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Time-Frequency Jigsaw Puzzle: Adaptive

multiwindow and multilayered Gabor

expansions

Abstract

We describe a new adaptive multiwindow Gabor expansion, which dynamically adapts the windows to

the signal’s features in time-frequency space. The adaptation is based upon local time-frequency sparsity

criteria, and also yields as by-product an expansion of the signal into layers corresponding to different

windows. As an illustration, we show that simply using two different windows with different sizes leads

to decompositions of audio signals into transient and tonal layers. We also discuss potential applications

to transient detection and denoising.

Index Terms

Gabor expansion, multiwindow, time-frequency concentration, adaptivity, parsimony, entropy.

I. INTRODUCTION

Time-frequency representations[1], [2], [8] provide simple and efficient representations of signals.

Among time-frequency representation methods, the so-called “atomic” time-frequency representations,

based upon signal expansions on a family of elementary waveforms (the atoms), generated using simple

rules, have enjoyed increasing success, mainly because of their versatility and simplicity.
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Nevertheless, in some situations, such approaches turn out to suffer from an important lack of flexibility.

For example, it is well known that the time-frequency representation provided by short time Fourier

transformation depends strongly on the choice of the analyzing window. Indeed, different choices for

the analyzing window emphasize different features of the signal. Such a property may be exploited in

some cases (for example, when one can adapt the window to some specific feature of the signal to be

analyzed). It may also become a drawback in more complex situations, for example when the analyzed

signal contains significantly different features. In such cases, there does not exist any choice of the

analyzing window that would be satisfactory for all of them.

The goal of this paper is to present a new approach for this problem, based on an automatic selection

of the optimal window, locally in the time-frequency plane. The proposed approach is based on a paving

of the time-frequency plane into rectangular “super-tiles”, within which the sparsest Gabor representation

(within a fixed family of Gabor transformations, using different windows) of the signal is seeked. The

so-obtained multiple Gabor transformation is then inverted, yielding a first approximation of the signal,

involving what we shall call sparse layers. This first approximation is then substracted from the signal,

yielding a residual, to which the same procedure is applied. The procedure is then iterated until the

residual is small enough, or other criterion is met.

Our approach presents some similarities with the family of greedy algorithms, such as matching pursuit

and orthogonal matching pursuit in time-frequency dictionaries[13], [9], and shares some aspects of the

Multiple Window Gabor expansions[5], [18]. However, it differs from the former by the criterion used to

select the time-frequency atoms (a sparsity criterion rather than a matching criterion), and by the use of

dictionaries (generally, an union of two Gabor frames is used) that are smaller than those generally used

in matching pursuit type algorithms. It also differs from the latter by the fact that the problem is not set

up as that of reducing a very redundant frame. The primary target application of the proposed approach

is improved readability time-frequency signal representation. However, the so-obtained time-frequency

representations turn out to be quite suitable for several post-processing tasks, as we shall show at the

end of this article.

This paper is organized as follows. After this introduction, we first recall in Section II the main aspects

of time frequency representations and Gabor and multiple Gabor frame theory that will be of interest

to us, and introduce the sparsity measures we shall be using. We describe our approach in Section III,

and numerical illustrations are provided in Section IV. Pseudocode for the proposed algorithms may be

found in the appendix.
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II. TIME-FREQUENCY REPRESENTATIONS, TIME-FREQUENCY LOCALIZATION, SPARSITY

A. Time-frequency representations� Gabor systems

Let us start with a short account of atomic time-frequency representations. We shall focus here on

the case of the short-time Fourier transform (also termed continuous Gabor transform[1]). For the sake

of simplicity, we shall limit our discussion to the case of finite energy signals, i.e. square integrable

functions1. The case of discrete signals may be handled in a similar way.

Let g ∈ L2�R), g �= 0, and b� ν ∈ R
+
∗ , and consider the set of shifted and modulated copies gmn of g,

defined by

gmn = e2iπnνtg�t−mb) � m� n ∈ Z . (1)

These may be seen as resulting of a sampling of the continuous family of translates and modulates

t→ g�τ�f)�t) = e2iπftg�t− τ), f� τ ∈ R on the lattice L = bZ× νZ in the time-frequency plane. It may

be shown[3] that for bν small enough, the family of time-frequency atoms {gmn�m� n ∈ Z} constitute a

frame[7] in L2�R): this in particular implies that to any signal x ∈ L2�R) can be associated the sequence

Gx ∈ �
2�Z2) of Gabor coefficients

Gx�m�n) = �x� gmn� . (2)

Under these assumptions, it may be shown[3] that the sequence of coefficients Gx is (doubly) square-

summable

�Gx�
2 :=

�

m�n

|Gx�m�n)|2 <∞ �

and that x may be reconstructed from the latter: there exists a dual window g̃ and a corresponding dual

family of Gabor atoms g̃mn, such that for all x ∈ L
2�R),

x =
�

m�n

Gx�m�n)g̃mn . (3)

In fact, such a frame inversion is generally far from unique, and (unless the frame is a basis of L2�R)),

there are infinitely many expansions such as (3) for expressing x from its Gabor coefficients Gx�m�n).

The sequence of Gabor coefficients also yields a time-frequency representation, by considering its

square modulus, suitably normalized

ρx�m�n) =
1

�Gx�2
|Gx�m�n)|2 � (4)

1Recall that the space of square-integrable functions L��R) = �x : R → ��
�
∞

�∞
|x�t)|� dt < ∞} is an inner product space,

with inner product �x� y� =
�
∞

�∞
x�t)y�t) dt and norm �x� =

p
�x� x�.
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so that
�

m�n ρx�m�n) = 1, i.e. ρx defines a discrete probability distribution. The latter (a discrete

spectrogram) is generally used for signal analysis, as an alternative representation, from which some

salient features of the signal are more easily accessible[1], [2], [8]� 2.

B. Multiple Gabor systems

Multiple Gabor systems have been proposed[18] for relaxing the dependance of the time-frequency

representation on the analyzing window. The main idea is the following: given a family of R Gabor

frames

�r = {gr
λ� λ ∈ L

r} � r = 1� . . . R�

with different window functions g1� . . . gR and associated time-frequency lattices L1� . . .LR, denote by

Gr
x�m�n) = �x� gr

mn� (5)

the corresponding Gabor coefficients of x ∈ L2�R). It is easy to show that the union of these Gabor

frames is again a frame in L2�R). Hence, it may be proved that any x ∈ L2�R) may be written as

x =
R�

r=1

�

m�n

Γr
x�m�n)g̃r

mn (6)

for some set of coefficients Γr
x�m�n), the functions g̃r

mn being the dual frame of g
r
mn (for example, take

Γr
x�m�n) = �x� gr

mn�/R). Again, there are infinitely many such expansions of x in terms of the dual

Gabor atoms g̃r
mn, and the “optimal” ones may be seeked.

Recently, the notion of quilted Gabor frame[5] has been proposed as a solution to this problem. Starting

from a union of several frames, the idea is to reduce the so-obtained highly redundant frame by limiting

the expansion to suitably chosen time-frequency atoms in different regions of the time-frequency domain.

These selected atoms have to be chosen once for all, and must form a frame of the signal space. Therefore,

such an approach is not intrinsically adaptive (although one may think of first selecting a data driven

quilted frame, before expanding a signal with respect to it). We describe in Section III a fully adaptive

approach, based on sparsity considerations, which we introduce below.

C. Adaptive representation� sparsity

It is natural to ask the question: does there exist an “optimal” representation for the signal. Of course,

the answer depends on what is meant by “optimal”. Following Wickerhauser and coworkers[17], we

2and references therein.
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define the optimality in terms of parsimony, or sparsity: a time-frequency representation is “good” if it

represents the signal in an economical way, i.e. by concentrating the information on a limited number of

coefficients.

In the framework of Gabor expansion of a fixed signal x ∈ L2�R), the optimal window is defined as

the window g ∈ L2�R) which maximizes a given sparsity measure S:

gopt = arg max
g
S�g) .

Classical choices for the sparsity measure exploit the family of Rényi entropies Rα, 0 < α < 1, defined

as follows. Given a discrete probability distribution u, i.e. a vector with positive coordinates that sum up

to unity, we introduce the Rényi entropy[16]

Rα�u) =
1

1− α
log2

�
�

n

uα
n

�

. (7)

Note that Rα is nothing but a logarithmic form of some �
α norm of the vector. Different values of α

yield different ways of measuring sparsity. We shall not consider such issues here[11], as the choice of

α does not appear crucial in the proposed method. In the limit α→ 1, one obtains the Shannon entropy

R1�u) = −
�

n

un log2 �un) . (8)

It is very easy to see that the negentropy (negative entropy) −Rα is indeed a measure of sparsity, as the

entropy Rα is maximal for constant vectors (up to a phase factor), and minimal for “Krönecker-like”

vectors un = Cδn�n0
.

Such criteria may be used to search the “best” window for a given signal: Suppose one is given a (para-

metric) family of window functions g1� g2� . . . gR, together with time-frequency lattices L1�L2� . . .LR in

the time-frequency plane, such that the corresponding families of atoms {gr
mn� �m�n) ∈ L

r} are frames

in L2�R), compute the corresponding Gabor transforms and associated time-frequency representations,

denoted by ρr
x, which is by construction a probability distribution. Then the criterion to optimize takes

the form

S�gr) = −Rα�ρr
x) �

for some fixed 0 < α ≤ 1, and the optimal window for a given signal x is the one that maximizes the

criterion.

Unfortunately, it was shown [11] that although such an approach gives satisfactory results for simple

synthetic signals, it generally fails as soon as the signal under consideration becomes more complex,

i.e. contains features of significantly different nature. Nevertheless, it is possible to replace the above

May 2006 DRAFT
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Fig. 1. Spectrogram of the synthetic mixture “flute + bird” signal, with a medium size window, and the two regions A and B

on which the window adaptation is performed.

optimization with a more “local” one [11], [12], by optimizing the window with respect to specific features

of the signal rather than doing so globally. This may be done thanks to suitable user interface, allowing

the user to select a region of interest Ω in the time-frequency plane (from an image of the time-frequency

representation), and performing the optimization on the signal obtained by partial reconstruction from

this region:

xloc =
�

�m�n)∈Ω

Gx�m�n)g̃mn .

In such a way, one obtains time-frequency representations that are well adapted for representing specific

features of a signal. An illustration may be found in Fig. 1, which represents the spectrogram (with

a medium width window) of a synthetic mixture of flute recording and a bird song. Optimizing the

window size in regions A and B shown in Fig. 1 yields respectively narrow and wide window sizes.

The corresponding spectrograms are shown in Figs. 2 and 3 respectively. Such local adaptations may be

efficiently used as pre-processing, prior to any signal analysis/detection/parameter estimation tasks[10].

The approach descrived above is a supervized one, in the sense that it requires the selection (by the

user) of a region Ω in the time-frequency plane. In the next section, we describe an unsupervised approach

for dynamically adapting the window size, exploiting the ideas we just outlined.
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Fig. 2. Spectrogram of the synthetic mixture “flute + bird” signal, with the window optimized within region A in Fig. 1

Fig. 3. Spectrogram of the synthetic mixture “flute + bird” signal, with the window optimized within region B in Fig. 1

III. TIME-FREQUENCY JIGSAW PUZZLES

The starting point of our approach is to search for an optimal way of representing signals using Gabor

atoms, with different time-frequency positions and sizes (and possibly other descriptors). Identifying these

atoms with rectangular tiles with different locations and sizes in the time-frequency plane, this problem

May 2006 DRAFT
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intuitively amounts to finding good tilings of the time-frequency plane with those rectangular tiles, i.e.

solving a kind of jigsaw puzzle problem. Hence the name of the proposed method.

We first describe the simplest instance of the method we propose, the version 1 of the Time Frequency

Jigsaw Puzzle algorithm (TFJP1 for short), before examining “by-products” and variants. For the sake

of simplicity, we limit the discussion to the case of two windows only keeping in mind the particular

case of two windows of the same shape, considered at different scales (a narrow and a wide window),

which we used in the numerical examples. The extension to more than two windows is straightforward,

and has also been implemented numerically. We shall briefly comment on it in the conclusion section.

A. The TFJP1 method

Let us start from Gabor transforms as before, and consider several windows g1� g2, time-frequency

lattices L1�L2, and corresponding canonical dual windows g̃1� g̃2, we fix A�B ∈ R
+ large enough, and

consider a reference tiling of the time-frequency plane into rectangular “super-tiles”, denoted by ��s),

R
2 =

�

s

��s) (9)

where the super-tiles are defined by

��s) = �m�n =

��

m−
1

2

�

A�

�

m+
1

2

�

A

�

×

��

n−
1

2

�

B�

�

n+
1

2

�

B

�

. (10)

The supports of the Gabor atoms associated with windows g1 and g2 provide different pavings of these

supertiles. For each time-frequency lattice Lr� r = 1� 2, let Lr�s = Lr ∩ ��s) denote the subset of L
r

included in the super-tile ��s). Illustrations of super-tiles and corresponding pavings and sub-lattices, in

the case of two windows (in fact, the same window, at two different scales) may be found in Fig. 4.

To any x ∈ L2�R), any window gr� r = 1� 2 and any super-tile s, associate the set of Gabor coefficients

Gr
x�m�n) (defined in (5)) corresponding to the paving of super-tile s with atoms of type r:

�
r
x�s = {�x� gr

mn�� m� n ∈ L
r�s} .

Then, for each super-tile s, the optimal window g��x�s) is selected, and the corresponding entropy is

computed, according to �




r�x� s) = arg minr=1�2Rα��r
x�s) �

Rα�x� s) = Rα��
��x�s)
x�s ) .

(11)

Given x ∈ L2�R), let the first approximation be defined as

x�1) =
�

s

�

λ∈���x�s)�s

�x� g
��x�s)
λ � g̃

��x�s)
λ (12)
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Fig. 4. Two different tilings of a region of the time-frequency plane: within a given super-tile (rectangular region with thick

borders) the smaller rectangles represent the “numerical” support of the time-frequency atoms with two different windows

(say, the domain within which their spectrogram exceeds some fixed threshold), and the dots represent their center, i.e. the

time-frequency sampling points.

and the corresponding residual

R1�x) = x− x�1) . (13)

The same procedure may then be applied to the so-obtained residual: search for the “optimal” window

within each supertile, compute the corresponding approximation to the first order residual, and a second

order residual. This approximation of the first order residual may be added to x�1), to yield a (hopefully

better) new approximation of the signal.

The procedure may in fact be applied recursively, by setting

x�k) =
�

s

�

λ∈��x�k�s)

�Rk−1�x)� g
��x�k�s)
λ � g̃

��x�k�s)
λ � (14)

and

Rk�x) = Rk−1�x)− x�k) . (15)

where

r�x� k� s) = r�Rk−1�x)� s)

is the label of the window selected at step k within the supertile s, and L�x� k� s) = L��x�k�s)�s denotes

the corresponding time-frequency sampling points.

At step K, we then obtain a telescopic expansion of the signal into K approximation levels and a

residual

x =
K�

k=1

x�k) +RK�x) � (16)

May 2006 DRAFT
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and the iteration stops when the residual is small enough, yielding an (approximate) expansion of the

signal of the form

x ≈

K�

k=1

x�k) =

K�

k=1

�

s

�

λ∈��x�k�s)

�Rk−1�x)� g
��x�k�s)
λ � g̃

��x�k�s)
λ . (17)

Pseudocode for this algorithm may be found in the appendix.

Remark 1: Proving the convergence of such a scheme seems to be a difficult task. Numerical ex-

periments (see below) show that the convergence is indeed very fast, and seem to indicate exponential

convergence (like matching pursuit in finite dimensional situations). Criteria ensuring that the set of

selected atoms is a frame in the signal space may be obtained[6]. However, notice also that the convergence

of this algorithm does not require such a property. It would be enough to prove an upper bound for the

residuals.

The convergence of the algorithm is illustrated by a number of case studies. We display in Fig. 6 the

evolution of the Signal to Noise Ratio

SNR�k) = 10 log10

�
�x�2

�Rk�x)�2

�

as a function of the iteration index k, for three different signals: two synthetic signals (a sum of sine

waves and Dirac pulses, and a Gaussian white noise), and a real signal (the Glockenspiel signal displayed

in Fig. 5). As may be seen, after about 6 iterations, the three curves are essentially parallel and straight,

which seems to indicate exponential convergence, at the same speed for the three considered signals. As

could be anticipated, the convergence is faster for the synthetic signal made out of sine waves and Dirac

pulses, and slower for the white noise, which is not sparse for wide neither narrow windows. However,

even in the worst case, the convergence is still very good, as 13 iterations are sufficient to reach a SNR

equal to 100 dB, an acceptable limit for audio applications.

The speed of convergence also depends on the choices of the other parameters of the algorithm,

including the widths of windows, and the sizes of supertiles. For example, we display in Fig. 7 the SNR

as a function of the number of iterations for three different supertile sizes. We define a supertile to be

of size M ×N if it contains M time sampling points of the wide windows and N frequency sampling

points of the narrow window. Fig. 7 shows that the convergence is better for large supertiles. This may be

easily interpreted as a consequence of the fact that the main contributions to the residual signals Rk�x)

originate from the boundaries between supertiles within which different windows have been chosen. When

the area of the supertiles grows, the number of boundaries decreases, and the precision is better. This

effect seems to be in favour of large supertiles, to insure faster convergence. However, since the original

May 2006 DRAFT
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Fig. 5. Glockenspiel test signal

Fig. 6. Convergence of TFJP1, influence of the signal. SNR as a function of the iteration index. ◦: white noise; +: glockenspiel

signal; ×: sum of sine waves and Dirac pulses.

goal is to reach a good localization in small regions of the time-frequency plane, there is a trade-off to

find between these two objectives.

Remark 2: For the sake of simplicity, we have chosen to illustrate the TFJP approach with the simple

case of two windows. This choice is also natural in the case of windows of the same shape and different

widths, because the results may be given a simple interpretation (see Section IV below). However, this is

not a limitation of the method, and numerical results (not displayed here) show that the algorithm works

as well with more than two windows, with similar convergence properties.

May 2006 DRAFT
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Fig. 7. Convergence of TFJP1, influence of the sizes of the supertiles. SNR as a function of the iteration index. ◦: supertile

of size 1× 1; +: supertile of size 3× 3; ×: supertile of size 5× 5.

B. Multilayered time-frequency decomposition

The main idea of the method is that each window selects parts of the signal which are sparsely repre-

sented in the corresponding Gabor system. We now organize differently the multiple Gabor expansion,

by summing up all contributions selected by a given window. We define r-th layer of the signal as the

signal constructed by limiting the sum in (17) to Gabor atoms g̃r
mn.

Remark 3: When it comes to numerical experiments, we shall limit ourselves to the particular case

of two identical windows, at two different scales: a wide version and a narrow version. This choice is

motivated by the desire of decomposing audio signals into “tonal” and “transient” layers. In this spirit,

the tonal layer of a signal is defined as the “component” which admits a sparse expansion with respect

to a Gabor frame with high frequency resolution (i.e. with a wide window), and the transient layer as the

“component” which admits a sparse expansion with respect to a Gabor frame with high time resolution

(i.e. a narrow window).

Given an expansion of the type (16), each approximation level is itself expressed as a linear combination

of Gabor atoms with different window functions: for r = 1� 2, at a given step k, let

Sr
x�k) = {s : r�x� k� s) = r}

denote the set of time-frequency indices for which window r has been selected, and denote by x�k;r) the

contribution of atoms gr
mn at step k:

x�k;r) =
�

s∈Sr
x�k)

�

λ∈��x�k�s)

�Rk−1�x)� gr
λ� g̃

r
λ . (18)
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Clearly, x�k) = x�k;1) + x�k;2), and the signal decomposition (16) may be rewritten as

x = �1�x) + �2�x) +RK�x) � (19)

where the remainder RK�x) is as before, and �1 and �2 are layers of x, defined according to

�r�x) =
K�

k=1

x�k;r) . (20)

The layer �1�x) (resp. �2�x)) basically represents the “component” of the signal x which is “well repre-

sented” (i.e. sparsely represented) by the Gabor frame �1 (resp. �2). Actually, if the two windows have

sufficiently different characteristics (in particular, time-frequency localization properties), the different

layers do indeed represent significantly different components of the signal. Applications of this technique

to the decomposition of audio signals into transient and tonal layers will be discussed in Section IV

below.

Remark 4: The approach described above treats the two layers equally, in the sense that at each itera-

tion, the construction of the time-frequency puzzle is followed directly by the estimation of corresponding

contributions to all layers. However it turns out that in such a scheme, the estimate of the second layer

may be perturbed by the first one and vice versa, as shown by the following simple example. Consider

the simple case of the sum of a sine wave and a Dirac pulse. The sine wave is expected to be well

represented by a Gabor frame with a wide window, and the Dirac pulse by a Gabor frame with a narrow

window. Indeed, numerical calculations show that wide windows are selected in the neighborhood (in

the frequency domain) of the frequency of the sine wave, and narrow ones in the (time) neighborhood

of the location of the Dirac pulse. However, near the “intersection” of these two neighborhoods in the

time-frequency domain, the poor frequency localization of the narrow windows implies that the latter

“captures” a part of the energy of the sine wave. The sine wave is then accounted for twice, which

biases the decomposition. A similar effect can also be observed on the Dirac pulse. To better resolve

such situations, a slight modification may be done on the algorithm, described below.

C. A simple variant: TFJP2

To avoid the shortcomings mentioned in Remark 4, it is possible to modify slightly the algorithm, and

only estimate a single layer at each iteration. This is variant 2 of the Time Frequency Jigsaw Puzzle

method (TFJP2 for short). More precisely, assume for the sake of simplicity that two windows are given.

May 2006 DRAFT
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Given a signal x, the first step is still given in the same way as (11)
�




r�x� s) = arg minr=1�2Rα��r
x�s) �

Rα�x� s) = Rα��
��x�s)
x�s ) �

(21)

but the first estimate only takes into account the first window

x�1;1) =
�

s:��x�s)=1

�

λ∈�1�s

�x� g1λ� g̃
1
λ (22)

which also defined the corresponding residual

R
1

2 �x) = x− x�1;1) . (23)

The second window is then used to estimate the contribution to the second layer: (21) is used again, and

the second estimate reads

x�1;2) =
�

s:��R
1
2 �x)�s)=2

�

λ∈�2�s

�R
1

2 �x)� g2λ� g̃
2
λ . (24)

The residual is then

R1�x) = R
1

2 �x)− x�1;2) = x− x�1�1) − x�1;2) . (25)

Again, the procedure may be iterated, taking the residuals Rk as inputs: replacing x with Rk in

Equations (21) to (24) yields similarly

x�k;1) =
�

s:��Rk�1�x)�s)=1

�

λ∈�1�s

�Rk−1�x)� g1λ� g̃
1
λ � (26)

x�k;2) =
�

s:��Rk� 1
2 �x)�s)=1

�

λ∈�2�s

�Rk− 1

2 �x)� g2λ� g̃
2
λ � (27)

and residuals

Rk− 1

2 �x) = Rk−1�x)− x�k�1) � Rk�x) = Rk− 1

2 �x)− x�k;2) . (28)

As a result, one obtains a telescopic series

x =

K�

k=1

�
x�k�1) + x�k�2)

�
+RK�x) (29)

as well as two layers

�1�x) =
K�

k=1

x�k�1) � �2�x) =
K�

k=1

x�k�2) � (30)

with the same interpretation as before. Pseudocode for this algorithm may be found in the appendix.

As mentioned above, this variant has the advantage of better avoiding boundary effects between adjacent

super-tiles in which different windows are chosen. It also yields slightly better convergence, as may be
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Fig. 8. Convergence of TFJP2, comparison with TFJP1, influence of the sizes of the supertiles. SNR as a function of the

iteration index. ◦: TFJP1; +: TFJP2.

seen in Fig. 8. Notice however that the difference between the two curves essentially lies in the first

iterations. After a few iterations, the two curves essentially coincide.

Clearly, the multilayer expansion of signals described in Section III-B above may be performed as

well using TFJP2.

D. Introducing significance test for sparsity: TFJP1b

The main idea of the above algorithms is to choose, within each super-tile s, the window such that

the resulting entropy is minimal. However, the minimal entropy for a given super-tile may happen to

be quite large, meaning that for that particular super-tile, even the “best” window was unable to yield

a sufficiently sparse description. In such situations, it does not necessarily make sense to include the

contribution of the considered super-tile in one of the layers, an alternative being to keep it inside the

residual. We describe below this new approach (TFJP1b) in the framework of the TFJP1 algorithm (the

modifications needed to adapt it to the TFJP2 algorithm are straightforward).

For a given super-tile s, and corresponding values of entropies Rα��r
x�s), one has to decide whether

or not those values are significant (i.e. correspond to actual significant signal component.) To avoid

possible non-significant values, we decide that the optimal window defined in (11) is accepted only when

the corresponding entropy is below some threshold value. Given such a threshold τ ∈ R
+, we simply
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replace (12) and (13) with

x�1)
τ =

�

s:Rα�x�s)≤τ

�

λ∈���x�s)�s

�x� g
��x�s)
λ � g̃

��x�s)
λ (31)

R1
τ �x) = x− x�1)

τ � (32)

and similarly for the rest of the algorithm. The multilayered Gabor expansion may also be adapted

accordingly, within the scheme depicted previously. This now produces a decomposition of the signal

into three layers: the two previous ones, and a residual.

Pseudocode for this algorithm may be found in the appendix.

Remark 5: choice of the threshold. In some specific applications, the threshold τ may of course be

chosen by the user. In a more general context, it may be desirable to choose the value(s) of the threshold

on statistical grounds, which is however difficult, as it would require characterizing the distribution of

Shannon’s entropies computed from restrictions of Gabor transforms to super-tiles.

In our numerical experiments to be discussed below, we used the following procedure. The distribution

of the entropies was estimated (numerically) from Gabor coefficients of a white noise reference signal.

τ was then adjusted to a given significance level (for example, 5�). In other words, at each step of the

iterative algorithm, super tiles were rejected (and kept in the residual signal) when the corresponding

value of entropy was too likely to have been produced by a Gaussian white noise (considered the worst

case signal, as far as sparsity is concerned). In such situations, the residual has no reason to converge

to zero, and may even contain interesting signal which simply cannot be sparsely represented by the

considered systems of time-frequency atoms.

IV. APPLICATIONS

The approach we have presented in this article provides alternative representations for signals. While

the Time-Frequency Jigsaw Puzzle approach does not solve signal processing problems by itself, the

signal representations it provides facilitates further tasks. We give below a couple of case studies to

illustrate the soundness of the approach.

A. Application to tonal/transient separation in audio signals

Audio signals often feature significantly different “components”, (partials, transients, chirps, noise,...),

which are sometimes associated with different physical processes. The TFJP approach offers a way of

separating such components, via a suitable choice of the analyzing windows.
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Fig. 9. Glockenspiel test signal: transient layer (top) and tonal layer (bottom).

We illustrate this fact by an example of separation of transient components (i.e. the attacks, or onsets)

and tonal components (i.e. resonances) from the glockenspiel signal already presented in Fig. 5. This

problem is of interest in various contexts, including audio coding, where it may be efficient to encode the

two layers separately[4], [15], or sinusoidal/harmonic signal modeling, where the estimation of sinusoidal

components is obviously more precise when performed on the tonal layer rather than the complete

signal[10].

In that case, two Gaussian windows with different width (a wide window and a narrow window) were

used in the framework of TFJP23, and the two corresponding layers �1 and �2 were reconstructed. The

resulting waveforms are shown in Fig. 9, and it appears clearly that the two components have been very

neatly separated.

3TFJP2 was prefered to TFJP1 because of the point raised in Remark 4.
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Time-frequency representations of these two layers are shown in Fig. 10. The separation of the two

components appears clearly there too.

Fig. 10. Multilayered decomposition of the ”Glockenspiel” signal, obtained using TFJP2. From top to bottom: time-frequency

representations (spectrograms) of the original signal (with a “medium size” window), the estimated transient layer (with the

narrow window) and the estimated tonal layer (with the wide window).

Real signals often feature noise, or stochastic-like components. In such situations, TFJP1b is to be
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Fig. 11. Multilayered decomposition of a short piece of speech signal: /test/, obtained using TFJP1b. From top to bottom:

waveforms of the original signal, the transient layer, the tonal layer and the residual signal.

preferred. To illustrate this situation, we display in Figure 11 the results of the decomposition obtained

using TFJP1b on a speech signal: the word /test/. Remarkably enough, the algorithm was able to

separate the different letters of the signal: the t are captured by the transient layer, the e by the tonal

layer, and the s remain in the residual. However, such results turn out to be quite sensitive to shifts of

the super tiles. Therefore, a systematic exploration of such approaches for speech signal processing will

require extra tuning effort, which we plan to study in the future.

B. Perspective: towards a new approach for transient detection

Transient detection is a classical problem in signal analysis; however, a comparison of existing ap-

proaches is difficult to perform because, strictly speaking, there is no general agreement on the definition

of a transient signal. We suggest that transientness may be defined in terms of sparsity of some narrow

window Gabor representation, and show how to adapt the TFJP method in such a context. Given a

signal x, a time-varying measure of transientness[14] may be associated with it as follows. One may for

example compute, for each value of the time index associated to a super tile, the number of times the

narrow window has been preferred to the wide one, or related quantities. This results in a time series

exhibiting sharp peaks at the location of transients, from which transient detection may then be carried

out by simple thresholding strategies.
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Fig. 12. Application to transient detection. From top to bottom: glockenspiel signal; time evolution of the number of supertiles

where the narrow window has been selected at the first iteration of TFJP1; time evolution of the number of supertiles where

the narrow window has been selected at the first iteration of TFJP1, and the entropy was below some threshold.

An illustration on the very simple case of the Glockenspiel signal may be found in Fig. 12, where two

different countings of the selected windows are displayed. The middle plot represents the time evolution

of the number of rectangles for which the narrow window has been selected in the first iteration of

TFJP1. As may be seen, transients may be detected by thresholding. However, as often, the choice of

the threshold is an important issue, as may be seen on the right hand side of the middle plot. In this

approach, the peaks appearing there are not significant, because they originate from narrow windows that

have been selected even though their entropy was large (but still smaller than that of the wide windows).

To overcome such a problem, a threshold on the entropy values may be introduced. The bottom plot

shows the time-evolution of the number of supertiles for which the narrow has been selected, and the

entropy was below some threshold. In this case, the choice of the threshold on the curve is not crucial

any more.

Of course, the transient detection task will be much more difficult for more complex signals, and such

a simple approach will have to be refined[10]. Again, the purpose of this discussion was not to propose a

new transient detection algorithm, but rather to show how the TFJP algorithms may help in this context.
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V. CONCLUSION

We have presented in this paper a new approach for selection of adapted Gabor signal representations,

starting from several “standard” Gabor expansions with different window functions. The main idea

behind this approach is to exploit potential sparsity of the representation of some components of the

analyzed signal in appropriate representations. Our approach provides ways of finding such appropriate

representations. This approach is quite general, and may be adapted in various ways. We have also

presented some of these variations, including a supervised version (adapted representation) and an

unsupervised one (adaptive representation, the TFJP algorithms).

As a by-product, this approach also yields “multilayered” representations for the signal under study, a

layer being defined as the “component” of the signal that is well represented by a given type of Gabor

functions.

Even though we have focused here on a few illustrations on general audio and speech signals and

transient/tonal separation, we believe that such approaches possess a much wider application range. To

quote only a few of these, applications to blind source separation or automatic speech segmentations are

examples of applications which we plan to address in the near future.

Additional material, including additional figures, and sound files, may be found on a companion web

site:

http://www.cmi.univ­mrs.fr/˜torresan/papers/TFJP
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APPENDIX

A. TFJP1

For a signal x:

• Choose a value for α ∈ �0� 1]. Choose two windows g1, g2 and corresponding sampling lattices;

choose supertiles.

• Initialization: Set R0 = x

• Main loop: while �Rk� ≥ �, do

– Compute coefficients �Rk� gr
mn� for the two windows r = 1� 2.

– Compute entropies Rα for both windows within each supertile.

– For each supertile, retain the window with smallest entropy. Reconstruct corresponding contri-

butions x�k�1) and x�k�2) to the layers.

– Set Rk+1 = Rk − x�k�1) − x�k�2).

• Reconstruct layers �1 and �2 by summing up contributions x�k;1) and x�k;2) respectively.

B. TFJP2

For a signal x:

• Choose a value for α ∈ �0� 1]. Choose two windows g1, g2 and corresponding sampling lattices;

choose supertiles.

• Initialization: Set R0 = x

• Main loop: while �Rk� ≥ �, do

– Compute coefficients �Rk� gr
mn� for the two windows r = 1� 2.

– Compute entropies Rα for both windows within each supertile.

– Select supertiles for which window 1 yields the smallest entropy. Reconstruct corresponding

contribution x�k�1) to layer 1.

– Set Rk+1/2 = Rk − x�k�1).

– Compute coefficients �Rk+1/2gr
mn� for the two windows r = 1� 2.

– Compute entropies Rα for both windows within each supertile.

– Select supertiles for which window 2 yields the smallest entropy. Reconstruct corresponding

contribution x�k�2) to layer 2.

– Set Rk+1 = Rk+1/2 − x�k�2).

• Reconstruct layers �1 and �2 by summing up contributions x�k;1) and x�k;2) respectively.
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C. TFJP1b

For a signal x:

• Choose a value for α ∈ �0� 1]. Choose two windows g1, g2 and corresponding sampling lattices;

choose supertiles. Define a maximal number of iterations K. Choose a threshold τ for entropies.

• Initialization: Set R0
τ = x

• Main loop: for k = 0 : K, do

– Compute coefficients �Rk
τ � g

r
mn� for the two windows r = 1� 2.

– Compute entropies Rα for both windows within each supertile.

– Select supertiles for which the smallest of the two entropies is below the threshold τ , and

reconstruct the corresponding contributions x
�k�r)
τ to the two layers.

– Set Rk+1
τ = Rk

τ − x
�k�1)
τ − x

�k�2)
τ .

• Reconstruct layers �1 and �2 by summing up contributions x
�k;1)
τ and x

�k;2)
τ respectively. Store the

residual.
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