)2r

+
(
2 sin

ω

2

)2r
]

> 0.
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Thus the filters U2r
d (z) can be used as the prediction filters in the lifting scheme. They

are closely related to the so-called discrete-time Butterworth filters.

4.2 Discrete-time Butterworth filters

We recall briefly the notion of Butterworth filter. For details we refer to [30]. The magnitude

squared frequency responses F̂ r
l (ω) and F̂ r

h(ω) of the low- and high-pass digital Butterworth

filters of order r, respectively, are given by the formulas

|F̂ r
l (ω)|2 =

1

1 + (tan ω
2
/ tan ωc

2
)2r

, |F̂ r
h(ω)|2 = 1− |F̂ r

l (ω)|2 =
1

1 + (tan ωc

2
/ tan ω

2
)2r

where ωc is the so-called cutoff frequency.

We are interested in the half-band Butterworth filters, that is ωc = π/2. In this case

|F̂ r
l (ω)|2 =

1

1 + (tan ω
2
)2r

, |F̂ r
h(ω)|2 = 1− |F̂ r

l (ω)|2 =
1

1 + (cot ω
2
)2r

.

If z = eiω then we obtain that the magnitude squared transfer function of the low-pass filter

is:

|F r
l (z)|2 =

(
1 +

(−1)r (1− z−1)
2r

(1 + z−1)2r

)−1

=
(1 + z−1)

2r

(1 + z−1)2r + (−1)r (1− z−1)2r .

Similarly, the magnitude squared transfer function of the high-pass filter is:

|F r
h(z)|2 =

(−1)r (1− z−1)
2r

(1 + z−1)2r + (−1)r (1− z−1)2r .

It is readily seen that the function U2r
d , defined in (4.5), is related to these transfer functions:

1

2

(
1 + z−1U2r

d (z2)
)

= |F r
l (z)|2, 1

2

(
1− z−1U2r

d (z2)
)

= |F r
h(z)|2. (4.10)

We will show that the structure of the filters U2r
d is similar to the structure of the

filters U2r−1
i derived from polynomial interpolatory splines. For this purpose we analyze the

denominator of the rational function U2r
d (z).

Proposition 4.2 If r = 2p + 1 then:

υ2r(z) = 2r
p∏

k=1

1

γr
k

(1 + γr
kz
−1)(1 + γr

kz), (4.11)
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where

γr
k = cot2 (p + k)π

2r
< 1, k = 1, . . . , p.

If r = 2p then

υ2r(z) =
p∏

k=1

1

γr
k

(1 + γr
kz
−1)(1 + γr

kz) (4.12)

where

γr
k = cot2 (2p + 2k − 1)π

4r
< 1, k = 1, . . . , p.

Proof: Denote

Dr(z)
∆
= 2zrυ2r(z−2) = (z + 1)2r + (−1)r(z − 1)2r. (4.13)

Suppose that r = 2p + 1. The equation Dr(z) = 0 is equivalent to (z + 1)2r = (z − 1)2r.

Hence, z0 = 0 and nonzero roots of Dr(z) = 0 can be found from the relation zk + 1 =

e2πik/2r(zk − 1), k = 1, 2, . . . , 2r − 1. Hence, we have

zk =
e2πik/2r + 1

e2πik/2r − 1
= −i cot

kπ

2r
, k = 1, 2, . . . , 2r − 1. (4.14)

The points xk = cot kπ
2r

are symmetric about zero and x2p+1−k = xr−k = 1/xk. Therefore we

can write

Dr(z) = 4rz
2p∏

k=1

(z2 + x2
k) = 4rz

p∏

k=1

(z2 + γr
k)(z

2 + (γr
k)
−1)

where γr
k = x2

p+k. Hence, (4.11) follows.

When r = 2p the roots are derived from the equation zk + 1 = e2πi(k−1/2)/2r(zk − 1). So

we have

zk = −i cot
(2k + 1)rπ

4r
, k = 0, 1, . . . , 2r − 1. (4.15)

Hence, (4.12) is derived.

Remark. We recall that the function υ2r(z2) coincides with the denominator of the mag-

nitude squared transfer functions |Fl(z)|2 and |Fh(z)|2 of the half-band Butterworth filters

of order r. In [25] the formulas for the poles of the functions |fl(z)|2 are given without a

proof. These formulas are equivalent to Eqs. (4.14) and (4.15).
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Examples:

The simplest case, r = 1: We have

U2
d (z) =

1 + z

2
, 1− z−1U2

d (z2) = −z−1 − 2 + z

2
. (4.16)

The filter U2
d is FIR. From Proposition 2.3, the high-frequency analysis wavelet ψ̃1 has

two vanishing moments.

Cubic discrete spline, r = 2:

U4
d (z) = 4

1 + z

z + 6 + z−1
, 1− z−1U3

i (z2) =
(z − 2 + z−1)2

z−2 + 6 + z2
. (4.17)

It is readily seen that the filter U4
d coincides with the filter U3

i derived from the quadratic

polynomial spline (see (3.29). The high-frequency analysis wavelet ψ̃1 has four vanish-

ing moments.

Discrete spline of sixth order, r = 3: We have

U6
d (z) =

(z + 14 + z−1)(1 + z)

6z−1 + 20 + 6z)
1− z−1U6

d (z2) = − (z−1 − 2 + z)3

6z2 + 20 + 6z−2
. (4.18)

The high-frequency analysis wavelet ψ̃1 has six vanishing moments.

Discrete spline of eighth order, r = 4:

U8
d (z) =

8(1 + z)(z−1 + 6 + z)

z−2 + 28z−1 + 70 + 28z + z2
(4.19)

1− z−1U6
d (z2) =

(z−1 − 2 + z)4

z−4 + 28z−2 + 70 + 28z2 + z4
.

The high-frequency analysis wavelet ψ̃1 has eight vanishing moments.

5 Filters for the update step

In Sections 3 and 4 we presented a family of filters U for the predict step, which was derived

from splines of various types. To complete the construction of the transform we need to

define the filter V for the update part. The fact that any choice of these filters retains the

perfect reconstruction property of the transform is a great advantage of the lifting scheme.
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Proposition 2.3 indicates that, in order to produce synthesis and analysis filters with similar

properties, it is advisable to choose V (z) = Ŭ(z)/z, where Ŭ is one of the filters U presented

above. In particular, the filter Ŭ may coincide with the filter U , which is used for the

prediction. In this case the numbers of vanishing moments of the high-frequency analysis

and synthesis wavelets are equal to each other. On the other hand, by combining various

pairs of the prediction U and the update V (z) = Ŭ(z)/z filters, we obtain a wide family of

biorthogonal wavelet transforms with diverse properties.

6 Implementation of filters with rational transfer func-

tions

6.1 Recursive filtering

Most of the presented prediction and update filters have infinite impulse response. However,

the rational structure of their transfer functions enables us to implement transforms via fast

recursive filtering, which is commonly used in signal processing. Recursive filtering can be

carried out in either cascade or parallel mode. We illustrate these procedures on the filter

U3
i as an example. This filter is based on the quadratic interpolatory spline (see (3.29)). The

rational function U3
i (z) is represented as:

U3
i (z) =

←−
R (z)

−→
R (z)P (z) =

1

1 + γ
(
−→
R (z) + z

←−
R (z)), (6.1)

where γ = 3− 2
√

2 ≈ 0.172 and

−→
R (z)

∆
=

1

1 + γz−1
,

←−
R (z)

∆
=

1

1 + γz
, P (z)

∆
= 4γ(1 + z).

Thus, filtering Y (z) = U3
i (z)X(z) can be implemented via the following cascade:

Y 1(z) = P (z)X(z),−→ Y 2(z) =
−→
R (z)Y 1(z) −→ Y (z) =

←−
R (z)Y 2(z) ⇐⇒ (6.2)

y1
k = 4γ(xk + xk+1,−→ y2

k = y1
k − γy2

k+1,−→ yk = y2
k − γyk+1,

or in parallel mode:

Y 1(z) =
−→
R (z)X(z)

Y 2(z) = z
←−
R (z)X(z)




−→ Y (z) =

1

1 + γ
(Y 1(z) + Y 2(z)) ⇐⇒ (6.3)
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y1
k = xk − γy1

k−1

y2
k = xk+1 − γy2

k+1




−→ yk =

1

1 + γ
(y1

k + y2
k).

Due to Propositions 4.2 and 3.2, all the presented rational transfer functions can be expanded

into products or sums of the elementary recursive blocks of type (6.1). Therefore this example

is instructive.

6.2 Finite-length signals

Application of wavelet transforms to finite-length signals and, in particular, to images, re-

quires an extension of the signals beyond their boundaries [11]. The extension is even more

important in our scheme since we implicitly assumed in our construction that the signals

are defined on infinite intervals. When the filter banks are symmetric, the HH extension in

the terminology of [11] is most efficient. It means that the signal x = {xk}, k = 1, . . . N, is

symmetrically extended with the repetition of boundary samples through both ends of the in-

terval. Namely, x0
∆
= x1, x−1

∆
= x2, . . . x−k

∆
= xk+1 and xN+1

∆
= xN , xN+2

∆
= xN−1, . . . xN+k

∆
=

xN−k+. This results in periodization of the signal with period 2N . This extended signal is

denoted by x̃ and its z transform is X̃(z).

Recursive filtering of finite-length signals requires additional treatment of the boundaries.

We describe the application of the filter U3
i (z) to a finite-length signal x. We begin with the

parallel mode. Note that, in principle, the filters
−→
R (z)X(z) and z

←−
R (z) can be applied to

the signal x̃ in a non-recursive mode:

Y 1(z) =
1

1 + γz−1
X̃(z) =

∞∑

n=0

(−γ)nz−nX̃(z), Y 2(z) =
z

1 + γz
X̃(z) =

∞∑

n=0

(−γ)nzn+1X̃(z).

(6.4)

Then, the signals y1
k and y2

k can be computed in time domain in either recursive or non-

recursive modes:

y1
k = x̃k − γy1

k−1, y2
k = x̃k+1 − γy2

k+1 ⇐⇒ (6.5)

y1
k = x̃k +

∞∑

n=1

(−γ)nx̃k−n, y2
k = x̃k+1 +

∞∑

n=1

(−γ)nx̃k+n+1. (6.6)

We can use (6.5) for the computation of y1
k and y2

k on the interval k = 1, 2, . . . , N provided we

know y1
0 and y2(N +1), respectively. To evaluate these samples, we employ the non-recursive
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equation (6.6). We have

y1
0 = x̃0 +

∞∑

n=1

(−γ)nx̃−n ≈ x1 +
d∑

n=2

(−γ)nxn, (6.7)

y2
N+1 = x̃N+2 +

∞∑

n=1

(−γ)nx̃N+n+2 ≈ xN−1) +
d∑

n=2

(−γ)nxN−n (6.8)

where d < N is the prescribed depth of the initialization. The whole operation is called the

initialization of the filter.

Recursive parallel filtering of the finite-length signal x by the filter U3
i is implemented as

follows:

1. Evaluate y1
0 from (6.7) and y2(N + 1) from (6.8).

2. Calculate y1
k = xk − γy1

k−1, k = 1, . . . N and y2
k = xk+1 − γy2

k+1, k = N, . . . 1.

3. The result of filtering is yk = (y1
k + y2

k)/(1 + γ), k = 1 . . . N.

Equations (6.6) and (6.8) imply that y2
N = y1

N . Hence, it follows that

yN =
y1

N + y2
N

1 + γ
=

2y1
N

1 + γ
. (6.9)

The cascade algorithm has the following form:

1. Evaluate y1
0 from (6.7).

2. Calculate y1
k = xk − γy1

k−1, k = 2, . . . N .

3. Evaluate yN from (6.9).

4. Calculate yk = y1
k + y1

k+1 − γyk+1, k = N − 1, . . . 1.

Note that the depth of the initialization does not affect the perfect reconstruction property

of the transforms since in lifting schemes the reconstruction steps are the reversed decom-

position steps. But the results of lossy compression deteriorate if this depth is insufficient.
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7 Scaling functions generated by rational filters

7.1 Cascade algorithm and subdivision schemes

We presented in previous sections a set of filters U and V , which are used as prediction and

update filters in lifting schemes. They produce a family of perfect reconstruction filter banks

H, G, H̃ and G̃ (see Section 2.2). These filter banks generate analysis and synthesis scaling

functions ϕ̃, which are solutions for the refinement equations [16]:

ϕ̃(t) =
∑

k∈Z
h̃kϕ̃(2t− k), ϕ(t) =

∑

k∈Z
hkϕ(2t− k). (7.1)

The cascade algorithm for the construction of scaling functions, which is described in

[16], consists of infinite iterations of the subdivision scheme whose mask is either the low-

pass synthesis filter H or the analysis filter H̃ of the wavelet transform. This scheme is

applied to the initial data, which is the Kroneker delta δn. If this process converges then

the limit function is the scaling function generated by either the filter H or H̃. Therefore,

methods of analysis of convergence and of regularity of limit functions, which have been

developed in the theory of subdivision schemes, can be applied to the analysis of scaling

functions. Our analysis is based on a technique developed in [22, 23] for the schemes that

employ FIR filters. The extension of the technique to schemes with IIR filters requires some

modifications. Further we provide necessary definitions and preliminary results.

A univariate stationary uniform subdivision scheme (SS) Sa that is based on a filter

a(z) =
∑

k∈Z z−kak, consists of the following:

Given the initial data f0 = {f 0
k}, k ∈ Z, one refinement step is an extension of the

function f j, j = 0, 1, . . . , defined on the grid Gj = {k/2j}k∈Z: f j(k/2j) = f j
k , onto the grid

Gj+1 by multirate filtering the array {f j
k}:

f j+1
k =

∑

l∈Z
ak−2lf

j
l . (7.2)

The insertion rule (7.2) splits into two separate rules:

f j+1
2k =

∑

l∈Z
ae

k−lf
j
l , f j+1

2k+1 =
∑

l∈Z
ao

k−lf
j
l ,

where ae
k

∆
= a2k and ao

k
∆
= a2k+1. The impulse response a = {ak} of the filter a(z) is called

the refinement mask of the SS, Sa. If a0 = 1, a2k = 0 ∀k 6= 0 then the SS is interpolatory
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(ISS). In this case f j+1
2k = f j

k . The transfer function of the filter, a(z), is called the symbol

of the SS, Sa. Provided f j and f j+1 belong to the space l1, Eq. (7.2) is equivalent to the

following relation in the z-domain:

f j+1(z) = a(z)f j(z2). (7.3)

Comparing (7.3) with (2.15), we see that this refinement step is completely identical to the

reconstruction of the signal x from the array s1, provided a(z) = H(z). It is apparent that

all the filters presented in Sections 3 and 4 are associated with the interpolatory subdivision

schemes.

Definition 7.1 Let the initial data be f0 = {f 0
k}, k ∈ Z and f j(t) be the sequence of

continuous functions that interpolates the data that was generated by Sa at the corresponding

refinement level: {f j(2−jk) = f j
k = (Sj

af
0)k}, k ∈ Z . If {f j(t)} converges uniformly at any

finite interval to a continuous function f∞(t) as j → ∞ then we say that the subdivision

scheme Sa converges on the initial data f0 and f∞(t) is called its limit function.

Remark Usually polygonal lines (second order splines) are employed as the interpolating

continuous functions f j(t). However, in Section 7.5 we will use splines of arbitrary even

order for this purpose.

Definition 7.2 If the scheme converges on the initial data {f 0
k = δk}, k ∈ Z, where δk is

the Kroneker delta, then the limit function, which we denote as φa, is called the basic limit

function (BLF) of the scheme S.

Proposition 7.1 ([16]) The BLF of the scheme Sa is the scaling function of the wavelet

transform whose low-pass filter is a(z).

All the above designed filters generate subdivision schemes Sa, whose symbols a(z) =

T (z)/P (z) are rational functions and possess the following properties:

P1: The Laurent polynomials P (z) and T (z) are invariant under the inversion P (z−1) =

P (z), T (z−1) = T (z) and thus are real on the unit circle |z| = 1.

P2: Roots of the denominator P (z) are real, simple and do not lie on the unit circle |z| = 1.
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P3: P (z) can be represented as follows:

P (z) =
r∏

n=1

1

γn

(1 + γnz)(1 + γnz−1), 0 < |γ1| < . . . |γr| = e−g < 1, g > 0, (7.4)

and, for all k Imγk = 0. If P1 and P2 hold then they imply P3.

P4: The symbol a(z) can be factorized as follows:

a(z) = (1 + z)q(z), q(1) = 1. (7.5)

Definition 7.3 We say that a rational function a(z) belongs to Class P if it possesses all

the properties P1– P4. If the symbol a(z) of a scheme Sa belongs to Class P then we call

Sa the scheme of Class P.

The above properties imply in particular that the coefficients ak of the mask of a Class P

scheme Sa are symmetric about zero.

Proposition 7.2 If a(z) = T (z)/P (z) is the symbol of a subdivision scheme Sa and Eq.

(7.4) holds then the mask

|ak| ≤ Ae−g|k|,

where A is a positive constant.

Proof: If Eq. (7.4) holds then the symbol can be represented as follows:

a(z) =
r∑

n=1

(
A+

n

1 + γnz
+

A−
n

1 + γnz−1

)
=

r∑

n=1

(
A+

n

∞∑

k=0

(−γn)kzk + A−
n

∞∑

k=0

(−γn)kz−k

)

=
∞∑

k=0

(
a+

k zk + a−k z−k
)
, a+

k =
r∑

n=1

A+
n (−γn)k, a−k =

r∑

n=1

A−
n (−γn)k,

|a+
k | ≤ |γr|k

r∑

n=1

|A+
n | ≤ Ae−gk, |a−k | ≤ |γr|k

r∑

n=1

|A−
n | ≤ Ae−gk.

Lemma 7.1 If a(z) = T (z)/P (z) is the symbol of a subdivision scheme Sa and Eq. (7.4)

holds then for any initial data f0 ∈ l1 the following inequalities are true:

|f j
k | ≤ Aj e−gk2−j+1

, j = 1, 2, . . . . (7.6)

42



Proof: The mask of the scheme Sa decays exponentially: |ak| ≤ Ae−gk. Due to (7.3)

f 1(z) = a(z)f 0(z2) =
T 1(z)

P 1(z)
,

where T 1(z)
∆
= T (z)f 0(z2) and P 1(z) = P (z). Hence, the roots of P1(z) are: ρ1

n = −γn, 1 ≤
n ≤ r and, therefore, |f 1

k | ≤ A1 e−gk. The next refinement step produces the following

z-transform:

f 2(z) = a(z)f 1(z2) =
T2(z)

P2(z)
, P2(z) = P (z)P (z2).

The roots of P2(z) satisfy the inequality |ρ2
n| ≤

√
|γr| = e−g/2. Hence, |f 2

k | ≤ A2 e−gk/2. Then

(7.6) is derived by induction.

Let Sa be the subdivision scheme of Class P and Sq be the scheme with the symbol

q(z), which is defined in (7.5). Since the denominator of the symbol q(z) is the same as the

denominator of a(z), the mask {qk} of the scheme Sq satisfies the inequality

|qk| ≤ Qe−g|k|. (7.7)

Denote by ∆ the difference operator: ∆ fk = fk+1 − fk.

Proposition 7.3 ([23]) If the scheme Sa is of Class P then

∆(Saf) = Sq∆f

for any data set f that belongs to l1.

Proof: Obviously, (∆f)(z) = (z − 1)f(z) and, using (7.3), we have

(∆Saf)(z) = (z − 1)(Saf)(z) = (z − 1) a(z)f(z2)

= q(z)(z2 − 1) f(z2) = q(z) (∆f)(z2) ⇔ ∆(Saf) = Sq∆f .

Denote ‖f j‖∞ ∆
= maxk∈Z |f j

k |. Equation (7.2) implies that

f j+1
2k =

∑

l∈Z
a2k−2lf

j
l , f j+1

2k+1 =
∑

l∈Z
a2k+1−2lf

j
l .
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Hence, it follows that

‖f j+1‖∞ ≤ ‖Sa‖ ‖f j‖∞, where ‖Sa‖ ∆
= max





∑

k∈Z
a2k,

∑

k∈Z
a2k+1



 .

Similarly, after L refinement steps we have

‖f j+L‖∞ ≤ ‖SL
a ‖ ‖f j‖∞, where ‖SL

a ‖ ∆
= max

i

{∑

k

|a[L]
i+2Lk| : 0 ≤ i ≤ 2L − 1

}

and
{
a

[L]
k

}
is the mask of the operator SL

a .

Definition 7.4 If for some L ∈ N the following inequality holds

‖SL
a ‖ ∆

= max
i

{∑

k

|a[L]
i+2Lk| : 0 ≤ i ≤ 2L − 1

}
= µ < 1 (7.8)

then the scheme Sa is called contractive.

7.2 Convergence of the cascade algorithm and regularity of scaling

functions

Let Sa be a subdivision scheme, whose mask a = {ak, k ∈ Z} and symbol is a(z). To

establish the existence of the continuous scaling function associated with the filter a(z),

it is sufficient to prove the convergence of the subdivision scheme Sa on the initial data

f0 = {δk, k ∈ Z}. However, we prove a more general proposition, using a slightly modified

version of the proof of a related proposition in [23].

Proposition 7.4 Let Sa be a subdivision scheme of Class P and Sq be the scheme, whose

symbol is q(z) and mask is {qk}, k ∈ Z. If the scheme Sq is contractive then the scheme Sa

converges on any initial data f0 ∈ l1.

Proof: We recall that due to Lemma 7.1, for all j ∈ N the sequences f j belong to l1. Let

{f j(t), j ∈ N} be the sequence of the second order splines, which interpolate the subsequently

refined data, that is, f j(2−jk) = f j
k , k ∈ Z. We have to show that {f j(t)} converges to a

continuous function f∞(t) as j →∞, provided {f 0
k} ∈ l1. Denote

Dj+1(t)
∆
= f j+1(t)− f j(t). (7.9)
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The maximum absolute value of this piecewise function is reached at its breakpoints. There-

fore, if t = 2−j(k + τ), 0 ≤ τ ≤ 1, then

|Dj+1(t)| ≤
∣∣∣∣∣f

j+1
2k+1 −

f j
k + f j

k+1

2

∥∥∥∥∥ . (7.10)

Let mj+1
2k = f j

k , mj+1
2k+1 = (f j

k + f j
k+1)/2, k ∈ Z. Then the z-transform mj+1(z) is equal to

mj+1(z) = l(z)f j(z2), l(z)
∆
=

1

2

(
z−1 + 2 + z

)
=

z−1

2
(1 + z)2

and we obtain

sup
t∈R

|Dj+1(t)| = ‖f j+1 −mj+1‖∞. (7.11)

Equation (7.5) implies

f j+1(z)−mj+1(z) = ((1 + z)q(z)− l(z)) f j(z2)

= (1 + z) (q(z)− (1 + z)/(2z)) f j(z2)

= (1 + z)(1− z)r(z)f j(z2) = r(z)hj(z2), (7.12)

where hj(z) = (∆(f j))(z) and r(z) =
∑

k∈Z rkz
−k is a rational function with the same

denominator P (z) as the symbol a(z). Hence

|rk| ≤ R e−g|k|. (7.13)

In the equality (7.12) we used the fact that q(z)− (1 + z)/(2z) is divisible by z − 1 since it

vanishes at z = 1.

Combining (7.11) and (7.12), we derive

sup
t∈R

|f j+1(t)− f j(t)| = ‖f j+1 −mj+1‖∞ ≤ ρ max
k
|f j

k+1 − f j
k |

= ρ‖∆(f j)‖∞ ≤ ρ‖Sj
q(∆f0)‖∞,

where ρ =
∑

k∈Z |rk|. If (7.8) holds then

sup
t∈R

|f j+1(t)− f j(t)| ≤ ρµ[ j
L ] max

0≤n≤L
‖(∆f)n‖∞,≤ Cθj θ

∆
= µ

1
L < 1. (7.14)

Equation (7.14) implies that the sequence of the second order splines {f j(t)} converges

uniformly to a continuous function f∞(t).
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Proposition 7.5 ([22]) Let Sa be a subdivision scheme of Class P and in addition let the

symbol be factorized as follows:

a(z) =
(1 + z)m

2m
b(z).

If for some initial data f0 ∈ l1 the subdivision scheme Sb, whose symbol is b(z), converges

on the data g0 ∆
= ∆mf0 to a continuous function g∞(t) then the scheme Sa converges on the

data f 0 to a function f∞(t), t ∈ R, which has m continuous derivatives and

dm

dtm
f∞(t) = g∞(t).

7.3 Exponential decay of BLF’s

In this section we prove that, provided a subdivision scheme with the rational symbol con-

verges, its basic limit function (scaling function) decays exponentially as its argument tends

to infinity.

Theorem 7.1 Let Sa be a subdivision scheme of Class P and Sq be the scheme, whose

symbol is q(z) and mask is {qk}, k ∈ Z. If the scheme Sq is contractive then there exists a

continuous BLF φa(t) of the scheme Sa, which decays exponentially as |t| → ∞. Namely,

if (7.4) holds then for any ε > 0 there exists a constant Φε > 0 such that the following

inequality

|φa(t)| ≤ Φε e−(g−ε)t.

is true.

Proof: To simplify the calculations we assume that in (7.8) L = 1 (the case L > 1 is treated

similarly). Thus,

‖Sq‖ = max

{∑

k

|qe
k|,

∑

k

|qo
k|

}
= µ < 1, (7.15)

where qe
k

∆
= q2k and qo

k
∆
= q2k+1

Note that, due to Lemma 7.1, each second order spline, which interpolates the refined

data f j
k , k ∈ Z, j > 0 decays exponentially as |t| → ∞. Equation (3.46) implies that if

t = 2−j(k + τ), 0 ≤ τ ≤ 1 then

|f j(t)| ≤ max{|fJ
k |, |fJ

k+1|} ≤ AJ e−gk2−J+1 ≤ BJ e−gt, BJ
∆
= AJ eg2−J+1

.
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The completion of the proof depends on establishing the exponential decay of the difference

dJ(t) = φa(t) − fJ(t) for a fixed index J . For this purpose we analyze the local behavior

of the function Dj+1(t) defined in (7.9). Due to (7.10) it reduces to evaluation of the odd

subsequence of the sequence yj+1:

yj+1
l

∆
=





f j+1
2k+1 −

(
f j

k + f j
k+1

)
/2, l = 2k + 1;

0, l = 2k,
k ∈ Z.

Equation (7.12) implies that

yj+1(z) = r(z)hj(z2), hj(z) = (Sj
q(∆f0))(z). (7.16)

We denote

hj = {hj
k}k∈Z = Sj

q h0, h0
k = δk+1 − δk and HJ

∆
= max

k
|hJ

k |.
The rest of the proof is split into four major steps.

Analysis of the sequence hj: By Lemma 7.1 and inequality (7.15) we have

|hJ
k | ≤ BJe−g|k|2−J+1

, HJ ≤ ‖SJ
q ‖‖∆h0‖∞ ≤ µJ , (7.17)

where BJ is a positive constant. Let k ∈ Z+. Then

hJ+1
k =

∞∑

l=−∞
qk−2lh

J
l ⇐⇒ hJ+1

2k =
∞∑

l=−∞
qe
l h

J
k−l, hJ+1

2k+1 =
∞∑

l=−∞
qo
l h

J
k−l. (7.18)

We split the even subsequence into two sums: hJ+1
2k = χ1(s) + χ2(s), where

χ1(s)
∆
=

s∑

l=−s

qe
l h

J
k−l, and χ2(s)

∆
=

−s−1∑

l=−∞
qe
l h

J
k−l +

∞∑

l=s+1

qe
l h

J
k−l.

It follows from (7.17) and (7.7) that

|χ1(s)| ≤ BJe−g(k−s)2−J+1
∞∑

l=−∞
|qe

l | ≤ BJ µe−g(k−s) 2−J+1

,

|χ2(s)| ≤ 2HJ

∞∑

l=s+1

|qe
l | ≤ 2µJQ

e−2gs

1− e−g
.

Let s = k2−J . Then we have

|χ2(s)| ≤ θJµe−gk2−J+1

, where ηJ
∆
=

2µJ−1Q

1− e−g
,

|χ1(s)| ≤ BJ µe−g(1−2−J )k2−J+1

= BJ µ egk2−2J+1

e−gk2−J+1

.
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Combining the estimates, we obtain

|hJ+1
2k | ≤ µ

(
BJegk2−2J+1

+ ηJ

)
e−gk2−J+1

.

The same estimate is true for the odd subsequence. So, finally we have:

|hJ+1
k | ≤ µBJβJ e−gk2−J

, where βJ
∆
=

(
egk2−2J

+ ηJ

)
.

Similarly, we derive the inequality

|hJ+2
k | ≤ µ2 BJβJβJ+1 e−gk2−J−1

,

and by iterating, we get

|hJ+j
k | ≤ µj BJ e−gk2−J−j+1

j−1∏

l=0

βJ+l.

Evaluation of the sequence yj+1: As follows from Eq. (7.16), the odd terms of the se-

quence yJ+j+1 are:

yJ+j+1
2k+1 =

∑

l∈Z
ro
l hJ+j

k−l . (7.19)

Recall that the filter r = {rr} satisfies the inequality (7.13). Thus it is obvious that

equation (7.19) is similar to (7.18) and by similar means we obtain the estimate

|yJ+j+1
2k+1 | ≤ ρµj BJ e−gk2−J−j+1

εj

j−1∏

l=0

βJ+l, (7.20)

where

ρ =
∑

k∈Z
|rk|, εj

∆
=

(
egk2−2(J+j)+1

+
2µJ+j−1R

1− e−g

)
≤ Cegk2−2(J+j)+1

.

Estimation of the difference DJ+j(t) = fJ+j(t)− fJ+j−1(t) for t ∈ [2−Jk, 2−J(k + 1)]:

|DJ+1(t)| ≤ |yJ+1
2k+1| ≤ ρBJε1e−gk2−J ≤ CρBJegk2−2J

e−gk2−J

≤ CρBJeg2−J

egt2−J

e−gt. (7.21)

At the half-interval t = 2−J−1(2k + τ 1), 0 ≤ τ 1 ≤ 1, we have

|DJ+2(t)| ≤ |yJ+2
2(2k)+1| ≤ µρBJβJε2e

−g2k2−J−1 ≤ CµρBJeg2k2−2(J+1)

e−g2k2−(J+1)

≤ CµρBJ(1 + ηJ)e2g(t+1)2−J−1

e−gt. (7.22)
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Employing yJ+2
2(2k+1)+1 instead of yJ+2

2(2k)+1, we obtain a similar estimate for the second

half-interval t = 2−J−1(2k + 1 + τ2), 0 ≤ τ2 ≤ 1. So, inequality (7.22) is true at the

whole interval [k/2J , (k + 1)/2J ]. Denote the converging infinite product by

NJ(µ)
∆
=

∞∏

j=0

(1 + ηJ+j) =
∞∏

j=0

(
1 +

2µJ−1+jQ

1− e−g

)
> 1

and note that

∞∏

j=0

eg(t+1)2−J−j

= exp


g(t + 1)

∞∑

j=0

2−J−j


 = eg(t+1)2−J+1

.

Then, the estimates (7.21) and (7.22) can be combined as follows

|DJ+1+j(t)| ≤ CµjNJρBJeg(t+1)3·2−J

e−gt j = 0, 1. (7.23)

One can observe that by (7.20) the latter inequality is true for any j ∈ N.

Completion of the proof: Inequality (7.23) enables us to evaluate the difference dJ(t) =

φa(t)− fJ(t):

|dJ(t)| ≤
∞∑

j=0

|DJ+1+j(t)| ≤ NJρBJeg(t+1)3·2−J

e−gt
∞∑

j=0

Cµj =
CJ

1− µ
e−g(1−2−J )t. (7.24)

Hence, we derive that the BLF

|φa(t)| ≤ |fJ(t)|+ |dJ(t)| ≤ BJe−gt +
CJ

1− µ
e−g(1−2−J )t ≤ ΦJe−g(1−2−J )t.

For any ε > 0 we can choose J(ε) ∈ N such that g2−J < ε. Then, we have

|φa(t)| ≤ Φε e−(g−ε)t.

7.4 Scaling functions and wavelets

The above analysis of subdivision schemes in Sections 7.2 and 7.3 provides the following

results concerning the scaling functions.
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Corollary 7.1 If a low-pass filter a(z) is a function of Class P and the subdivision scheme

Sq, whose symbol is q(z), is contractive then this filter generates a continuous scaling function

ϕa(t), which decays exponentially as |t| → ∞. Namely, if (7.4) holds then for any ε > 0

there exists a constant Φε > 0 such that the following inequality is true:

|ϕa(t)| ≤ Φε e−(g−ε)t. (7.25)

Corollary 7.2 Let the filter a(z) satisfy the conditions of Corollary 7.1 and in addition be

factorized as follows:

a(z) =
(1 + z)m+1

2m
q[m](z), where q[m](1) = 1. (7.26)

If the subdivision scheme S[m]
q , whose symbol is q[m](z), is contractive then the scaling function

ϕa(t) has m continuous derivatives.

The analysis and synthesis scaling functions ϕ̃ and ϕ, which satisfy the refinement equa-

tions (7.1) generate the analysis and synthesis wavelets ψ̃ and ψ, respectively, via the two-

scale equations

ψ̃(t) =
∑

k∈Z
g̃kϕ̃(2t− k), ψ(t) =

∑

k∈Z
gkϕ(2t− k), (7.27)

where {g̃k} and {gk} are the impulse responses of the high-pass filters G̃ and G, respectively.

Equations (2.11) and (2.12) imply that the denominator of the rational function G̃(z) is

the same as the denominator of H(z). Therefore, if H(z) = Q(z)/P (z) belongs to Class

P and Eq. (7.4) holds then the impulse response {g̃k} satisfies the inequality |g̃k| ≤ e−gk.

If H̃(z) = Q̃(z)/P̃ (z) belongs to Class P then a similar inequality is true for the impulse

response {gk}. These inequalities together with equations (7.27) imply that if the scaling

functions ϕ̃ and ϕ decay exponentially then the wavelets ψ̃ and ψ do the same. Moreover, the

smoothness of the wavelets ψ̃ and ψ is the same as the smoothness of the scaling functions

ϕ̃ and ϕ, respectively.

Definition 7.5 A wavelet ψ has n vanishing moments if the following relations hold

∫ ∞

−∞
tkψ(t) dt = 0, k = 0, . . . n− 1. (7.28)
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Proposition 7.6 ([38]) If the low-pass synthesis filter H(z) has n zeros at z = 1 then the

analysis wavelet ψ̃ has n vanishing moments. If the low-pass analysis filter H̃(z) has ñ zeros

at z = 1 then the synthesis wavelet ψ has ñ vanishing moments.

In our scheme this fact can be reformulated in a form similar to Proposition 2.3

Proposition 7.7 Let the transfer functions U(z) and V (z), which are used for the predict

and update steps, respectively, be rational and have no poles on the unit circle |z| = 1.

Let 1 + z−1U(z2) comprise the factor (z + 2 + z−1)r and 1 + zV (z2) comprise the factor

(z + 2 + z−1)p. If the analysis and synthesis scaling functions exist then the analysis wavelet

ψ̃ has 2r vanishing moments and the synthesis wavelet ψ has 2s vanishing moments, where

s = min(p, r).

7.5 Scaling functions generated by polynomial splines of even or-

der

In the case when the prediction filter is derived from a polynomial interpolatory spline of

even order, as was described in Section 3.2, the synthesis scaling function and wavelet are

splines of the same order.

Theorem 7.2 1. If the prediction filter in the lifting scheme U2r
i (z) is derived from a poly-

nomial interpolatory spline of order 2r then the cascade algorithm for the construction

of the synthesis scaling function ϕ(t) converges for any r and ϕ(t) = L2r(t), where

L2r(t) is the fundamental spline of order 2r with nodes on the grid {k}k∈Z. This spline

was defined in (3.20).

2. If, in addition, the update filter V (z) is chosen as suggested in Section 5 then the synthesis

wavelet ψ(t) is the spline σ2r(t), which interpolates the impulse response {gk} of the

synthesis high-pass filter

G(z)
∆
=
√

2z−1

(
1− zV (z2)

2
(1 + z−1U2r

i (z2)

)
(7.29)

on the grid {k/2}, k ∈ Z.
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Proof:

1. We consider a subdivision scheme Sa with symbol a(z) = 1 + z−1U2r
i (z2) derived from an

interpolatory spline of degree 2r. Let the initial data be f0 = {δk} and {f j(t)}, j =

0, 1, . . . be a sequence of splines of order 2r constructed on the grid {2−jk} that in-

terpolate the subsequently refined data at grid points, that is, f j(2−jk) = f j
k , k ∈ Z.

We show by induction that for all non-negative integers j the splines f j(t) = L2r(t).

Obviously, it is true for f 0(t).

Suppose that for some j ∈ N we have f j−1(t) = L2r(t). Due to the well known property

of minimal norm [2], the integral

µ
∆
=

∫ ∞

−∞
|(L2r)(r)(t)|2 dt ≤

∫ ∞

−∞
|q(r)(t)|2 dt,

where q(t) is any function such that q(r)(t) is square summable and q(k) = δk. The

refined data is f j
k = f j−1(2−jk) = L2r(2−jk). For the spline f j(t), which interpolates

this data, we have the inequality

ν
∆
=

∫ ∞

−∞
|(f j)(r)(t)|2 dt ≤

∫ ∞

−∞
|Q(r)(t)|2 dt,

where Q(t) is any function such that Q(r)(t) is square summable and Q(2−jk) =

L2r(2−jk). Hence, ν ≤ µ. On the other hand, f j
k = δk and, therefore, µ ≤ ν. Thus,

∫ ∞

−∞
|(L2r)(r)(t)|2 dt =

∫ ∞

−∞
|(f j)(r)(t)|2 dt.

Hence, it follows that f j(t) ≡ L2r(t). Thus the first claim of the theorem is proved.

2. Under conditions of the theorem the synthesis wavelet ψ(t) is derived from the scaling

function ϕ(t) = L2r(t) via the two-scale equation

ψ(t) =
∑

k∈Z
gkL

2r(2t− k), (7.30)

where {gk} is the impulse response of the high-pass filter G. But the series in (7.30)

represents a spline of order 2r, which interpolates {gk} on the grid {k/2}, k ∈ Z.
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Remark. Note that the analysis scaling function and wavelet are not splines. Also for the

schemes that use splines of odd order, the synthesis as well as the analysis scaling functions

and wavelets are not splines. However, due to the super-convergence property, in this case

the synthesis scaling function and wavelet are smoother then the generating splines.

7.6 Evaluation of the subdivision mask coefficients via the dis-

crete Fourier transform

The above propositions yield a practical algorithm that establishes the convergence of a

subdivision scheme and analyzes its regularity. The key operation is the evaluation of sums

of type (7.8) of the mask coefficients. For subdivision schemes with finite masks these sums

can be calculated directly. But for infinite masks different methods of evaluation of the

coefficients are required.

Again we consider the case when the number L in Eq. (7.8) is 1. The cases L > 1 are

similarly treated. We assume that N = 2p, p ∈ N and
∑p

k stands for
∑N/2−1

k=−N/2. The discrete

Fourier transform (DFT) of an array xp = {xp
k}N/2−1

k=−N/2 and its inverse (IDFT) are

x̂p
n =

p∑

k

e−2πikn/N xp
k and xp

k =
1

N

p∑
n

e2πikn/N x̂p
n.

As before, y(z) denotes the z-transform of a sequence {yk} ∈ l1. We assume that z = e−iω.

The coefficients of the masks that we deal with are evaluated as follows:

|ak| ≤ aγk ⇒
∞∑

k=N

|ak| ≤ BγN , B =
a

1− γ
, (7.31)

where 0 < γ < 1 and a is some positive constant.

We need to evaluate the sums σe(a) =
∑∞

k=−∞ |a2k|, σo(a) =
∑∞

k=−∞ |a2k+1|. We denote

A(ω) = a(e−iω) = Q(e−iω)/P (e−iω) =
∞∑

k=−∞
e−iωk ak.

Let us calculate the function A in the discrete set of points:

ân = A
(

2πn

N

)
=

∞∑

k=−∞
e
−2πikn

N ak =
N/2−1∑

r=−N/2

e
−2πirn

N θr,

θr =
∞∑

l=−∞
ar+lN = ar + κr, κr =

∑

l∈Z/0

ar+lN .
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It follows from (7.31) that

|κr| ≤ 2BαN ⇒ |ar| = |θr|+ αN
r , |αN

r | ≤ 2BγN . (7.32)

The samples θk are available via the IDFT: θk = 1
N

∑p
n e2πikn/N ân. Using (7.32) we can

evaluate the sums we are interested in as follows:

σe(a) =
N/4−1∑

k=−N/4

|a2k|+ 2
∞∑

k=N/4

|a2k| =
N/4−1∑

r=−N/4

|θ2k|+ ρN ,

ρN =
N/4−1∑

r=−N/4

|αN(2k)|+ 2
∞∑

k=N/4

|a2k|, |ρN | ≤ B(N + 2)γN .

Hence, it follows that by doubling N , we can approximate the infinite series σe(a) by the

finite sum σN
e (a) =

∑N/4−1
r=−N/4 |θ2k|, whose terms are available via the DFT. An appropriate

value of N can be found theoretically using estimations of the roots of the denominator

P (z). But practically, we can iterate calculations by gradually doubling N until the result of

calculating σ2N
e (a) becomes identical to σN

e (a) (up to machine precision). The same approach

is valid for evaluating the sum σo(a) and the sums
∑

k |q[L]
i−2Lk| for any L.

8 Examples

In this section we outline the properties and present graphical illustrations of several par-

ticular wavelet transforms based on the prediction and update filters, which were designed

in Sections 3 and 4. For this illustration we selected transforms that proved to be efficient

in our image compression experiments. The results of these experiments are presented in

Section 9.

8.1 List of filters

We describe transforms, which use the following six filters:

F1(z)
∆
= U3

i (z) = 4
1 + z

z + 6 + z−1
,

(IIR filter derived from a quadratic interpolatory spline, see (3.29))

F2(z)
∆
= U3

m(z) =
−z−1 + 9 + 9z − z2

16
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(FIR filter derived from a quadratic minimal quasi-interpolatory spline, see (3.39))

F3(z)
∆
= U6

d (z) =
(z + 14 + z−1)(1 + z)

6z−1 + 20 + 6z)

(IIR filter derived from an interpolatory discrete spline of sixth degree, see (4.18))

F4(z)
∆
= U3

e (z) =
3z−2 − 25z−1 + 150 + 150z − 25z2 + 3z3

256

(FIR filter derived from a quadratic extended quasi-interpolatory spline, see (3.40)),

F5(z)
∆
= U8

d (z) =
8(1 + z)(z−1 + 6 + z)

z−2 + 28z−1 + 70 + 28z + z2

(IIR filter derived from an interpolatory discrete spline of eighth degree, see (4.19)),

F6(z)
∆
= U5

i (z) =
16(z + 10 + z−1)(1 + z)

z2 + 76z + 230 + 76z−1 + z−2
,

(IIR filter derived from an interpolatory spline of fourth degree, see (3.30)).

Remark: It follows from Remark 3.4.1 that the synthesis scaling function generated by

the FIR filters F 2(z) and F4(z) are the autocorrelations of the scaling functions generated

by the 4-tap and 6-tap Daubechies filters, respectively (see [37]).

By combining the above six filters we construct a number of transforms, which we label

as PpUu. Here p means the index of the filter Fk, which is used for the predict step in

the lifting scheme and u is the index of the filter, which is used for the update step. For

example, P1U3 designates the transform, which performs the predict step using the filter

F 1(z) and the update step using the filter F3(z)/z.

Proposition 8.1 The synthesis ϕ(x) and the analysis ϕ̃(x) scaling functions associated with

the transforms PpUu are continuous and

if the filters Fu and Fp are FIR then ϕ(x) and ϕ̃(x) have compact support;

if Fu is IIR and Fp is FIR then ϕ̃(x) decays exponentially as |x| → ∞ and ϕ(x) has

compact support;

if Fp is IIR and Fu is FIR then ϕ(x) and ϕ̃(x) decay exponentially as |x| → ∞;

if Fu and Fp are IIR then ϕ(x) and ϕ̃(x) decay exponentially as |x| → ∞.
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8.2 Analysis of regularity of the scaling function: Example

We illustrate the scheme of analysis of the convergence and regularity of the scaling function,

that was described in Sections 7.2 and 7.4. As an example, we use the scaling function ϕ(t)

generated by the filter F1(z) = U3
i (z). We recall that this filter originates from the quadratic

interpolatory spline, which belongs to C1. The symbol of the corresponding subdivision

scheme is

a(z) = 1 + z−1U3
i (z2) =

(1 + z)4

z4 + 6z2 + 1
= (1 + z) q(z), q(z) =

(1 + z)3

z4 + 6z2 + 1
.

Obviously, a(z) is a function of class P. To establish the convergence, we have to prove that

the scheme Sq with the rational symbol q(z) and the infinite mask {qk} is contractive. For

this purpose, we evaluate the norms ‖SL
q ‖ = max

{∑
k |q[L]

i−2Lk|
}

using the DFT as it was

explained in Section 7.6. We begin with L = 1. In this case

q̂[1]
n = q(e−2πin/N) =

2e
iπn
N cos3 iπn

N

1 + cos2 2πn
N

.

The sums
∑∞

k=−∞ |q[1]
i−2k| '

∑N/4−1
r=−N/4 |θ2k+i|, i = 0, 1, provided N is sufficiently large. The

values θk are calculated via the IDFT: θk = N−1 ∑p
n e2πikn/N q̂[1]

n . Direct calculation yields

the estimate: ‖S1
q‖ ≤ 0.7071. Thus, the scheme converges and there exists a continuous

scaling function ϕ.

To establish the differentiability of the limit function f∞ of the scheme Sa we have to

prove that the scheme S[1]
q with the symbol q[1](z) = 2(1+z)−2 a(z) is contractive. The norm

of the operator S[1]
q does not meet the requirement ‖S[1]

q ‖ < 1. But, using two iterations,

L = 2, we found that ‖(S[1]
q )2‖ ≤ 0.6667. Hence, the scaling function ϕ ∈ C1.

But an even stronger claim is true: the scaling function ϕ ∈ C2. To establish this, we

prove that the scheme S[2]
q with the symbol q[2](z) = 4(1 + z)−3 a(z) is contractive. As in

the previous case, our calculations with L = 2 lead to ‖(S[2]
q )2‖ ≤ 0.6667, which proves the

statement.

8.3 Summary of the properties of the wavelet transforms

We summarize in Table 2 the properties of the transforms, which we employed in our image

compression experiments. In those experiments we compare the results produced by our
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transforms with the results achieved by application of the popular 9/7 biorthogonal transform

([4]), which we denote by B9/7. Therefore, we add to the table the properties of B9/7.

The following abbreviations are used in the table:

VmA: Number of vanishing moments of the analysis wavelet ψ̃.

VmS: Number of vanishing moments of the synthesis wavelet ψ.

RegA: Regularity of the analysis scaling function ϕ̃. Ck means that ϕ̃ is continuous together

with its k derivatives.

RegS: Regularity of the synthesis scaling function ϕ.

Add: Number of additions per pixel in the implementation of one step of the two-dimensional

transforms.

Mult: The same for multiplications.

LFA: Length of the analysis filter H̃.

LFS: Length of the synthesis filter H.

Transform VmA VmS RegA RegS Add Mult LFA LFS

P1U1 4 4 C1 C2 8 6 ∞ ∞
P2U2 4 4 C0 C1 8 4 11 5

P3U3 6 6 C2 C4 12 6 ∞ ∞
P4U4 6 6 C1 C2 12 6 15 7

P1U3 4 6 C1 C4 10 7 ∞ ∞
P2U4 4 6 C0 C2 10 5 13 5

P5U5 8 8 C4 C5 16 12 ∞ ∞
P6U6 6 6 C2 C4 16 12 ∞ ∞
B7/9 4 4 C0 C1 8 4 9 7

Table 2: Properties of the transforms employed in the image compression experiments.
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Comments on Table 2.

• The computational complexity is calculated under the assumption that all the pre-

sented transforms are carried out through lifting steps and filtering with IIR filters is

implemented in cascade mode with special treatment of the boundaries of the images

(Section 6).

• Factorization of the B9/7 transform as suggested in [5, 18], speeds up the computation.

The number of operations in Table 2 is computed with respect to this factorization

algorithm. The two-dimensional wavelet transforms are applied separately to the rows

and columns of the 2D array. However, for the lifting implementation of 2D P2U2,

P4U4 and B9/7 transforms, which use FIR filters, it is possible to merge row and

column operations. This merge reduces the computational cost of the implementation

([5], Appendix I - Section 10).

• It is clear from the table that the cost of the implementation of the transforms P1U1,

P3U3 and P1U3 is close to the cost of the implementation of the transform B9/7.

8.4 Graphical illustrations

In the next seven figures we display several filters, scaling functions and wavelets associated

with the presented transforms. All the figures are identically organized. Each of them con-

tains four pictures. If these pictures are counted from left to right then the first column

displays the frequency responses of the low-pass H and the high-pass G synthesis filters,

the second column displays the frequency responses of the low-pass H̃ and the high-pass G̃

analysis filters, the third column displays the synthesis scaling function ϕ and the wavelet ψ,

and the fourth column displays the analysis scaling function ϕ̃ and the wavelet ψ̃. Figure 1

illustrates the transform P1U1, Figure 2 illustrates the transform P2U2, Figure 3 illustrates

the transform P3U3, Figure 4 illustrates the transform P4U4, Figure 5 illustrates the trans-

form P5U5 , Figure 6 illustrates the transform P6U6 and Figure 7 illustrates the transform

B9/7.
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Figure 1: Filters and wavelets associated with the P1U1 transform.

                      
 

 

 

 

 

 

 

 

 

     
 

 

 

 

 

 

 

     

 

 

 

 

 

 

Figure 2: Filters and wavelets associated with the P2U2 transform.

           
 

 

 

 

 

 

 

 

           
 

 

 

 

 

 

 

 

    
 

 

 

 

 

 

 

      
 

 

 

 

 

 

 

 

 

Figure 3: Filters and wavelets associated with the P3U3 transform.

           
 

 

 

 

 

 

 

 

           
 

 

 

         

 

 

 

 

 

 

 

Figure 4: Filters and wavelets associated with the P4U4 transform.

Comments on Figures 1–7: We observe that, unlike B9/7, all the devised low-pass

synthesis filters and high-pass analysis filters have flat frequency responses. It is especially

apparent for the IIR filters. The rest of the filters are flat up to a small bump near the cut-

off. The filters of the transform P5U5 have the flattest frequency response and the steepest

cut-off. Its scaling functions are most regular among the presented transforms.
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Figure 5: Filters and wavelets associated with the P5U5 transform.
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Figure 6: Filters and wavelets associated with the P6U6 transform.

           
 

 

 

 

 

 

 

 

           
 

 

 

 

 

 

 

 

 

 

 

      
 

 

 

 

 

 

 

     

 

 

 

 

 

 

 

 

 

Figure 7: Filters and wavelets associated with the B9/7 transform.

In Figures 8 and 9 we present the derivatives of several scaling functions. Figure 8

displays second derivatives of the synthesis scaling functions of two transforms P2U2 and

P4U4, which use FIR filters, and the transform P1U1, which uses IIR filters. Like P2U2, the

transform P1U1 operates with wavelets, which have four vanishing moments. The wavelets of

the P4U4 transform have four vanishing moments. Note that the synthesis scaling functions

of P2U2 and P4U4 are the basic limit functions of the well-known 4-point and 6-point Dubuc

and Deslauriers interpolatory subdivision schemes [19, 20].

The second derivative of the synthesis scaling function of the P2U2 transform does not

exist. The synthesis scaling function of the P4U4 transform belongs to Cα, α < 2.830

[16, 19, 20]. In Figure 8 the second derivative of the synthesis scaling function of the P1U1

transform looks smoother than the scaling function of P4U4. Thus, we conjecture that the
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Figure 8: Second derivatives of the synthesis scaling functions: left: P2U2, center: P4U4,

right: P1U1.

scaling function of P1U1 belongs to Cβ, β > α.

In Figure 9 we display the fourth derivatives of the synthesis scaling functions of two

transforms P3U3 and P6U6, which use IIR filters. We recall that P3U3 is based on discrete

splines of sixth order and P6U6 is based on polynomial splines of fifth order. Corresponding

wavelets have six vanishing moments.

       
 

 

 

 

 

 

 

 

       
 

 

 

 

 

 

 

 

 

 

Figure 9: Fourth derivatives of the synthesis scaling functions: left: P3U3, right: P6U6.

We observe that the fourth derivative of the scaling function of P3U3 has a near-fractal

appearance. Nevertheless, we proved that it is continuous. Both transforms P3U3 and P6U6

have very similar properties. Also, their performance is very similar. But the computational

cost to implement the P6U6 transform is much higher than to implement P3U3, and is

equal to that of implementing the P5U5 transform, which has smoother scaling functions

and wavelets with more vanishing moments.
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9 Image compression results

We tested the applicability of the devised transforms to image compression. We report the

results of a number of experiments on four still benchmark images. It turns out that the

performance of our transforms is comparable with the performance of the B9/7 transform,

which is in the JPEG 2000 compression standard [35]. In this section we apply the transforms

to the images presented in Figures 10 and 11. These are 512×512 8 bit per pixel (8bpp)

images. The following experiments were conducted:
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Figure 10: Left: “Lena”, right: “Barbara”.

1. Each image was decomposed up to six scales with the wavelet transform using the

B9/7 transform and the transforms PpUu, p, u = 1, . . . , 6, that are listed in Table 2.

2. The transforms’ coefficients were coded using the SPIHT algorithm ([36]). This algo-

rithm enables us to achieve an exact predetermined compression ratio. We coded the

coefficients with different compression ratios (CR): 1:10 (0.8 bpp), 1:20 (0.4 bpp), 1:30

(4/15 bpp), 1:40 (0.2 bpp) and 1:50 (4/25 bpp).

3. The reconstructed image was compared with the original image and the peak signal-
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Figure 11: Left: “Car”, right: “Fabrics”.

to-noise ratio (PSNR) in decibels was computed:

PSNR = 10 log10

(
N 2552

∑N
k=1(xk − x̃k)2

)
dB. (9.1)

Lena: The PSNR values of “Lena” are presented in Table 3. All the PpUu transforms

CR B9/7 P1U1 P2U2 P3U3 P4U4 P1U3 P4U2 P4U3 P5U5 P6U6

10 37.70 37.82 37.67 37.85 37.79 37.85 37.71 37.84 37.80 37.83

20 34.53 34.71 34.70 34.72 34.68 34.75 34.63 34.73 34.67 34.71

30 32.33 32.62 32.56 32.69 32.59 32.65 32.57 32.67 32.75 32.73

40 31.42 31.63 31.52 31.67 31.61 31.67 31.54 31.68 31.60 31.66

50 30.70 30.91 30.82 30.93 30.90 30.95 30.85 30.96 30.87 30.93

Table 3: PSNR of the “Lena” image.

have a slightly better PSNR than the B9/7 transform for most of the compression

ratios except when P2U2 is used at CR=10. The complexity of the P2U2 and B9/7

transforms is the same. The transforms P1U3, P4U3 and P3U3 perform equally and

outperform other transforms. All these transforms use F3 as the update filter. In
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Figure 12 we display a zoom from the reconstructed “Lena” (compressed to 1:40). In

the compression we used the B9/7 and P4U3 transforms. Note that, although both

portions are almost indistinguishable, there are details which are better restored by

the P4U3 transform.
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Figure 12: Fragment of “Lena” reconstructed from 40:1 compression. Left: the B7/9 trans-

form was used: PSNR=31.42. Right: P4U3 transform was used: PSNR=31.68.

Barbara: The PSNR values of “Barbara” are presented in Table 4. We observe from Table

CR B9/7 P1U1 P2U2 P3U3 P4U4 P1U3 P4U2 P4U3 P5U5 P6U6

10 33.01 33.39 32.91 33.72 33.32 33.51 33.06 33.46 33.81 33.75

20 28.93 29.13 28.90 29.32 29.10 29.24 28.99 29.22 29.39 29.34

30 26.99 27.03 26.91 27.33 27.17 27.15 27.04 27.15 27.45 27.40

40 25.78 25.74 25.65 25.95 25.74 25.83 25.69 25.78 26.06 25.99

50 25.10 25.00 24.86 25.14 24.95 25.05 24.90 25.02 25.23 25.18

Table 4: PSNR of the “Barbara” image.

4 that the transforms P3U3 and P6U6, where the wavelets have six vanishing moments

and the scaling functions belong to C4, perform better than the transforms with four
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vanishing moments and less regular scaling functions. The P5U5 transform, where

both analysis and synthesis wavelets have eight vanishing moments and the scaling

functions belong to C4 and C5, respectively, produces the best results. In Figure 13

we display a zoom from the reconstructed “Barbara” (compressed to 1:40). In the

compression we used the B9/7 and P5U5 transforms. Note that the texture of the

tablecloth and the scarf is better revealed with the P5U5 transform while the leg of

the table is displayed more accurately with the B9/7 transform.
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Figure 13: Fragment from “Barbara” reconstructed from 40:1 compression. Left: B9/7 filter

was used: PSNR=25.78. Right: P5U5 transform was used: PSNR=26.06.

Car: The PSNR values of the “Car” image are presented in Table 5. Here most of the

PpUu transforms produce a slightly better PSNR than the B9/7 transform for any

compression ratio. More regular transforms P5U5 and P6U6 perform worse than the

transforms P1U1 and P1U3 where the wavelets have less vanishing moments but better

spatial localization. The reason for that may lie in the presence of small details in the

image, which are better captured by the wavelets with a shorter effective support. We

display a zoom from the reconstructed “Car” (compressed to 1:40) in Figure 14. The

B9/7 and P1U3 transforms were used. While the horizontal lines on the left-hand

side of the fragment are better displayed in the B9/7 picture, the P1U3 transform is
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CR B9/7 P1U1 P2U2 P3U3 P4U4 P1U3 P4U2 P4U3 P5U5 P6U6

10 32.57 32.63 32.72 32.52 32.59 32.66 32.69 32.64 32.35 32.49

20 28.38 28.53 28.46 28.46 28.47 28.53 28.49 28.51 28.32 28.42

30 26.78 26.99 26.89 26.92 26.94 27.02 26.95 27.0 26.83 26.90

40 25.05 25.19 25.11 25.15 25.17 25.22 25.16 25.20 25.12 25.14

50 24.40 24.52 24.43 24.46 24.49 24.56 24.48 24.55 24.37 24.44

Table 5: PSNR of the “Car” image.

slightly advantageous in restoring the arcs and the letters on the right-hand side.
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Figure 14: Fragment of “Car” reconstructed from 40:1 compression. Left: B9/7 filter was

applied: PSNR=25.05. Right: P1U3 transform: PSNR=25.22.

Fabric: The PSNR values of “Fabric”are presented in Table 6. As in the above examples,

the transform P1U1 produces a better PSNR than the B9/7 transform for any com-

pression ratio. The same is true for more complicated transforms such as P1U3 and

P4U3. The latter transform produces the best PSNR among all the listed transforms.

In Figure 15 we display a zoom from the reconstructed “Fabric” (compressed to 1:40).

In the compression we used the transforms B9/7 and P4U3. Although it is difficult to
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CR B9/7 P1U1 P2U2 P3U3 P4U4 P1U3 P4U2 P4U3 P5U5 P6U6

10 34.95 34.96 34.86 34.97 34.96 34.99 34.89 34.99 34.92 34.96

20 31.53 31.53 31.44 31.53 31.51 31.55 31.47 31.57 31.47 31.53

30 29.62 29.79 29.73 29.75 29.77 29.81 29.77 29.82 29.83 29.74

40 28.90 29.00 28.93 29.02 28.98 29.02 28.97 29.04 28.99 29.02

50 28.41 28.52 28.44 28.52 28.50 28.54 28.46 28.55 28.47 28.51

Table 6: PSNR of the “Fabric” image.

distinguish between them, it seems that P4U3 produces a superior visual display such

as the scissors and the texture of the tablecloth.
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Figure 15: Fragment of “Fabric” reconstructed from 40:1 compression. Left: B9/7 transform

was applied: PSNR=28.90. Right: P4U3 transform: PSNR=29.04.

The P3U3 transform, which uses filters that are derived from the discrete spline of sixth

order, produces a high PSNR on all test images. Almost identical results are displayed

by the P6U6 transform, which stems from polynomial splines of fourth degree, but the

computational cost of the P6U6 implementation is significantly higher than the cost of the

implementation of P3U3. But there are singular cases when it is outperformed. The P1U1
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transform combines low computational cost with a good performance. It uses filters that are

derived from the quadratic interpolatory spline. The performance of the transforms P1U3

and P4U3 suggests that in some cases it is better to use different filters for the predict and

update steps. The transform P5U5, which uses filters that are derived from the discrete

spline of eighth order produces good results for the compression of “Barbara”. Therefore, it

justifies the use of highly regular wavelets with a high number of vanishing moments.

Conclusion

In this paper we proposed an efficient technique that generates a wide range of new biorthog-

onal symmetric wavelet transforms. This technique is based on using discrete and polynomial

interpolatory and quasi-interpolatory splines for the design of filters for the predict and up-

date operations in lifting schemes of the wavelet transform. These are the linear phase filters

which have flat frequency responses. By combining different designed filters for the predict

and update steps, we can devise practically unlimited types of wavelets which have a prede-

termined number of vanishing moments that are as smooth as required. When transforms,

which are based on splines of higher orders are implemented, it is advisable to switch from

time-domain to frequency-domain implementation. Then, an increase in the number of van-

ishing moments and the regularity of wavelets does not affect the computational cost of the

implementation.

We analyzed scaling functions and wavelets associated with the devised wavelet trans-

forms. In particular, we established conditions for exponential decay of the scaling functions

and determined the rate of decay. We found that the synthesis scaling functions derived

from interpolatory polynomial splines of even degrees coincide with fundamental splines.

We explored the applicability of the newly designed transforms to still image compression.

The new transforms and the biorthogonal 9/7 transform were incorporated into SPIHT in

order to compare their performances. The performance (quality and computational cost)

of the presented transforms proved to be comparable with the 9/7 transform. Most of the

filters that are employed in the transforms are IIR.

A number of authors [4, 51] studied the performance of families of wavelet transforms that

use FIR filters for image compression. The most comprehensive investigation on this topic
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was reported in [27]. The results of these studies as well as the results of our experiments

suggest that it is difficult to single out properties of the transforms that are most valuable

for image compression. We believe that a trade-off between properties such as the number of

vanishing moments of analysis wavelets, the regularity of synthesis wavelets, the flatness of

the frequency response and the steepness of its transition band, and the spatial localization

of the wavelets, is the key to achieve better compression. This is exemplified by the B9/7

transform as well as by the transforms P3U3 and P1U1.

In the future we intend to find accurate estimates of smoothness (Hölder exponents) of the

designed scaling functions and wavelets. We plan to extend our technique to the irregularly

sampled signals. The designed transforms will be tested on processing video sequences and

seismic data.

Acknowledgement: This research was partially supported by the grant, Construction

of spline based filter banks for the wavelet analysis and image processing application, of Tel

Aviv University.

10 Appendix I: 2D implementation of transforms with

FIR filters

The 2D array x
∆
= {x(n,m)}, n, m = 0 . . . N − 1, is to be transformed into four subarrays:

x → ss
⋃

sd
⋃

ds
⋃

dd, where ss is the smoothed low-frequency section in horizontal and

vertical directions, sd – low-frequency in vertical direction, high-frequency in horizontal

direction, ds – low-frequency in horizontal direction, high-frequency in vertical direction, dd

– high-frequency section of details in both horizontal and vertical directions. Conventionally,

the 2D transform of x is implemented in a separable way (tensor product). In [5] a direct

2D lifting implementation of the transform B9/7 is presented. We describe the 2D lifting

implementation of the transform P2U2.

Notation: Let a = {a(n,m)}, n, m = 0 . . .M−1, be a 2D array and ã be a 2M-periodic

HH- extension of the array in both vertical and horizontal directions. Then Lr · a means

the left shift of the extended array. Namely, Lr · a(n,m) = ã(n,m + r), m = 0 . . . M − 1.

69



Similarly, the right shift is Rr · a = {Rr · a(n,m)} = {ã(n,m− r)}, m = 0 . . . M − 1.

The upper shift is Ur · a = {Ur · a(n,m)} = {ã(n + r,m)}, n = 0 . . .M − 1. The lower

shift is Dr · a = {Dr · a(n,m)} = {ã(n− r,m)}, n = 0 . . .M − 1.

10.1 P2U2 transform

The parameters are: α = −9/16, β = 1/16, γ = −α/2, δ = −β/2.

Decomposition

Split: x = ee
⋃

eo
⋃

oe
⋃

oo.

Predict: 1. de = oe + α(ee + U1 · ee) + β(D1 · ee + U2 · ee).

2. dd = oo+α(de+L1 · de+eo+U1 · eo)+β(R1 · de+L2 · de+D1 · eo+U2 · eo).

Update: 1. sd = eo+α(ee+L1 · ee)+β(R1 · ee+L2 · ee)+γ(dd+D1 · dd)+δ(U1 · dd+

D2 · dd)

2. ss = ee+γ(de+D1 · de+sd+R1 · sd)+δ(U1 · de+D2 · de+L1 · sd+R2 · sd).

3. ds = de + γ(dd + R1 · dd) + δ(L1 · dd + R2 · dd).

Normalization: ss = 2ss, dd = dd/2.

Reconstruction of the 2D array x from four subarrays of coefficients:

ss
⋃

sd
⋃

ds
⋃

dd, ss → x is conducted in a reverse order.

11 Appendix II: Periodic setting

A parallel version of the above theory can be developed for periodic signals using the discrete

Fourier transform (DFT). The construction is carried out in the Fourier domain and calcu-

lations are performed via the fast Fourier transform (FFT). We outline briefly the periodic

scheme. A detailed presentation of the scheme is given in [7, 8].
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In the sequel we assume that N = 2j, j ∈ N and
∑j

k stands for
∑2j−1

k=0 . Denote ωj =

e2πi2−j
. The discrete Fourier transform (DFT) of an array xj = {xk}2j−1

k=0 and its inverse

(IDFT) are

x̂j(n) =
j∑

k

ω−nk
j xk, xk = 2−j

j∑
n

ωnk
j x̂j(n).

Denote ek
∆
= x2k, ok

∆
= x2k+1, k = 0 . . . N/2− 1. We recall the following properties of DFT:

If xk =
j∑

l

bk−lcl then x̂j(n) = b̂j(n)ĉj(n)

êj−1(n) =
1

2

(
x̂j(n) + x̂j(n + N/2)

)

ôj−1(n) =
ωn

j

2

(
x̂j(n)− x̂j(n + N/2)

)

x̂j(n) = êj−1(n) + ω−n
j ôj−1(n). (11.1)

11.1 Biorthogonal periodic transforms

11.1.1 Primal lifting scheme

One step of decomposition

Split - The array xj is split into even and odd sub-arrays: xj = ej−1 ⋃
oj−1.

Predict - The even array ej−1 is filtered by some prediction filter Uj−1 and subtracted

from oj−1 producing the new odd array oj−1
ν . In the Fourier domain the operations are

described as follows:

ôν
j−1(n) = ôj−1(n)− Û j−1(n)êj−1(n),

where the subscript ν designates the new array.

Update (lifting) -

êν
j−1(n) = êj−1(n) +

1

2
V̂ j−1(n)ôν

j−1(n),

where Vj−1 is some update filter.

Normalization - Finally, the smoothed array sj−1 and the array of details dj−1 are ob-

tained by the following operation: sj−1 =
√

2 ej−1
ν , dj−1 = oj−1

ν /
√

2.
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One step of reconstruction The reconstruction of the signal xj from the arrays sj−1 and

dj−1 is implemented by the reverse of the decomposition:

Undo Normalization - ej−1
ν = sj−1/

√
2 oj−1

ν =
√

2dj−1.

Undo Lifting - The even array

êj−1(n) = êj−1
ν (n)− 1

2
V̂ j−1(n)ôj−1

ν (n)

is restored.

Undo Predict - The odd array

ôj−1(n) = ôj−1
ν (n) + Û j−1(n)êj−1(n)

is restored.

Undo Split - The last step is performed using (11.1).

11.1.2 Periodic filter banks

Let Φ̂j(n)
∆
= (1 + ω−n

j Û j−1(n))/2 and define the following 2j-periodic filters g̃j, h̃j, gj and hj

via their DFT’s:

̂̃gj
(n)

∆
=
√

2ω−n
j Φ̂j(n + N/2),

̂̃
h

j

(n)
∆
=
√

2(1 + ωn
j V̂ j−1(n)Φ̂j(n + N/2)),

ĥj(n)
∆
=
√

2Φ̂j(n), ĝj(n)
∆
=
√

2(1− ωn
j V̂ j−1(n)Φ̂j(n)).

Here h̃j and g̃j are the low- and high-pass primal analysis filters, respectively, and hj and

gj are the low- and high-pass primal synthesis filters, respectively. These four filters form a

2j-periodic perfect reconstruction filter bank.

Proposition 11.1 If ω−n
j Û j−1(n) and ωn

j V̂ j−1(n) are real valued as n ∈ Z then the decom-

position and reconstruction equations can be represented as follows:

ŝj−1(n) =
1

2

( ¯̃̂
hj(n) x̂j(n) +

¯̃̂
hj(n + N/2) x̂j(n + N/2)

d̂j−1(n) =
1

2

( ¯̂
g̃j(n) x̂j(n) +

¯̂
g̃j(n + N/2) x̂j(n + N/2)

)

x̂j(n) = ĥj(n) ŝj−1 + ĝj(n) d̂j−1.
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11.1.3 Bases

As in the non-periodic case, the filter bank h̃j, g̃j, hj and gj generate a biorthogonal pair of

bases of the space of 2j-periodic signals.

Proposition 11.2 Any signal xj can be represented as follows:

xl =
j−1∑

k

sj−1
k ϕj−1

l−2k +
j−1∑

k

dj−1
k ψj−1

l−2k,

where ϕj−1
l and ψj−1

l are IDFT’s of the arrays {ĥj−1(n)} and {ĝj−1(n)}, respectively.

The coordinates sj−1
k and dj−1

k are the following inner products:

sj−1
k =

j∑

l

xl ϕ̃
j−1
l−2k, dj−1

k =
j∑

l

xl ψ̃
j−1
l−2k, (11.2)

where ϕ̃j−1
l and ψ̃j−1

l are IDFT’s of the arrays {ˆ̃h
j−1

(n)} and {ˆ̃gj−1
(n)}, respectively.

The following biorthogonal relations hold:

j∑

l

ψ̃j−1
l−2k ψj−1

l−2m =
j∑

l

ϕ̃j−1
l−2k ϕj−1

l−2m = δm
k ,

j∑

l

ψ̃j−1
l−2k ϕj−1

l−2m =
j∑

l

ϕ̃j−1
l−2k ψj−1

l−2m = 0, ∀m, k.

Although periodic wavelets cannot have vanishing moments in a traditional sense, we can

define quasi-vanishing moments (QVM). QVM means that the high-frequency filter gj (or

g̃j) in our construction comprises a finite difference block of order p. It means that the filter

can be represented as the convolution

gj
k =

j∑

l

∆p
k−l θ

j
l , where ∆p

k
∆
=

p∑

m=0

(
p

m

)
(−1)mδk−m

and θj is a 2j-periodic signal. If some fragments of the signal are close to (or coincide with)

a polynomial of a degree not exceeding p, then application of the filter gj (or g̃j) turns

these fragments close to zero. Recall that in a non-periodic setting such a property of the

filter guarantees that the corresponding wavelet has p vanishing moments.

Proposition 11.3 Let the DFT’s Û j−1(n) and V̂ j−1(n) of filters, which are used for the

predict and update steps, respectively, be rational functions with respect to cos 2πn
2j . If the

following factorization holds

(1 + ω−n
j Û j−1(n)) =

(
cos

πn

2j

)2r

ϑj(n)
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then the high-frequency analysis wavelet ψ̃j−1 has 2r QVM. If, in addition,

1 + ωn
j V̂ j−1(n) =

(
cos

πn

2j

)2q

%j(n)

then the high-frequency synthesis wavelet ψ1 has 2s QVM, where s = min(q, r). Here ϑj(n)

and %j(n) are rational functions with respect to cos 2πn
2j .

11.1.4 Multiscale periodic wavelet transforms

Expansion of the transform to the coarser scales is implemented in an iterative way. The

scheme of the transform of the original signal xj into L ≤ j scales is the following:

1. Calculate {x̂j(n)}, which is the DFT of xj.

2. The array {x̂j(n)} is transformed via lifting steps into the arrays {ŝj−1(n)} and {d̂j−1(n)},
which are the DFT’s of the smoothed and detail subarrays sj−1 and dj−1, respectively.

3. Derive the detail subarray dj−1 by calculating the IDFT of the array {d̂j−1(n)}. The

subarray dj−1 is stored.

4. The array {ŝj−1(n)} is transformed into {ŝj−2(n)} and {d̂j−2(n)}. The subarray dj−2

is stored.

5. Steps 3–4 are iterated until the arrays {ŝj−L+1(n)} and {d̂j−L+1(n)} are produced. The

array dj−L+1 is stored.

6. The array {ŝj−L+1(n)} is transformed into {ŝj−L(n)} and {d̂j−L(n)}.

7. Derive the smoothed and detail subarrays sj−L and dj−L calculating the IDFT’s of the

arrays {ŝj−L(n)} and {d̂j−L(n)}. Both the subarrays sj−L and dj−L are stored.

By this means the signal xj is transformed into the subarrays of wavelet coefficients : xj →
dj−1 ⋃

dj−2 ⋃
. . .

⋃
dj−L ⋃

sj−L. The inverse transform dj−1 ⋃
dj−2 ⋃

. . .
⋃

dj−L ⋃
sj−L → xj is

implemented in a reverse order.

1. Calculate {ŝj−L(n)} and {d̂j−L(n)}, which are the DFT’s of the arrays sj−L and dj−L,

respectively.
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2. Restore the array {ŝj−L+1(n)} by lifting steps and calculate {d̂j−L+1(n)}, which is the

DFT of the array dj−L+1.

3. Iterate steps 1–2 until the array {ŝj−1(n)} is restored and {d̂j−1(n)} is calculated.

4. Derive the array {x̂j(n)} from {ŝj−1(n)} and {d̂j−1(n)} by lifting steps and restore xj

by calculating the IDFT of {x̂j(n)}.

Major computational expenses in this processing are allocated to calculate the direct and in-

verse DFT’s via the FFT. Therefore the computational complexity of implementing periodic

transforms hardly grows with the increase in order of splines used for the creation of the pre-

diction and update filters. When splines of low order are employed, a time-domain recursive

implementation has a lower computational cost than the FFT algorithm. But, unlike the

FFT, this cost grows rapidly as the order of the splines increases. The higher the order of the

splines used for the filter design, the more QVM have corresponding wavelets. When splines

of higher order are involved, the FFT implementation has a lower computational complexity

than the time-domain implementation.

11.1.5 Father and mother periodic wavelets

As in the non-periodic case, the periodic wavelet transforms generate a biorthogonal pair of

bases ϕ̃j−m
l , ψ̃j−m

l and ϕj−m
l , ψj−m

l at the m−th decomposition scale. These wavelets are

derived from wavelets of the previous scale via the discrete two-scale relations

ϕ̃j−m
l =

j−m+1∑

k

h̃j−m+1
k ϕ̃j−m+1

l−2k , ψ̃j−m
l =

j−m+1∑

k

g̃j−m+1
k ϕ̃j−m+1

l−2k ,

ϕj−m
l =

j−m+1∑

k

hj−m+1
k ϕj−m+1

l−2k , ψj−m
l =

j−m+1∑

k

gj−m+1
k ϕj−m+1

l−2k .

A significant difference from the non-periodic case lies in the fact that the filter bank h̃j, g̃j

and hj, gj depends on the scale. Therefore the multiresolution analysis in spaces of periodic

functions has some specifics, that are described in [32]. In particular, there are no scaling

functions in such spaces. Given a set of filter banks h̃j, g̃j and hj, gj associated with the scale

j ∈ Z+, we can define a set of father ϕ̃j(t), ϕj(t) and mother ψ̃j(t), ψj(t) wavelets related
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to this scale j. Provided the 1-periodic father wavelets of the scale j + 1 are available, the

1-periodic wavelets of the scale j are derived via the discrete two-scale relations

ϕ̃j(t) =
j+1∑

k

h̃j+1
k ϕ̃j+1(t− k2−j), ψ̃j(t) =

j+1∑

k

g̃j+1
k ϕ̃j+1(t− k2−j),

ϕj(t) =
j+1∑

k

hj+1
k ϕ̃j+1(t− k2−j), ψj(t) =

j+1∑

k

gj+1
k ϕ̃j+1(t− k2−j).

Therefore, if the father wavelet ϕ̃j(t) (or ϕ̃j(t)) on an initial scale J is available then all

the wavelets on the scales J − 1, J − 2, . . . 0 can be derived. The wavelet ϕ̃j(t) (or ϕ̃j(t))

can be constructed using a cascade subdivision algorithm similar to the algorithm described

in Section 7. Sometimes the wavelets can be presented explicitly. For example, it can be

done for the multiresolution analysis in spaces of periodic polynomial splines. This case was

studied in [57].

11.2 Filter design using periodic splines

11.2.1 Polynomial interpolatory splines

The scheme of the filter design in the periodic case is similar to the non-periodic scheme.

Given a signal xj, we construct a 1-periodic spline of order p, which interpolates even samples

ej−1 = {ek = x2k}2j−1−1
k=0 on the grid {k2−j+1}. Then odd samples oj−1 = {ok = x2k+1}2j−1−1

k=0

are predicted by values of the spline at the midpoints {(2k+1)2−j} between the interpolation

points. Such a construction produces the prediction filter Uj−1
i,p , whose DFT is

Û j−1
i,p (n) =

ŵp(22−jπn)

ûp(22−jπn)
. (11.3)

The functions ûp(ω) and ûp(ω) are defined in (3.3). Note that periodic interpolatory splines

of odd order possess the super-convergence property.

Examples: Denote ν = cos 21−jπn.

Interpolatory periodic quadratic spline: p = 3

U j−1
i,3 (n) =

2ωn
j ν

1 + ν2
, 1 + ω−n

j U j−1
i,3 (n) =

(1 + ν)2

1 + ν2
=

4 cos4(2−jπn)

1 + ν2
.
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Interpolatory periodic cubic spline: p = 4

U j−1
i,4 (n) =

ωn
j ν(5 + ν2)

2(1 + 2ν2)
, 1 + ω−n

j U j−1
i,4 (n) =

2 cos4(2−jπn)(2 + ν)

1 + 2ν2
.

Interpolatory periodic spline of fourth degree: p = 5

U j−1
i,5 (n) =

ωn
j 8ν(2 + ν2)

5 + 18ν2 + ν4
, 1 + ω−n

j U j−1
i,5 (n) =

8 cos6(2−jπn)(5 + ν)

5 + 18ν2 + ν4
.

p = 7 :

U j−1
i,7 (n) =

ωn
j 16ν(17 + 26ν2 + 2ν4)

61 + 479ν2 + 179ν4 + ν6
, 1 + ω−n

j U j−1
i,7 (n) =

16 cos8(2−jπn)(ν2 + 28ν + 61)

61 + 479ν2 + 179ν4 + ν6
.

p = 9 :

U j−1
i,9 (n) =

ωn
j 128ν(192ν2 + 62 + 60ν4 + ν6)

1385 + 19028ν2 + 18270ν4 + 1636ν6 + ν8
,

1 + ω−n
j U j−1

i,9 (n) =
32 cos10(2−jπn)(ν3 + 123ν2 + 1011ν + 1385)

1385 + 19028ν2 + 18270ν4 + 1636ν6 + ν8
.

p = 11 :

U j−1
i,11 (n) =

ωn
j 256ν(1382 + 7192ν2 + 5097ν4 + 502ν6 + 2ν8)

50521 + 1073517ν2 + 1949762ν4 + 540242ν6 + 14757ν8 + ν10
,

1 + ω−n
j U j−1

i,11 (n) =
64 cos12(2−jπn)(ν4 + 506ν3 + 11706ν2 + 50666ν + 50521)

50521 + 1073517ν2 + 1949762ν4 + 540242ν6 + 14757ν8 + ν10
.

We display in Figure 16 frequency responses of the synthesis and analysis filters gj, hj g̃j,

and h̃j, and the synthesis and analysis father ϕ̃j(t), ϕj(t) and mother ψ̃j(t), ψj(t) wavelets

of the transform, which uses the prediction and update filters derived from the periodic

interpolatory spline of eleventh order. The mother wavelets have eleven QVM’s. We can

observe that time-domain localization of wavelets is worse than the localization of wavelets

displayed in Section 8.4 but the frequency responses are closer to a rectangular shape.

11.2.2 Discrete periodic splines

A 2j-periodic discrete B-spline of first order b1,n
k is a 2j−periodization of the B-spline B1,n

k

defined in (4.1). B-splines of higher order are defined recursively via the circular discrete
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Figure 16: Filters and wavelets originating from the interpolatory periodic spline of eleventh

order. First and second columns: frequency responses of synthesis and analysis filters,

respectively. Third and fourth columns: synthesis and analysis wavelets, respectively.

convolution: bp,n = b1,n ∗ bp−1,n
k . In the case n = 1, p = 2r, which we are interested in, its

DFT is (b̂2r,1)j(m) =
(
1 + ω−m

j

)2r
. We introduce the central periodic B-spline of order 2r:

q2r
k

∆
= b2r,1

k+r. Its DFT is (q̂2r)j(m) = (2 cos πm/2j)
2r

. A 2j-periodic discrete spline with nodes

at points {2k} is defined as a combination of the central B-splines:

s2r
k

∆
=

j−1∑

l

clq
2r
k−2l.

As in the case of polynomial periodic splines, given a signal xj, we construct a 2j-periodic

discrete spline of order 2r, which interpolates even samples ej−1 = {ek = x2k} on the grid

{2k}: s2r(2k) = ek, k = 0, . . . 2j−1 − 1. Then odd samples oj−1 = {ok = x2k+1}2j−1−1
k=0 are

predicted by values of the spline at midpoints {(2k + 1)} between the interpolation points.

Such a construction produces the prediction filter Uj−1
d,2r, whose DFT is

Û j−1
d,2r (m) = ωm

j

(cos πm/2j)
2r − (sin πm/2j)

2r

(cos πm/2j)2r) + (sin πm/2j)2r . (11.4)

Hence we have

1 + ω−m
j Û j−1

d,2r (m) =
2 (cos πm/2j)

2r

(cos πm/2j)2r + (sin πm/2j)2r . (11.5)

The explicit formulas (11.4) and (11.5) enable us to easily construct biorthogonal periodic

wavelet transforms with any number of QVM’s. The computational complexity of the im-

plementation of these transforms does not grow with the increase in the number of QVM’s.

We display in Figure 17 frequency responses of the synthesis and analysis filters gj, hj g̃j,

and h̃j, and the synthesis and analysis father ϕ̃j(t), ϕj(t) and mother ψ̃j(t), ψj(t) wavelets of

the transforms, which use the prediction and update filters derived from the discrete spline
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of fiftieth order. The mother wavelets have 50 QVM’s. We can observe a poor time-domain

localization of wavelets but almost rectangular frequency responses.

           
 

 

 

 

 

 

           
 

 

 

 

 

 

 

 

 

 

 

         
 

 

 

 

 

 

 

 

 

 

 

         
 

 

 

 

 

 

 

 

 

Figure 17: Filters and wavelets originating from the discrete periodic spline of fiftieth order.

First and second columns: frequency responses of synthesis and analysis filters, respectively.

Third and fourth columns: synthesis and analysis wavelets, respectively.
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