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A new class of wavelet-type frames in signal space that uses (anti)symmetric wave-
forms is presented. The construction employs interpolatory filters with rational transfer
functions. These filters have linear phase. They are amenable either to fast cascading
or parallel recursive implementation. Robust error recovery algorithms are developed
by utilizing the redundancy inherent in frame expansions. Experimental results recover
images when (as much as) 60% of the expansion coefficients are either lost or corrupted.
The proposed approach inflates the size of the image through framelet expansion and
multilevel decomposition thus providing redundant representation of the image. Finally,
the frame-based error recovery algorithm is compared with a classical coding approach.
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1. Introduction

Frames provide redundant representations of signals. This redundancy enables the
exploitation of frame expansion as a tool for recovery of erasures, which may occur
while a multimedia signal is transmitted through a lossy channel.1,3 An important
class of frames, which is especially feasible for signal processing, is the class of
frames generated by oversampled perfect reconstruction filter banks (OPRFB).4,5

Actually, the frame transforms of multimedia signals provided by filter bank can be
interpreted as joint source-channel encoding for lossy channels, which is resilient to
quantization noise and erasures. This approach was developed in.25–28Orthogonal

541



June 28, 2007 19:34 WSPC/181-IJWMIP 00189

542 O. Amrani et al.

tree-structured OPRFB were presented in Ref. 25 as a tool for the error correction.
The frames were formed by two-channel non-decimated filter banks. In Ref. 27,
cosine-modulated OPRFBs generate frames for the error correction.

Pursuing a similar approach to the joint source-channel encoding, we propose
to use for this purpose recently constructed wavelet frames (framelets), which are
generated by three-channel OPRFBs with the downsampling factor of 2.6 Such
frames provide a minimal redundancy. We present a collection of such filter banks
based on Butterworth filters. The frames combine high computational efficiency of
the wavelet pyramid scheme with the power and flexibility of redundant represen-
tations. The framelets originating from the presented filter banks possess a combi-
nation of properties that are valuable for signal and image processing: symmetry,
interpolation, fair time-domain localization, flat spectra and any number of van-
ishing moments. The simplicity and low complexity involved in the decomposition
and reconstruction of the designed frames, give rise to efficient joint source-channel
coding and decoding. These properties promise good error recovery capabilities.
Results of our experiments with erasure recovery in multimedia images confirm
this claim. It is shown by means of simulations that these framelets can effectively
recover from random losses that are close to the theoretical limit.

Unlike most schemes of the construction of wavelets and wavelet frames, we use
infinite impulse response (IIR) filters with rational transfer functions. Consequently,
the corresponding waveforms do not have compact support. But this fact should
hardly be counted as a drawback because of the exponential decay of the waveforms
as the argument grows. As for the implementation, it can be carried out in a fast
recursive mode. On the other hand, usage of IIR filters enables achievement of a
combination of properties, which are impossible to get with finite impulse response
(FIR) filters. For example, it was proved in Ref. 9 that only one tight frame can
be designed using three-channel interpolatory linear phase FIR filter banks with
downsampling factor of 2. The framelets of this single frame are piece-wise linear.
One of them has two vanishing moments while the other has only one. We cite
this example in Sec. 2 [Eq. (2.16)]. A hard problem in the construction of framelets
that are based on FIR filter banks is combining symmetry with a sufficient number
of vanishing moments. Currently, only (anti)symmetric framelets with 3 vanishing
moments are designed.31,30

Note that wavelet constructions that are based on filter banks with rational
transfer functions were originally introduced in Ref. 2. In particular, non-symmetric
wavelets that are based on causal Butterworth filters were presented in Ref. 2.
Petukhov29 designed a family of symmetric wavelets with rational symbols and
applied them to video compression.33 Another collection of biorthogonal symmetric
wavelets with rational symbols, which is based on properties of continuous and
discrete splines, was presented in Refs 7 and 32 and successfully applied to image
compression.8

A parameterized family of linear phase low-pass filters with rational trans-
fer functions, which admits formation of tight frames with two generating
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(anti)symmetric framelets having two vanishing moments was presented in Ref. 34.
Later, a collection of wavelet frames has been designed,6 which is used in this paper.
We outline briefly this construction in Sec. 2.

Conventional methods for protecting data are well developed both in theory and
in practice. Block and convolutional codes are considered to be very efficient classes
of channel codes. They are widely used in wireless and wire-line channels such as
the internet. However, these codes, and other conventional methods, do not gener-
ally take into account the inner structure of the transmitted (multimedia) signal.
Rather, it is assumed that every information bit is equally significant, and hence it
has to be equally protected. Multimedia information usually undergoes some trans-
form (e.g. DCT, FFT or wavelet) followed by quantization and lossless compression
(entropy coding). The last two operations constitute source coding. The resulting
binary sequence (which is assumed to be white noise) typically contains bits with
unequal significance, which must be protected accordingly. Due to this inhomo-
geneity, direct application of channel coding methods to audio-visual information
is not optimal; it may significantly increase the transmission length if the (equal)
error correction code is chosen according to the most vulnerable data. Hence, it is
desired to design error correction codes that dynamically allocate more bits to more
important information. Such codes are known as unequal error protection codes.
Due to the growing importance in rich multimedia data transmission, unequal error
protection methods have attracted research efforts, see for example Ref. 11 and the
references therein. For example, in Refs. 10 and 11, irregular repeat accumulate
(IRA) codes12 of different rates are designed and applied for scalable image trans-
mission over binary symmetric channel (BSC). The different rates are obtained by
puncturing the parity bits of a mother IRA code, which uses a symmetric encoder.

The main results of this paper can be summarized as follows:

• Design of new families of symmetric wavelet frames based on oversampled perfect
reconstruction filter banks with rational transfer functions.

• Usage of these frames as a base for the source-channel coding scheme aimed for
the recovery of erasures in the transmitted multimedia images.

The paper has the following structure. In Sec. 2, we describe the construction
of symmetric frames in signal space associated with low-pass filters with rational
transfer functions. In Sec. 3, we present error recovery algorithms that utilize the
redundancy inherent in frame expansions that were designed in Sec. 2. The Griesmer
bound is invoked in Eq. (4.2) for comparing between the framelet based error-
recovery algorithm and a classical coding approach. Finally, Sec. 5 provides some
simulation results.

2. Design of Frames

In this section, we briefly describe construction of wavelet-type frames in the signal
space using linear phase filter banks that comprise interpolatory filters related to
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the Butterworth filters. The constructions are based on the results in Ref. 6. More
details are given there.

2.1. Filter banks

We call the sequences x ∆= {xk}, k ∈ Z, which belong to the space l1, (and, con-
sequently, to l2) discrete-time signals. The z-transform of a signal x is defined as
X(z) ∆=

∑
k∈Z

z−k xk.

Digital filtering of a signal xn is yn =
∑

k∈Z
fn−kxk. The sequence {fn} is

called the impulse response of the filter f. Its z-transform F (z) ∆=
∑

n∈Z
z−nfn

is the transfer function of the filter. Usually, a filter is designated by its transfer
function F (z). The function F̂ (ω) = F (ejω) is called the frequency response of the
digital filter.

In this paper, we consider 3-channel filter banks, where each contains one low-
pass, one band-pass and one high-pass filters and the downsampling factor is N = 2.
Their transfer functions are rational functions, which do not have poles on the unit
circle |z| = 1. Thus, the impulse responses belong to the signal space. We denote
the analysis and synthesis low-pass filters by H̃(z) and H(z), respectively, and
the high-pass filters are denoted by G̃r(z) and Gr(z), r = 1, 2. We denote by s1,
dr,1, r = 1, 2, the output signals from the downsampled analysis filter bank. These
signals are the input for the upsampled synthesis filter bank. Then, the analysis
and synthesis formulas become:

s1
l = 2

∑
n∈Z

h̃n−2l xn ⇔ S1(z2) = H̃(1/z)X(z) + H̃(−1/z)X(−z). (2.1)

For r = 1, 2,

dr,1
l = 2

∑
n∈Z

g̃r
n−2l xn ⇔ Dr,1(z2) = G̃r(1/z)X(z) + G̃r(−1/z)X(−z)

(2.2)

x̂l =
∑
n∈Z

hl−2n s1
n +

2∑
r=1

∑
n∈Z

gr,1
l−2n dr,1

n (2.3)

⇔ X̂(z) = H(z)S1(z2) +
2∑

r=1

Gr,1(z)dr(z2).

Polyphase representation of filtering: The functions

Fe(z) ∆=
∑

k∈Z
z−k f2k, Fo(z) ∆=

∑
k∈Z

z−k f2k+1, E(z) ∆=
∑

k∈Z
z−k x2k,

O(z) ∆=
∑

k∈Z
z−k x2k+1

are the polyphase components of F (z) and X(z), respectively.
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The analysis P̃(z) and the synthesis P(z) polyphase matrices, respectively, are:

P̃(z) ∆=


H̃e(z) H̃o(z)

G̃1
e(z) G̃1

o(z)

G̃2
e(z) G̃2

o(z)

 , P(z) ∆=

(
He(z) G1

e(z) G2
e(z)

Ho(z) G1
o(z) G2

o(z)

)
.

Then, 
S1(z)

D1,1(z)

D2,1(z)

 = 2P̃(1/z) ·
(

E(z)

O(z)

)
,

(
Ê(z)

Ô(z)

)
= P(z) ·


S1(z)

D1,1(z)

D2,1(z)

.

Here, Ê(z) and Ô(z) are the z-transforms of the even and odd components of the
output signal x̂, respectively. If the signal x̂ = x then the analysis and synthesis
filter banks form a perfect reconstruction filter bank. Analytically, this property is
expressed via the polyphase matrices as

P(z) · P̃(1/z) =
1
2
I, (2.4)

where I is the 2× 2 identity matrix. Thus, the synthesis polyphase matrix must be
a left inverse of the analysis matrix (up to factor 1/2). Obviously, if such a matrix
exists, it is not unique.

2.2. Frames

Definition 2.1. A system Φ̃ ∆= {φ̃j}j∈Z of signals forms a frame of the signal space
if there exist positive constants A and B such that for any signal x = {xl}l∈Z

A‖x‖2 ≤
∑
j∈Z

|〈x, φ̃j〉|2 ≤ B‖x‖2.

If the frame bounds A and B are equal to each other then the frame is said to be
tight.

If the system Φ̃ is a frame, then there exists another frame Φ ∆= {φi}i∈Z of the sig-
nals space such that any signal x can be expanded into the sum x =

∑
i∈Z

〈x, φ̃i〉φi.

The frames Φ̃ and Φ can be interchanged. Together they form the so-called bi-frame.
If the frame is tight, then Φ can be chosen as Φ = cΦ̃.

Assume we have analysis H̃(z), G̃1(z) G̃2(z) and synthesis H(z), G1(z) G2(z)
filter banks such that the impulse responses of the filters belong to the signal space.
We define the discrete-time framelets of the first decomposition scale to be the
impulse responses of the filters:

ϕ̃1 ∆= {ϕ̃1(n) ∆= 2h̃(n)}, ψ̃r,1 ∆= {ψ̃r,1(n) ∆= 2g̃r(n)},

ϕ1 ∆= {ϕ1(n) ∆= 2h(n)}, ψr,1 ∆= {ψr,1(n) ∆= 2gr(n)}.
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Here, r = 1, 2, n ∈ Z. Then, the analysis and synthesis Eqs. (2.1) and (2.2) can be
presented in the following way:

s1
l = 〈x, ϕ̃1(· − 2l)〉, dr,1

l = 〈x, ψ̃r,1(· − 2l)〉, r = 1, 2, l ∈ Z,

x̂ =
1
2

∑
l∈Z

s1
l ϕ

1(· − 2l) +
1
2

2∑
r=1

∑
l∈Z

dr,1
l ψr,1(· − 2l).

If the given set of filters form a perfect reconstruction filter bank then we have

x =
1
2

∑
l∈Z

〈x, ϕ̃1(· − 2l)〉ϕ1(· − 2l) +
1
2

2∑
r=1

∑
l∈Z

〈x, ψ̃r,1(· − 2l)〉ψr,1(· − 2l). (2.5)

Thus, if the condition (2.4) is satisfied then the set of two-sample shifts of the
signals ϕ̃1, ψ̃r,1, and ϕ1, ψr,1, r = 1, 2, form a bi-frame of the signal space. If
P(z) = cP̃T (z) then the signals ϕ1 and ψr,1, r = 1, 2, generate a tight frame.

Definition 2.2. It is said that a discrete-time framelet ψ has m vanishing
moments if ∑

k∈Z

ψ(k) kr = 0, k = 0, . . . , m − 1.

If the framelet ψ is defined as the impulse response of a high-pass filter G(z)
then the number of its vanishing moments is equal to the multiplicity of zero of the
function G(z) at z = 1.

Multiscale frame transforms. The iterated application of the analysis filter
bank to the signal s1 = {s1

k} produces the following three signals assuming r = 1, 2:

s2
l =

∑
n∈Z

h̃n−2l s1
n, =

∑
n∈Z

h̃n−2l

∑
m∈Z

h̃m−2n xm = 〈x, ϕ̃2(· − 4l)〉,

dr,2
l =

∑
n∈Z

g̃r
n−2l s1

n, =
∑
n∈Z

g̃r
n−2l

∑
m∈Z

h̃m−2n xm = 〈x, ψ̃r,2(· − 4l)〉,

where

ϕ̃2(l) ∆= 2
∑
n∈Z

h̃n ϕ̃1(n − 2l), ψ̃r,2(l) ∆= 2
∑
n∈Z

g̃r
n ϕ̃1(n − 2l).

Then, the signal s1 is restored as

s1
l =

1
2

∑
n∈Z

hl−2n s2
n +

1
2

2∑
r=1

∑
n∈Z

gr
l−2n dr,1

n
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and the signal x is expanded into the following sums:

x =
1
4

∑
l∈Z

〈x, ϕ̃2(· − 4l)〉ϕ2(· − 4l) +
1
4

2∑
r=1

∑
l∈Z

〈x, ψ̃r,2(· − 4l)〉ψr,2(· − 4l)

+
1
2

2∑
r=1

∑
l∈Z

〈x, ψ̃1
r (· − 2l)〉ψr,1(· − 2l),

where

ϕ2(l) ∆= 2
∑
n∈Z

hn ϕ1(n − 2l), ψr,2(l) ∆= 2
∑
n∈Z

gr
n ϕ1(n − 2l), r = 1, 2.

Thus, if condition (2.4) is satisfied, then the sets of four-sample shifts of the
signals ϕ̃2, ψ̃r,2, ϕ2, ψr,2, r = 1, 2 (which we call the discrete-time framelets of the
second decomposition scale) and the two-sample shifts of the framelets ψ̃r,1, ψr,1,
r = 1, 2 form a new bi-frame of the signal space.

Successive iterations lead to the following expansion of the signal x for r = 1, 2:

x = 2−M
∑
l∈Z

sM
l ϕM (· − 2M l) +

2∑
r=1

M∑
ν=1

2−ν
∑
l∈Z

dr,ν
l ψr,ν(· − 2ν l),

where sM ∆= 〈x, ϕ̃M (· − 2M l)〉, dr,ν ∆= 〈x, ψ̃r,ν(· − 2ν l)〉,

ϕ̃M (l) ∆= 2
∑
n∈Z

hn ϕ̃M−1(n − 2l), ψ̃r,ν(l) ∆= 2
∑
n∈Z

gr
n ϕ̃ν−1(n − 2l),

ϕM (l) ∆= 2
∑
n∈Z

hn ϕM−1(n − 2l), ψr,ν(l) ∆= 2
∑
n∈Z

gr
n ϕν−1(n − 2l).

Thus, we have a new bi-frame that consists of shifts of the framelets ϕ̃M , ψ̃r,ν and
ϕM , ψr,ν , r = 1, 2, ν = 1, . . . , M . The diagram in Fig. 1 illustrates the multiscale
frame transform with three-channel filter bank. Each decomposition level introduces
50% redundancy.

Under some mild conditions, the low-pass filters H̃(z) and H(z) generate scaling
functions ϕ̃(t) and ϕ(t).13 Then continuous framelets are found from the equations

ψ̃r(t) ∆= 2
∑
k∈Z

g̃r
k ϕ̃(2t − k), ψr(t) ∆= 2

∑
k∈Z

gr
k ϕ(2t − k), r = 1, 2, (2.6)

Definition 2.3. It is said that a continuous framelet ψ has m vanishing moments if∫ ∞

−∞
ψ(t) tr dt = 0, k = 0, . . . , m − 1.

Due to Eq. (2.6), if the framelet ψ is generated by a high-pass filter G(z) then
the number of its vanishing moments is equal to the multiplicity of zero of the
function G(z) at z = 1.
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An input signal of size N

Low-pass array of size N/2.
Most of the signal energy 

is concentrated here.

Band-pass array 
of size N/2.

High-pass array 
of size N/2.

Uniform redundancy 
of 50% is added 

to the input signal.

LP BP HP

High-pass array 
of size N/4.

Redundancy of the 
low-pass coefficients 

is increased 
by 50%

Low-pass array of 
last level of decomposition.
Most of the signal energy 

is concentrated here.

Band-pass array 
of last 

level of decomposition.

High-pass array 
of last 

level of decomposition.

Low-pass array of size N/4.
Most of the signal energy 

is concentrated here.

Band-pass array 
of size N/4.

Level 1

Level 2

Level J

Fig. 1. Diagram of multiscale frametransform with three-channel filter bank.

2.3. Interpolatory frames

Assume that the even polyphase component Fe(z) of a filter F (z) is 1/2. Then, the
filter is called interpolatory. In the rest of the paper we deal exclusively with filter
banks, whose low-pass filters are interpolatory:

H(z) =
1 + z−1U(z2)

2
, H̃(z) =

1 + z−1Ũ(z2)
2

. (2.7)

We assume that U(z) and Ũ(z) are rational functions that have no poles on the
unit circle |z| = 1, U(1) = Ũ(1) = 1 and the following symmetry conditions hold

z−1U(z2) = zU(z−2), z−1Ũ(z2) = zŨ(z−2). (2.8)

The polyphase matrices for a filter bank that use the interpolatory low-pass
filters H(z) and H̃(z) are

P̃(z) ∆=


1/2 Ũ(z)/2

G̃1
e(z) G̃1

o(z)

G̃2
e(z) G̃2

o(z)

 , P(z) ∆=

 1/2 G1
e(z) G2

e(z)

U(z)/2 G1
o(z) G2

o(z)

 .

Then, the perfect reconstruction condition (2.4) leads to

Pg(z) · P̃g(1/z) = Q(z), (2.9)
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where

P̃g(z) ∆=

 G̃1
e(z) G̃1

o(z)

G̃2
e(z) G̃2

o(z)

 , Pg(z) ∆=

G1
e(z) G2

e(z)

G1
o(z) G2

o(z)

 ,

Q(z) ∆=

 1/4 −Ũ(z−1)/4

−U(z)/4 (2 − U(z)Ũ(z−1))/4

 .

We can immediately obtain a solution to (2.9) with the interpolatory filters G1(z)
and G̃1(z):

G1
e(z) = G̃1

e(z) =
1
2
, G̃1

o(z) = − Ũ(z)
2

, G1
o(z) = −U(z)

2
, G2

e(z) = G̃2
e(z) = 0.

The odd components of the filters G2(z) and G̃2(z) are derived from the factoriza-
tion

v(z)ṽ(z−1) = V (z), where V (z) ∆=
1 − U(z)Ũ(z−1)

2
(2.10)

and the filters

G2(z) = z−1v(z2), G̃2(z) = z−1ṽ(z2). (2.11)

Note that the filters

G1(z) =
1 − z−1U(z2)

2
= H(−z), G̃1 =

1 − z−1Ũ(z2)
2

= H̃(−z) (2.12)

are interpolatory. They are high-pass filters because U(1) = Ũ(1) = 1. The trans-
fer functions G1(z) and G̃1(z) are invariant about the inversion z → z−1 due to
Eq. (2.8).

The rational function V (z2) can be written as V (z2) = (1 − z−1U(z2) ·
zŨ(z−2))/2 = V (z−2). Thus, a rational symmetric or antisymmetric factorization
is possible. The trivial rational symmetric factorizations are v(z) = 1, ṽ(z) = V (z)
or ṽ(z) = 1, v(z) = V (z). Since V (1) = 0, at least either the filters G2(z) or G̃2 is
high-pass.

2.3.1. Tight frames

If U(z) = Ũ(z) then we get H(z) = H̃(z), G1(z) = G̃1(z) and

V (z) = (1 − |U(z)|2)/2, V (z2) = 2H(z)H(−z) (2.13)

If the inequality |U(z)| ≤ 1 holds on the unity circle |z| = 1, then the function V (z)
can be factored as V (z) = v(z)v(1/z). Then, we have G2(z) = G̃2(z). Thus, the
synthesis filter bank coincides with the analysis filter bank and generates a tight
frame.
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2.3.2. Low-pass and high-pass filters

In this section we introduce a family of filters related to the widely used Butterworth
filters. Let ρ(z) ∆= z + 2 + z−1. Thus ρ(−z) = −z + 2 − z−1. Let

U2r(z2) ∆= z
ρ(z)r − ρ(−z)r

ρ(z)r + ρ(−z)r
, χ2r(z) ∆=

1
2
(
1 + z−1U2r(z2)

)
, r ∈ N. (2.14)

These filters can serve as a source for frame constructions.

Proposition 2.1.6 The rational functions U2r(z), defined in (2.14), have no poles
on the unit circle |z| = 1 and

|U2r(z)| ≤ 1, as |z| = 1 and U2r(1) = 1. (2.15)

The symmetry condition z−1U2r(z2) = zU2r(z−2) holds. The function χ2r(z) has
a root of multiplicity 2r at z = −1.

Remark. The functions χ2r(z) and χ2r(−z) coincide with the squared magnitudes
of the frequency response of the low- and high-pass half-band digital Butterworth
filters of order r, respectively. For details, see Refs. 2, 7 and 14.

2.4. Butterworth frames

The above considerations suggest that the filters U2r(z) and χ2r(z) can be useful
for the construction of frames in signal space. For this purpose, we design perfect
reconstruction filter banks according to the scheme in Sec. 2.3. To be specific, we
choose U(z) = U2r(z), H(z) = χ2r(z), Ũ(z) = U2p(z) and H̃(z) = χ2p(z) where r

and p are some natural numbers that may be equal to each other. Since there is a
relation between the filters and the Butterworth filters, we call the corresponding
frames the Butterworth frames.

2.4.1. Tight frames

We define the filters

H(z) = H̃(z) ∆= χ2r(z) =
ρr(z)

ρr(z) + ρr(−z)
,

G1(z) = G̃1(z) ∆= χ2r(−z) =
ρr(−z)

ρr(z) + ρr(−z)
.

We get a tight frame when we factorize V 2r(z) to be V 2r(z) = (1 − |U2r(z)|2)/2 =
vr(z)vr(1/z). It is always possible due to the property (2.15) of the function U2r.
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From (2.13) we have

V 2r(z2) =
2(−1)rz−2r(1 − z2)2r

(ρr(z) + ρr(−z))2
⇒ vr(z2) =

√
2(1 − z2)r

ρr(z) + ρr(−z)
.

If r = 2n, then we can define vr(z2) differently:

vr(z2) ∆=
√

2(z − z−1)2n

ρ2n(z) + ρ2n(−z)
.

Hence, the three filters H(z) = χ2r(z), G1(z) = H(−z) = χ2r(−z) and G2(z) ∆=
z−1vr(z2) generate a tight frame in signal space. The discrete framelets ϕν and
ψ1,ν are symmetric, whereas the framelet ψ2,ν is symmetric when r is even and
antisymmetric when r is odd. The frequency response of the filter H(z) is maximally
flat. The frequency response of the filter G1(z) is a mirrored version of H(z). The
frequency response of the filter G2(z) is symmetric about ω = π/2 and it vanishes
at the points ω = 0 and ω = π. Thus, H(z) is a low-pass filter, G1(z) is a high-pass
filter and G2(z) is a band-pass filter.

Examples

The simplest case, r=1:

H(z) =
z−1 + 2 + z

4
, G1(z) = H(−z), G2(z) =

√
2(1 − z2)

4z
. (2.16)

All the filters are FIR and, therefore, all the discrete framelets have finite support.
This filter bank generates a tight frame in the space of square integrable functions
L2.15 The framelets are piece-wise linear. The framelet ψ1 is symmetric and has two
vanishing moments, while ψ2 is antisymmetric and has only one vanishing moment.

Case r=2:

H(z) =
(z + 2 + z−1)2

2 (z−2 + 6 + z2)
, G1(z) = H(−z),

G2(z) =
√

2z−1(z − z−1)2

2 (z−2 + 6 + z2)
.

(2.17)

All the filters are IIR and, therefore, all the framelets have infinite support. The
framelet ψ2 is symmetric and has two vanishing moments. The framelet ψ1 has four
vanishing moments.

Remark: In Ref. 34, a parameterized family of low-pass filters was presented,
which can serve as a base for the construction of a symmetric tight wavelet frame
with two generators. The filter H(z) is a special case of this family when a = −1/16.
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Case r = 3:

H(z) =
(z−1 + 2 + z)3

2 (6z2 + 20 + 6z−2)
, G1(z) = H(−z),

G2(z) =
√

2z−1(1 − z2)3

2 (6z2 + 20 + 6z−2)
.

(2.18)

All the filters are IIR and, therefore, all the discrete framelets have infinite support.
The framelet ψ2 is antisymmetric and have three vanishing moments. The framelet
ψ1 has six vanishing moments. We display the frequency response of the filters and
their corresponding waveforms in Fig. 2. It is seen that the waveforms are well
localized in time domain. The frequency response of the filters H(z) and G1(z) are
mirrored versions of each other. They are maximally flat.

2.4.2. Bi-frames

Let U(z) = U2r(z), Ũ(z) = U2p(z), p, r ∈ N. Then, we have

H(z) ∆=
ρr(z)

ρr(z) + ρr(−z)
= G1(−z), H̃(z) ∆=

ρp(z)
ρp(z) + ρp(−z)

= G̃1(−z),

G2(z) ∆= z−1v(z2), G̃2(z) ∆= z−1ṽ(z2),

where v(z2)ṽ(z−2) = 1 − U2r(z2)U2p(z−2). Assume p < r. Then, we have

v(z2)ṽ(z−2) =
(−1)p(z − z−1)2p(ρr−p(z) + ρr−p(−z))

(ρr(z) + ρr(−z))(ρp(z) + ρp(−z))
.

G2

G1

H

ψ2

ψ1

φ

Fig. 2. Tight frame that originates from the filter bank (2.18): right: waveforms, left: frequency
response of the filters.
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One way to (anti)symmetrically factorize this function is

v(z2) =
(1 − z2)p(ρr−p(z) + ρr−p(−z))

ρp(z) + ρp(−z)
, ṽ(z2) =

(1 − z2)p

ρr(z) + ρr(−z)
.

If p = 2n then we have a symmetric factorization such as

v(z2) =
(z − z−1)2n(ρr−p(z) + ρr−p(−z))

ρp(z) + ρp(−z)
, ṽ(z2) =

(z − z−1)2n

ρr(z) + ρr(−z)
.

Example: Assume p = 2, r = 1.

H(z) =
(z−1 + 2 + z)

4
= G1(−z), H̃(z) =

(z + 2 + z−1)2

2(z−2 + 6 + z2)
= G̃1(−z),

(2.19)

G2(z) =
(z−1 − z)

2
, G̃2(z) =

z−1 − z

z−2 + 6 + z2
.

All the synthesis filters are FIR. Consequently, the synthesis scaling function ϕ

and the framelets ψ1 and ψ2 are compactly supported, unlike the analysis framelets.
The synthesis and the analysis framelets ψ2 and ψ̃2 are antisymmetric and have
one vanishing moment each. The synthesis framelet ψ1 has two vanishing moments,
the analysis framelet ψ̃1 has four vanishing moments.

3. Erasure Recovery Algorithms based on Framelets

The proposed framelet transform can be effectively employed as a true combined
source-channel coding scheme — there is no separate source coding followed by
channel coding. In fact, no explicit channel coding is used. The proposed approach
makes use of naturally occurring redundancy within multilevel decomposition of
framelet transforms to provide unequal error protection (UEP). The number of
losses that can be sustained is only marginally image-dependent.

3.1. Remarks on unequal error protection (UEP)

The multilevel framelet transform is demonstrated schematically in Fig. 1. Assume
that there are four levels of decomposition.

Figure 3 displays spectra of the discrete-time framelets ψr,1 ψr,2, r = 1, 2, 3, 4,

and ϕ4 that originate from the filter bank (2.18). The shifts of these framelets
provide a four-level tight frame expansion of the signal. First level of decomposi-
tion produces three blocks of coefficients: low-pass, band-pass and high-pass. As
explained in Sec. 2.2, these are the coefficients of the orthogonal projections of
the signal onto the subspaces spanned by two-sample shifts of the discrete-time
framelets ϕ1(k), ψ1,2(k) and ψ1,1(k), respectively. The spectra of the framelets
ψ1,2(k) and ψ1,1(k) are displayed in the top row of Fig. 3. The second step of
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Fig. 3. Spectra of the discrete-time framelets ψr,1, ψr,2, r = 1, 2, 3, 4, and ϕ4 that originate from
the filter bank (2.18). The abbreviation LP means low-pass. It is related to ϕ4, HP (high-pass) is
related to ψr,1, BP (band-pass) is related to ψr,2.

the decomposition transforms the low-pass block into three blocks of coefficients,
which are the coefficients of the orthogonal projections of the signal onto the sub-
spaces spanned by four-sample shifts of the framelets ϕ2(k), ψ2,2(k) and ψ2,1(k).
The spectra of the framelets ψ2,2(k) and ψ2,1(k) are displayed in the second from
the top row of the figure. The last fourth step of the decomposition transforms
the low-pass block of the third level into three blocks of coefficients, which are the
coefficients of the orthogonal projections of the signal onto the subspaces spanned
by sixteen-sample shifts of the framelets ϕ4(k), ψ4,2(k) and ψ4,1(k). The spectra of
these framelets are displayed in the bottom row of the figure. The reconstruction
consists of the synthesis of the original signal from the above set of projections.

One can see that the spectra displayed in the figure form at least a two-fold cover
of the frequency domain of the signal except for the frequency bands occupied by
the spectra of the low-frequency framelet ϕ4 and the high-frequency framelet ψ1,1.

They are highlighted by boldface in the figure. It means that once a projection
(except for the projections on ϕ4 and ψ1,1) is lost, it can be restored from the
remaining projections. Also two or more projections whose spectra do not overlap
can be restored. In other words, erasure of a number of coefficients, from a block
or even the whole block (except for the blocks related to ϕ4 and ψ1,1) can be
compensated by the coefficients from the remaining blocks.
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Two exclusive blocks of coefficients related to ϕ4 and ψ1,1 must be additionally
protected. The low-pass block is the most significant. Erasure of even one coeffi-
cient can essentially distort the signal. But for the four-level transform, it comprises
only N/16 coefficients, where N is the length of the signal. If we expand the trans-
form to level J , then the last low-pass block comprises only N/2J coefficients. This
relatively small number of coefficients can be protected at a low computational cost.

The high-pass block related to ψ1,1 is most populated (N/2 coefficients). But,
due to the vanishing moments of the framelets ψ1,1, this block contains a relatively
small number of significant coefficients, which correspond to sharp transients in the
signal (edges in the image). Only these significant coefficients deserve an additional
protection.

3.2. Channel models

A communication channel is referred to as erasure channel in the following cases:
(1) when some of the transmitted data is simply not received (or not received on
time); or (2) if the channel inserts random errors whose locations are known, and
the receiver chooses to treat these errors as erasures. The second case is motivated
by the following: a code can typically recover from d−1 erasures, but only d

2 errors,
where the integer d denotes the minimum Hamming distance of the code.

Two erasure channels are schematically depicted in Fig. 4.
In general, an erasure channel has an input alphabet of cardinality m with m+1

outputs, where αi is the probability of symbol Ci being erased. In the following it
will be assumed that all probabilities αi are equal. For m = 2, this channel reduces
to the well known binary erasure channel (BEC). The BEC has two inputs and
three outputs with probability of erasure α. In the current work, random erasure
of complete coefficients, corresponding to the channel model of Fig. 4(b), will be
discussed. (In this model, the erased coefficients may be considered as being in
error.)

1 
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Fig. 4. (a) Binary erasure channel; (b) General erasure channel.
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3.3. Algorithms for error recovery

3.3.1. Encoding a source image

When a source image is encoded, a 2D array of framelet transform is generated
in the following way. First, bandpass, low-pass and high-pass filters, denoted B,
L and H, respectively, are applied to the rows of the image. The columns of the
resulting output are then processed using the same set of filters. Consequently,
nine bands are obtained: BB, BL, BH, LB, LL, LH, HB HL and HH. The band
LL, which corresponds to the most important (low frequency) information, is then
processed in the same way to obtain the second level in the decomposition. This
process is repeated recursively until the desired level of decomposition is reached.
In Sec. 3.3.2, we describe a framelet-based algorithm that recovers from erasures of
whole transform coefficients.

Some notation are required prior to the algorithm description. Assume that the
original 2D image is arranged into a 1D array X ∈ R

N and the coefficients of its
2D framelet transform are arranged into a 1D array Y ∈ H ⊂ R

K of length K > N .
Let S ∆= {Ck}nm

1 be the set of coordinates of this array, and let E ⊂ S be the set of
coordinates of the erased coefficients. The subspace H ⊂ R

K is called the space of
codewords. Define Ē

∆= S \ E and Ỹ is obtained from Y by erasing all coefficients
that correspond to E. Let F̃ be the analysis operator F̃ : R

N �→ H ⊂ R
K , K > N

associated with the framelet transform: Y = F̃ X . Obviously, rank(F̃ ) = N . Let F

be the inverse operator (i.e. the synthesis operator) of F̃ . We denote by ˆ̃F the matrix
F̃ with erased rows determined by the coordinates of E. Assume that Ỹ contains
zeros instead of all substitute zeros for all erased coefficients in Ỹ . If rank( ˆ̃F ) = N ,
then Ỹ contains sufficient information to recover the original data X .

3.3.2. Recovery of the coefficient erasures (CCE)

Each coefficient of a transformed image is presented by a few bits. If one, or more
bits associated with the same coefficient are lost in transit, the whole coefficient may
be treated as an erasure, or alternatively, as being in error. It is well known that, in
general, recovering from erasures is easier than recovering from errors. Hence, the
motivation for the algorithm. This algorithm is a slightly modified version of the
well-known Gerchberg–Papoulis23,24 algorithm. The Gerchberg–Papoulis algorithm
was applied, in particular, to interpolation of data given on an irregular grid. The
application of the mentioned algorithm to the erasure recovery had been reported by
Petukhov at the Fifth AFA Conference on Curves and Surfaces, Saint Malo, 2002.

It utilizes the redundancy inherent in frame transforms to recover from erasures
of whole coefficients that occur during transmission. The appropriate channel model
in this case is the general erasure channel (GEC).

As before, Ỹ denotes the received set of coefficients with the convention
that erased coefficients are substituted by zeros. Let yk denote the set of
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(received+recovered) framelet coefficients at iteration k of the recovery algorithm.
Assume the image intensities belong to the interval [L0, L255], where L0 < L255.

Initialize y(0) = Ỹ ;
for k = 0 to K − 1

x̂(k) = Fy(k); fit out-of-interval values into [L0, L255];
ŷ(k) = F̃ ∗x̂(k);
y(k+1) = ŷ(k) on the coordinates of E;
y(k+1) = Ỹ on the coordinates of Ē;

end.

This framelet-based algorithm iteratively recovers an image from its transformed
version Ỹ that contains erasures. The recovered image at each iteration is given by
x̂(k). The convergence properties of the proposed algorithm are discussed next.
Assume having a three-channel filter bank implements a framelet transform of the
vector x = (x1, x2). Denote by {xψi}3

i=1 the framelet representation of x. Clearly,
S = {1, 2, 3}, and we further assume that e ∈ S is an index of erasure (e.g. e = 2).
The algorithm first sets the erased coefficient to zero. Then, it reconstructs the
image from its corrupt set of framelet coefficients. This operation may result in an
erroneous estimate of x; the estimation of x at iteration k may be written as x̂(k) =
x + ε(k), where ε denotes the reconstruction error. In practice, the intensities of an
image are confined to [L0, L255]; thus, if x̂(k) is out-of-interval, it can immediately
fit back. Experimental results show that this approach typically accelerates the
convergence of the algorithm, however, it does not improve the correction capability.
This acceleration is the result of a correction made in the image domain. The
reconstructed image x̂(k) is then decomposed (again) to provide ŷ(k), thus spreading
the error ε over all three framelet elements. The correct values of the elements
{xψi}i∈{1,2,3}\e, are actually known from Ỹ , and are therefore reassigned. Since the
redundancy ratio of the proposed wavelet approach is less than one (R = 2/3),
the residual error after reassignment is decreasing exponentially in the number of
iterations k. This assertion can be justified as follows. Denote the framelet elements
of the three-channel filter bank by {ψi}3

i=1 and denote ŷ(0) ∆= 〈ψi, x〉i∈{1,2,3}\e
∆=

{xψi}i∈{1,2,3}\e,; then, by following the above notation we can write,

x̂(k) = R

3∑
i=1

ŷ(k−1)ψi = R
∑

i∈{1,2,3}\e

〈ψi, x〉ψi + R〈ψe, x̂(k−1)〉ψe

= R
∑

i∈{1,2,3}\e

〈ψi, x〉ψi + R〈ψe, x + ε(k−1)〉ψe

= R
∑

i∈{1,2,3}\e

〈ψi, x〉ψi + R〈ψe, x〉ψe

︸ ︷︷ ︸
x

+R〈ψe, ε(k−1)〉ψe.
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Thus, we havex̂(k) = x + R〈ψe, ε(k−1)〉ψe = x + ε(k) where ε(k) = R〈ψe, ε(k−1)〉ψe.
Recursively, we get

x̂(k) = x + R〈ψe, ε(k−1)〉ψe = x + R〈ψe, R〈ψe, ε(k−2)〉ψe〉ψe = · · · = x + Rkεψe.

The above derivation is motivated by the following argument. Since reconstruction
of an image [see Eq. (2.3) and the above analysis] is a linear process, and due to
the exponential decay (locality) of the framelet elements, the convergence rate of a
signal, which contains a large number of errors, is closely approximated by that of
a single coefficient.

Finally, we note that the filter banks introduced in Sec. 2 consist of IIR filters
with rational transfer functions. Filtering can be implemented in a fast recursive
mode. Thus, the complexity of the transform is proportional to N operations, where
N is the number of pixels in the original image. The inherent unequal error protec-
tion properties of the framelet representation makes this approach a most natural
candidate for the task of protecting image transfer over an erasure channel. The
ability of this approach to match up to classical coding techniques is the topic of
Sec. 4.

4. The Framelet Transform and Classical Error Correcting Coding

Through the years many error correcting codes and decoding algorithms have
been designed to protect data transmission through imperfect channels. Infor-
mation theory, established by Shannon,16 and coding theory provide theoretic
bounds on the rate of information that can be reliably transmitted through a given
channel.

Comparing between the error recovery capabilities of the proposed framelet
transform and classical error correcting codes is not a straightforward task. This is
due to the nature of digital representation of images, i.e. the fact that the source
data is not equally significant. The framelet transform, as employed in this paper,
may, of course, be regarded as a redundant representation. It is based on the fact
that the source is not ‘white’, i.e. typically, the low frequencies contain more energy
than the higher frequencies. It is therefore not suitable for compressed images.
Bearing this in mind, we shall now try to show, primarily by means of examples,
that the framelet transform is an interesting alternative to classical source-channel
coding for image transfer over noisy channels.

4.1. Comparison

A Linear-Code C over a finite field Fq of order q is defined by the triplet [n, k, d],
where n is the length of the code, k is the size of the source signal and d is the
minimum Hamming distance of the code. It is well known that a code of minimum
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distance d is capable of recovering from d − 1 or fewer erasures. Thus, in order to
perfectly recover from a portion of erasures (exactly) α, it is required that

d ≥ αn + 1. (4.1)

Much like classical encoding schemes, the framelet transform maps a source
image of dimension kf symbols onto a framelet image of nf symbols, where nf > kf .
As an example, consider a severely degraded channel with erasure probability α =
0.6. Simulation results (presented in Sec. 5) reveal that the proposed framelet-based
scheme can easily reconstruct the transmitted image, with no apparent quality
degradation, when as much as 60% of the data is lost in transit. According to (4.1),
in order to fully recover from 60% loss, we would require a classical error correcting
code to have minimum distance d = 0.6n + 1.

Interestingly, one can hardly expect an error correcting code of length n to
have the aforementioned minimum distance, and at the same time have reasonable
dimension k. This assertion is easily verified by employing the Griesmer bound.17

The Griesmer bound states that, given code parameters (k, d), the length of a code
is lower bounded by

n ≥ gq(k, d) ∆=
(k−1)∑
i=0

⌈ d

qi

⌉
. (4.2)

Substituting q = 2 and d = 0.6n + 1 into (4.2), we have n ≥ ∑(k−1)
i=0

⌈
0.6n+1

2i

⌉
,

which cannot be satisfeid for any k > 2, since already for k = 3,
⌈
0.6n + 1

⌉
+
⌈

0.6n+1
2

⌉
+
⌈

0.6n+1
4

⌉ ≥ 1.05n + 1.75.
In the examples that follow in Sec. 5, a source image of size kf = 512 × 512 =

262144 is transformed into a framelet image of size nf = 697303. Now assume
a classical approach of employing compression followed by channel coding. The
above derivation suggests that the source image be compressed by a factor kf/3 =
262144/3, to merely 3 information symbols, and then encoded to length n = 697303.
Recall, however, that this extreme and unrealistic approach is required in order to
perfectly recover from any portion of loss of entries of at most 0.6. Fortunately, per-
fect recovery of a source image is not a must. It is typically sufficient that the PSNR
of the reconstructed image is high. Thus, rather than aiming at perfect recovery,
one can look for a code that introduces the same amount of redundancy as the
proposed scheme and can recover from 60% loss with high probability. In terms of
classical coding, the rate of the framelet transform used in our examples is given
by kf/nf = 0.376. The question is whether known error correcting codes of similar
rate can be considered as worthy candidates for protecting the source image. State
of the art error correcting codes suitable for the BEC are the so-called low density
parity check (LDPC) codes,18 and irregular repeat-accumulate (IRA) codes.12 In
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particular, Tornado codes,19 a class of LDPC codes, and the bounded-complexity
IRA (BC-IRA) codes,20 are considered most efficient codes for the binary erasure
channel. For example, Tornado codes possess the following property: for any given
rate R and any given real number ε, a family of linear codes of length n and rate
R can be constructed such that a codeword can be recovered with high probabil-
ity from a portion (1 + ε)k or more of its entries. Thus, the capacity of a BEC
channel, 1 − α, can be approached arbitrarily close for any erasure probability α.
For the parameters of our example, α = 0.6, R = 0.376, it follows that a suitable
Tornado code may indeed be constructed; it should operate in the feasible region
below capacity, and its gap (in rate) to capacity is easily calculated to be 0.06. In
conclusion, assuming the parameters of our example are sufficiently long so that the
asymptotic assumptions in Refs. 19 and 20 hold, BC-IRA codes and Tornado codes
should provide similar performances with similar complexities to those obtained
with the framelet transform.

Finally, we note that the framelet transform, being image aware, is most tolera-
ble to changes in channel properties. Combined with the multilevel decomposition
approach described in the previous section, it exhibits graceful degradation of image
quality under large dynamic changes of erasure probability. This is demonstrated
in Sec. 5.

5. Experimental Results

We conducted a series of experiments on image recovery from erasures of the trans-
form coefficients. This can be regarded as a simulation of channels with the era-
sures. To be specific, we applied the framelet decomposition to the image down to
the fourth level. The redundancy factor of this decomposition is 2.66. Then α ·100%
of the transform coefficients, whose locations were randomly determined, were put
to zero. We restored the images using the iterative algorithm described in Sec. 3.3.2.
We tested two benchmark images Barbara and Boats and two biomedical images
taken by MRI scanner, using α = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7. Three different types
of framelets were tested: symmetric tight framelets [Eq. (2.17)], antisymmetric tight
framelets [Eq. (2.18)] and antisymmetric bi-framelets [Eq. (2.19)]. The distance
between the original and the restored images was evaluated via the peak signal to
noise ratio (PSNR):

PSNR = 10 log10

 N 2552

N∑
i=1

(I1(i) − I2(i))2

 ,

where I1 and I2 are the original image and the recovered image respectively, and
N is the number of pixels in the image.
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Table 1. Values of the PSNR of the reconstructed images using symmet-
ric tight frames (2.17), antisymmetric tight frames (2.18) and bi-frames
(2.19). Values of the PSNR are averaged over four images.

Erasure 10% 20% 30% 40% 50% 60% 70%

Bi-frame 51.84 50.75 49.05 46.37 40.79 32.37 19.22
Symm.TF 52.00 51.40 50.03 47.97 43.65 32.97 19.76
Antisymm.TF 52.26 51.32 50.26 48.24 43.18 32.83 19.54

10 20 30 40 50 60 7
15

20

25

30

35

40

45

50

55

Erasures [%] 

P
S

N
R

 

Bi frame
Symmetric tight
Antisymmetric tight

Fig. 5. Averaged PSNR of the reconstructed images vs. coefficient erasure probability.

The experimental results are summarized in Table 1 and illustrated by Fig. 5.
The results for all tested images are similar to each other, therefore, for brevity,
we present values of PSNR that are averaged over the four images. The results
demonstrate a graceful degradation in performance when the erasure probability of
the coefficients increases up to 0.7. The performance of the symmetric and antisym-
metric tight frames is almost identical, while the bi-frame produces images with a
slightly lower PSNR.

In addition, we display the results from the restoration of the four images in
Figs. 6–9. All the figures are similarly organized. Each of them comprises three
pictures. The top left picture displays the original image, the top right displays
the image reconstructed from the corrupted set of the transform coefficients, and
the bottom picture displays the recovered image. One can observe from the images
that the restoration scheme based on the wavelet frames presented in the paper
produces satisfactory output even for 60 percent of randomly erased coefficients.
For 50, and especially for 40 percent of erased coefficients, the restored images can
hardly be distinguished from the original ones.
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Fig. 6. Results from the application of the antisymmetric tight framelet transform. Top right:
corrupted image with 60% erased coefficients. Bottom: recovered image. PSNR = 32.24.

Fig. 7. Results from the application of the symmetric tight framelet transform. Top right: cor-
rupted image with 60% erased coefficients. Bottom recovered image. PSNR = 31.98.
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Fig. 8. Results from the application of symmetric bi-framelet transform. Top right: corrupted
image with 50% erased coefficients. Bottom: recovered image. PSNR = 43.35.

Fig. 9. Results from the application of the bi-framelet transform. Top right: corrupted image
with 40% erased coefficients. Bottom: recovered image. PSNR = 52.46.
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6. Conclusions

We introduced in previous works6,21 new classes of tight and bi-framelets as well
as multiframelets22 that combine properties that are needed in signal processing,
such as symmetry, at spectra, sufficient number of vanishing moments, interpolation
and moderate redundancy, set aside an efficient implementation. Some of them are
described in Sec. 2 and are employed to design robust erasure/error recovery algo-
rithms (see Sec. 2). The proposed coding approach makes use of naturally occurring
redundancy within a multilevel framelet transform to recover from coefficient losses.
The number of losses that can be sustained is only marginally image dependant.

In Sec. 5, we demonstrate the performance of the above mentioned methods with
a few examples. In these examples, we decompose several images using four levels
of framelet transform. Consequently, the image coefficients were fortified with four
levels of redundant decomposition — thus providing an unequal error protection.
Experimental results of the proposed algorithms demonstrate recovery of images
when (as much as) 60% of the data is either lost or corrupted. The recovery prop-
erties are demonstrated for various wavelet frames. We discussed the error recovery
capabilities of the proposed framelet-based algorithms in comparison with classical
error correction codes.

In the experiments, we compared the performance of two types of tight frames
that have different number of vanishing moments and a bi-frame. The experiments
demonstrated almost identical performance of these tight frames, which is superior
to the performance of the bi-frame. This is the indication that the tightness rather
than the number of vanishing moments is essential for the successful recovery. But
this issue deserves a thorough examination.

Due to their exclusive properties, the new families of framelet transforms may
have a wide range of signal processing applications, in particular, in error protec-
tion of transmitted signals and denoising audio signals and images. Incorporating
framelet representation within lossy compression schemes is left for future study.
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