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Abstract

Weighted and controlled frames have been introduced recently to
improve the numerical efficiency of iterative algorithms for inverting
the frame operator. In this paper we develop systematically these no-
tions, including their mutual relationship. We will show that controlled
frames are equivalent to standard frames and so this concept gives a
generalized way to check the frame condition, while offering a numer-
ical advantage in the sense of preconditioning. Next, we investigate
weighted frames, in particular their relation to controlled frames. We
consider the special case of semi-normalized weights, where the con-
cepts of weighted frames and standard frames are interchangeable. We
also make the connection with frame multipliers. Finally we analyze
weighted frames numerically. First we investigate three possibilities
for finding weights in order to tighten a given frame, i.e., decrease the
frame bound ratio. Then we examine Gabor frames and how well the
canonical dual of a weighted frame is approximated by the inversely
weighted dual frame.

Keywords: controlled frames; weighted frames; frame multipliers; Gabor
frames; preconditioning; dual frames.
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1 Introduction

In practice, the frame bound ratio of a given nontight frame can often be
reduced by weighting the elements. The so-called weighted frames, i.e.,
frames (ψn) with complex weights (ωn) such that the sequence (ωkψk) is
again a frame, were introduced in Ref.[7] to get a numerically more efficient
approximation algorithm for spherical wavelets. By decreasing the ratio of
the frame bounds, weighting improves the numerical efficiency of iterative
algorithms like the ‘frame algorithm’[10] for the inversion of the frame op-
erator. The same paper[7] introduced and used controlled frames, that is,
a frame (ψn) and an operator C such that the combination of C with the
frame operator L is positive and invertible. Since these concepts were used
there just as a tool for spherical wavelets, they were not discussed in full
detail.

In this paper, we will develop the related theory and derive some prop-
erties used in Ref.[7] without proof, as well as give the results of numerical
experiments. Section 2 contains some preliminary results. In Section 3 we
will show that controlled frames are equivalent to standard frames and so
this concept gives a generalized way to check the frame condition. In Section
4 we investigate weighted frames. We will put some emphasis on the mutual
relationship between the two concepts, showing in particular that weighted
frames cannot always be considered as controlled frames. We also investi-
gate how these concepts can improve the efficiency of iterative algorithms
for inverting the frame operator. As a special case, we consider weights
bounded and bounded away from zero, for which the concepts of frames
and weighted frames are interchangeable again. The connection to frame
multipliers will be addressed briefly.

In the last part we will investigate the concept of weighted frames in
numerical experiments. In Section 5 we analyze three different choices for
weights with the aim of making frames tighter, i.e., reducing the quotient
of the frame bounds. We give the results of some numerical experiments,
showing that these weights very often improve the condition number of the
frame operator matrix. We see that redundancy is an important parameter
for the optimality of these weights. In Section 6 we examine the computa-
tional behavior of weighted Gabor frames. In particular we investigate how
well the canonical dual weighted frame is approximated by the inversely
weighted dual frame. We see that the error depends linearly on the amount
of weighted elements and the redundancy.

2 Preliminaries

In this section, we collect the basic notation and some preliminary results.
Throughout the paper, H is a separable Hilbert space, with inner product
〈., .〉, linear in the first coordinate, and norm ‖·‖. We denote by I the
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identity operator on H. Let B(H1,H2) be the set of all bounded linear
operators from H1 to H2. This set is a Banach space for the operator norm
‖A‖ = sup

‖x‖
H1

61
‖Ax‖H2

. The adjoint of the operator A is denoted by A∗

and the spectrum of A by σ(A). We define GL(H1,H2) as the set of all
bounded linear operators with a bounded inverse, and similarly for GL(H).
Our standard reference for Hilbert space and operator theory is Ref.[11].

2.1 Frames

We collect here some known facts about frames, in a form suitable for us.
For more details on this topic, see for instance Refs.[9] or [10].

Definition 2.1 A sequence Ψ = (ψn, n ∈ Γ) is called a frame for the Hilbert
space H, if there exist constants m > 0 and M <∞ such that

m ‖f‖2
6
∑
n∈Γ

|〈f, ψn〉|2 6 M ‖f‖2 ,∀ f ∈ H.
m is a lower, M an upper frame bound. If the bounds can be chosen such
that m = M, the frame is called tight.

The optimal bounds mopt,Mopt are the largest m and smallest M that fulfill
the corresponding inequality.

Definition 2.2 Given a frame Ψ = (ψn, n ∈ Γ), LΨ : H → H denotes the
(associated) frame operator LΨ(f) =

∑
n
〈f, ψn〉ψn.

If there is no risk of confusion, we will omit the index and write L instead of
LΨ. For any frame, L is a positive invertible operator on all of H, satisfying
the inequalities m I 6 L 6 M I and M

−1I 6 L−1 6 m
−1I. Furthermore,

Theorem 2.3 Let Ψ = (ψn) be a frame for H with bounds m,M > 0. Then

Ψ̃ =
(
ψ̃n

)
=
(
L−1ψn

)
is a frame with bounds M

−1,m−1 > 0, the so-called

canonical dual frame. Every f ∈ H has expansions f =
∑
n∈Γ

〈
f, ψ̃n

〉
ψn and

f =
∑
n∈Γ

〈f, ψn〉 ψ̃n, and both sums converge unconditionally in H.

We will use so-called frame multipliers.[2] These are operators defined
by

Mm,Ψ,Φf =
∑

k

mk 〈f, ψk〉φk

for the frames Ψ = (ψn) and Φ = (φn) and the weight sequence m = (mk).
We shorten the notation by setting Mm,Ψ = Mm,Ψ,Ψ.

Among all frames, a privileged role is played by Gabor[16] and wavelet
frames.[12] For future use, let us repeat the definition of the former.
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Given a, b > 0, a Gabor frame over the regular lattice Λ = aZd × bZd is
a family

G = (gk,l)k,l := {MlbTkag, l, k ∈ Zd}
that fulfills the frame condition and whose elements are translated and mod-
ulated versions of a given window function g ∈ L2(Rd). Here the operations
of translation Tx and modulation Mξ are defined by:

Txf(t) = f(t− x) and Mξf(t) = e2πiξtf(t), t, x, ξ ∈ Rd.

We will denote as λ = (τ, ω) ∈ Λ the time-frequency shift, defined as

π(λ)g = MωTτg.

We shall discuss some concrete examples of (weighted, discrete) Gabor
frames in Section 6.

2.2 The bounded and boundedly invertible positive opera-

tors GL(+)(H)

A bounded operator T is called positive (respectively non-negative), if 〈Tf, f〉 > 0
for all f 6= 0 (respectively 〈Tf, f〉 > 0 for all f). Every non-negative oper-
ator is clearly self-adjoint. If A ∈ B(H) is non-negative, then there exists
a unique non-negative operator B such that B2 = A.[15] Furthermore B
commutes with every operator that commutes with A. This will be denoted
by B = A1/2. Let GL(+)(H) be the set of positive operators in GL(H).

The following result is needed in the sequel, but straightforward to prove:

Proposition 2.4 Let T : H → H be a linear operator. Then the following
conditions are equivalent:

1. There exist m > 0 and M <∞, such that m I 6 T 6 M I;

2. T is positive and there exist m > 0 and M < ∞, such that m ‖f‖2
6∥∥T 1/2f

∥∥2
6 M ‖f‖2;

3. T is positive and T 1/2 ∈ GL(H);

4. There exists a self-adjoint operator A ∈ GL(H), such that A2 = T ;

5. T ∈ GL(+)(H);

6. There exist constants m > 0 and M < ∞ and an operator C ∈
GL(+)(H) such that m

′C 6 T 6 M
′C;

7. For every C ∈ GL(+)(H), there exist constants m > 0 and M < ∞
such that m

′C 6 T 6 M
′C.
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Definition 2.5 Given T ∈ GL(+)(H), any two constants mT ,MT such that

mT I 6 T 6 MT I

are called lower and upper bound of T , respectively. If mT is maximal, resp.
if MT is minimal, we call them the optimal bounds and we denote them by

m
(opt)
T ,M

(opt)
T .

The upper and lower bounds are clearly not unique.
The following results are easily proved using Proposition 2.4:

Corollary 2.6 Let T ∈ GL(+)(H). Then

1. ‖T‖ = M
(opt)
T .

2. σ(T ) ⊆ [mT ,MT ], for any lower, resp. upper, bounds.

Corollary 2.7 For T ∈ GL(+)(H), the numbers mT−1 = M
−1
T and MT−1 =

m
−1
T are bounds for T−1. In particular

∥∥T−1
∥∥ = 1/m

(opt)
T .

Corollary 2.8 Let S, T ∈ GL(+)(H) be commuting operators. Then T ad-
mits as lower and upper bounds (mTS

MS
, MTS

mS
) and S T admits (mSmT ,MSMT ).

2.3 Numerical issues

A well-known algorithm to find the inverse of an operator is the Neumann
algorithm, which is based on the following property:

Proposition 2.9 Given two Banach spaces B1,B2, if U : B1 → B2 is

bounded and ‖I − U‖ < 1, then U is invertible and U−1 =
∞∑
n=0

(I − U)k .

Furthermore
∥∥U−1

∥∥ 6 (1 − ‖I − U‖)−1.

A way to improve the numerical efficiency of an iterative algorithm for
solving a linear system of equations is preconditioning.[6, 19] Instead of
solving the linear system of equations Ax = b, one solves the system PAx =
Pb for a properly chosen preconditioning matrix P .

A ‘clustered spectrum’ yields a fast convergence as well as guarantees a
small condition number,[17] κ (A) =

∥∥A−1
∥∥ ‖A‖, since κ(A) = σn/σ1 where

σn and σ1 are the largest and smallest singular values, respectively.

Given an operator T ∈ GL(+)(H) its condition number is given by

κ(T ) =
∥∥T−1

∥∥ ‖T‖ =
M

(opt)
T

m
(opt)
T

.

So we can use preconditioning by looking for an operator C such that

κ(C T ) =
MC T

mC T
<

MT

mT
= κ(T ).
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3 Controlled frames

Definition 3.1 Let C ∈ GL(H). A frame controlled by the operator C or
C-controlled frame is a family of vectors Ψ = (ψn ∈ H : n ∈ Γ), such that
there exist two constants mCL > 0 and MCL <∞ satisfying

mCL ‖f‖2
6
∑

n

〈ψn, f〉 〈f,Cψn〉 6 MCL ‖f‖2 , for all f ∈ H. (1)

We call
LCf =

∑

n∈Γ

〈ψn, f〉Cψn

the controlled frame operator.

The definition above is clearly equivalent to CL ∈ GL(+)(H), so the notation
is coherent with the one in the previous section.

Proposition 3.2 Let Ψ be a C-controlled frame in H for C ∈ GL(H).
Then Ψ is a classical frame. Furthermore C L = LC∗ and so

∑

n∈Γ

〈ψn, f〉Cψn =
∑

n∈Γ

〈Cψn, f〉ψn.

Proof. Let Ψ be a controlled frame. Then using the definition and Proposi-
tion 2.4, we know that LC ∈ GL(H). Let L̃ = C−1LC . Clearly L̃ ∈ GL(H)
and

L̃f = C−1

(
∑

n∈Γ

〈ψn, f〉Cψn
)

=
∑

n∈Γ

〈ψn, f〉ψn = Lf

Therefore L is everywhere defined and L ∈ GL(H). Thus Ψ is a frame [10].
By definition LC is positive, therefore self-adjoint. So LC = C L = L∗

C =
L∗C∗ = LC∗ . �

Since every controlled frame is a (classical) frame, (1) yields a criterion
to check if a given sequence constitutes a frame. Furthermore it becomes
obvious from the last result that the role of Cψn and ψn could have been
switched in the definition of controlled frames.

It is difficult to see in full generality which conditions are needed for a
frame and an operator to form a controlled frame. But if C is self-adjoint,
we can give necessary and sufficient conditions:

Proposition 3.3 Let C ∈ GL(H) be self-adjoint. The family Ψ is a frame
controlled by C if and only if it is a (classical) frame for H, and C is positive
and commutes with the frame operator L.
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Proof. Suppose C and Ψ form a controlled frame. Then from Proposition
3.2, it is clear that Ψ is a frame and that L and C commute. Therefore
C = LC L

−1 is also positive.
For the converse implication, we note that, if Ψ is a frame, then L ∈

GL(+)(H). Therefore CL = LC ∈ GL(+)(H) and so LC is positive. By
Proposition 2.4, Eq. (3.1) is satisfied. �

Using Propositions 3.3 and 2.4 the following result is easy to show:

Corollary 3.4

(1) Let C be an invertible, self-adjoint operator and L be the frame oper-
ator of Ψ. Then, m I 6 CL 6 M I implies mC−1 6 L 6 MC−1.

(2) Let C ∈ GL(+)(H). Then, mC−1 6 L 6 MC−1 implies m I 6 CL 6

M I and Ψ is a frame.

This result shows the equivalence of Eqs.(3.11) and (3.12) of Ref.[7] under
the given conditions, which was stated there without proof.

3.1 Numerical aspects of controlled frames

As a short remark, we note that (Cψn) need not be related to a dual frame,
except in the case M = m, when C = L−1 by necessity. But, for finding the
canonical dual frame algorithmically from (1), we know that LC is invert-
ible. In particular this means that L−1

C C = (CL)−1 C = L−1. So finding a
C such that Ψ forms a controlled frame, with nice numerical properties, is
equivalent to preconditioning.[19] This was the main motivation for intro-
ducing controlled frames in Ref.[7]. For this to be effective, the bounds of
the operator, which are clearly also bounds for the spectrum of the operator,
should be close to each other. It is straightforward to show:

Corollary 3.5 Let C be a self-adjoint operator and let Ψ be a C-controlled
frame. Denote by (mCL,MCL), (m,M) and (mC ,MC) any bounds for the
controlled frame operator LC , the frame operator L, and the operator C,
respectively. Then,

(i) m
′ =

mCL

MC
, M

′ =
MCL

mC
are bounds for L;

(ii) m
′
C =

mCL

M
, M

′
C =

MCL

m
are bounds for C;

(iii) m
′
CL = mmC , M

′
CL = MMC are bounds for LC .

If two bounds are optimal in the above equations, the resulting third one is
optimal, too.

This means that, if we find a C such that mCL
∼= MCL, we get a very

efficient scheme, in the sense that:

7



. The resulting algorithm is much more stable, according to the remarks
made in Section 2.3. One has indeed κ(LC) 6

MCL

mCL
.

. Let ǫ := MCL−mCL

MCL+mCL
. Using a Neumann algorithm, we get a good ap-

proximation of the inverse operator already in the first iteration g1.
Indeed, ‖f − g1‖ 6 ǫ ‖f‖

Cn .

So, as stated in Ref.[7], although controlled frames and “standard” frames
are mathematically equivalent, these different ‘viewpoints’ of frames give
opportunities for efficient implementations. For general frames, it seems dif-
ficult to find an appropriate preconditioning matrix, but for wavelet frames
this technique is used in the above-mentioned paper.[7] For Gabor frames,
a way to find advantageous preconditioning matrices is presented in Ref.[6].

4 Weighted frames

Definition 4.1 Let Ψ = (ψn : n ∈ Γ) be a sequence of elements in H and
(wn : n ∈ Γ) ⊆ R+ a sequence of positive weights. This pair is called a
w-frame of H if there exist constants m > 0 and M <∞ such that

m ‖f‖2
6
∑

n∈Γ

wn |〈f, ψn〉|2 6 M ‖f‖2 . (2)

Alternatively, given a sequence of complex numbers (ωn) ⊆ C, we call Ψ =
(ψn) a weighted frame if the sequence (ωn ψn) is a frame.1

The two definitions are clearly equivalent, by putting wn = |ωn|2, resp.,
ωn =

√
wnǫn, where ǫn ∈ C with |ǫn| = 1.

Weighted frames are related to signed frames.[18] The latter are Bessel
sequences coupled with weights (wn = ±1), that fulfill an inequality similar
to (2). Signed frames are equivalent to w-frames for which negative weights
are allowed and the weights are bounded. In this paper, the sign of the
weight is either not included or not significant for the definitions given above,
and the main results in Ref.[18] also differ in focus from the ones given here.

4.1 w-frames as controlled frames

It is clear that, if an operator is diagonal on a given sequence and together
they form a controlled frame, then the concept of weighted frame is just a
special case of controlled frames. But we can show that we cannot get all
possible cases of w-frames in that way and so we cannot apply the result in
Section 3 to the general w-frame case.

1The two terms ‘weighted frame’ and ‘w-frame’ were used interchangeably in Ref.[7];
here we make a difference.
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Proposition 4.2 Let C ∈ GL(H) be self-adjoint and diagonal on Ψ =
(ψn) and assume it generates a controlled frame. Then the sequence (wn),
which verifies the relations Cψn = wnψn, is semi-normalized 2 and positive.
Furthermore C = M

w,Ψ̃,Ψ.

Proof: By Proposition 2.4, we get the following result for C1/2:

mC ‖f‖2
6

∥∥∥C1/2f
∥∥∥

2
6 MC ‖f‖2 .

As Cψn = wnψn, clearly C1/2ψn =
√
wnψn. Applying the inequalities above

to the elements of the sequence, we get 0 < mC 6 wn 6 MC .
Clearly, the only possible operator C that could fulfill the conditions

would be the multiplier

Cf =
∑

k

〈
f, ψ̃k

〉
wkψk = M

w,Ψ̃,Ψf.

�

The relation between controlled frames and weighted frames for non-self-
adjoint operators C is not obvious. The reason is that, for nonexact frames,
a definition by Uψn = wnψn is not applicable.[5]

4.2 Semi-normalized weights

As a converse to the first part of Prop. 4.2, a frame weighted by a semi-
normalized sequence is always a frame. Indeed,

Lemma 4.3 Let (ωn) be a semi-normalized sequence with bounds a,b. Then
if (ψn) is a frame with bounds m and M, then (ωnψn) is also a frame with

bounds a2
m and b2M. The sequence

(
ωn

−1ψ̃n

)
is a dual frame of (ωnψn).

Proof. Since |〈f, ωnψn〉|2 = |ωn|2 |〈f, ψn〉|2, we get

∆ :=
∑

n

|〈f, ωnψn〉|2 =
∑

n

|ωn|2 |〈f, ψn〉|2 .

Thus ∆ 6 b2
∑
n
|〈f, ψn〉|2 6 b2M ‖f‖2. In addition,

∆ > a2
∑

n

|〈f, ψn〉|2 > a2
m ‖f‖2 .

2A sequence (cn) is called semi-normalized if there are bounds b > a > 0, such that
a 6 |cn| 6 b.
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Figure 1: Comparing the canonical dual of a weighted frame to the reciprocal
weighted dual frame. (Top left:) original frame. (Top right:) Weighted frame.
(Bottom left:) Canonical dual of weighted frame. (Bottom right:) The canonical
dual of the original frame, i.e., the frame itself, weighted by the inverse weights.

As
∑
n
〈f, ωnψn〉ωn−1ψ̃n =

∑
n
〈f, ψn〉 ψ̃n = f , these two sequences are dual.

Since ωn
−1 is bounded,

(
ωn

−1ψ̃n

)
is a Bessel sequence dual to a frame.

Therefore,[10] it is a dual frame of (ωnψn). �

Remarks

1. The weighted dual frame is a dual, but not the canonical dual. As an
example, consider the Parseval frame, i.e., self-dual frame,

Ψ =

{(
2√
6

0

)
,

(
− 1√

6
1√
2

)
,

(
− 1√

6

− 1√
2

)}

with weights (ω1, ω2, ω3) = (1
2 , 1, 2). Following Lemma 4.3 (ωk

−1ψk)
forms a dual frame, but it is not identical to the canonical dual frame
(see Figure 1). The relationship between these two duals will be in-
vestigated in Section 6 for the case of Gabor frames.

2. Frames with weights (wn = ±1) fulfill the conditions of this Lemma,
so they are always a frame with the same bounds. A dual frame is
obtained just by applying the weights on the dual of the frame. This
means that for a signed frame[18] that is also a frame, the dual can be
easily calculated.
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3. The condition for semi-normalized sequences in Lemma 4.3 is neces-
sary. It is in general not enough for the weights to be strictly positive,
wn > 0, for all n. To give an example, let (en) be an orthonormal
basis in H with index set N and ψn = 1

nen. This is not a frame, since
this sequence does not fulfill the lower frame condition.

4. Using the sequence (ψn) above with the weights wn = n also shows
that in general a weighted frame need not be a frame, if the semi-
normalized condition is not fulfilled. Furthermore this shows that
Lemma 4.3 is not reversible. There are cases where weights that are
not semi-normalized lead to weighted frames. There are even cases
where unbounded sequences lead to weighted frames.

4.3 Connection to frame multipliers

The concept of weighted frames is connected to that of frame multipliers.[2]

Lemma 4.4 Let Ψ = (ψn) be a frame for H. Let m = (mn) be a positive,
semi-normalized sequence.Then the multiplier Mm,Ψ is the frame operator
of the frame (

√
mnψn) and therefore it is positive, self-adjoint and invertible.

If (mn) is negative and semi-normalized, then Mm,Ψ is negative, self-adjoint
and invertible.

Proof.

Mm,Ψf =
∑

n

mn 〈f, ψn〉ψn =
∑

n

〈f,√mnψn〉
√
mnψn.

By Lemma 4.3, (
√
mnψn) is a frame. ThereforeMm,Ψ = L(

√
mnψn) is positive

and invertible.
Let mn < 0 for all n, then mn = −

√
|mn|

2
. Therefore

Mm,Ψ = −
∑

n

〈
f,
√
|mn|ψn

〉√
|mn|ψn = −L

(
√

|mn|ψn)
.

�

This can be extended to

Theorem 4.5 Let (ψn) be a sequence of elements in H. Let (wn) be a
sequence of positive, semi-normalized weights. Then the following properties
are equivalent:

1. (ψn) is a frame.

2. Mm,Ψ is a positive and invertible operator.

11



3. There are constants m > 0 and M <∞ such that

m ‖f‖2
6
∑

n∈Γ

wn |〈f, ψn〉|2 6 M ‖f‖2 ,

i.e., the pair (wn),(ψn) forms a w-frame.

4. (
√
wnψn) is a frame.

5. Mw
′,Ψ′ is a positive and invertible operator for any positive, semi-

normalized sequence (w′
n).

6. (wnψn) is a frame, i.e., the pair (wn),(ψn) forms a weighted frame.

Proof. By Lemma 4.4, (1) =⇒ (2). By Proposition 2.4, (2) ⇐⇒ (3). By
the definition of w- and weighted frames we get (3) ⇐⇒ (4).

If (wn) is positive and semi-normalized, so is the sequence (wn
−1). With

Lemma 4.4 and application of (1) =⇒ (4), we get (4) =⇒ (1).
Use the sequence (w′

n) in the above argument to get (1) ⇐⇒ (5).
Finally, (w2

n) is also a positive, semi-normalized sequence, therefore the
results above show the equivalence of (6) with the rest. �

Clearly this could also be easily extended to negative weights.

5 Numerical results for general frames

Now the practical question is obviously, how can one find weights such that
a weighted frame becomes ‘as tight as possible’, such that the quotient of
the bounds, i.e., the condition number of the frame, becomes smaller? This
would give a way to calculate a dual in a more efficient way, although one
does not obtain the canonical dual in general. In the sequel, we consider
several possibilities, namely, ℓp-type weights and weights obtained through
approximation by a frame multiplier, and we study the performance of each
type of weight (in finite dimensions, of course). Many numerical tests have
been performed, but, for the sake of conciseness, we present only the most
significant results.

5.1 First method: ℓp-weights

We are looking for a measure of how important a single frame element is,
how dependent it is on the other elements. With this in mind, given a frame
Ψ = {ψk, k = 1, . . . ,M} (M 6 ∞), put

ω(2)
n =

‖ψn‖√∑
k

|〈ψn, ψk〉|2
.

12



This weight can be motivated as a control of the importance of the side-
diagonals of the Gram matrix, GΨk,l = 〈ψk, ψl〉, by comparing a diagonal
entry to the sum of the squares of the other entries on the same line. This
is reminiscent also of the generalized Welch bound found in Ref.[20]. For
an orthogonal basis, the best weights should be given by the normalization,

which is indeed achieved by this weight, since in this case one has ω
(2)
n =

‖ψn‖
‖ψn‖2 .

In order to measure the influence of the power chosen in the definition

of ω
(2)
n , we have also investigated

ω(p)
n =

‖ψn‖
(
∑

k |〈ψn, ψk〉|
p)1/p

for p = 4 and p = 6. In other numerical experiences, it could be observed
that p = 1, 3, 5 are not good choices compared to those ones.

Finally we also test the following weight:

ω(∞)
n =

‖ψn‖
supk |〈ψn, ψk〉|

.

5.2 Second method: Weights by best approximation with a

frame multiplier

These questions can also be translated into the frame multiplier context:
Can the identity be written as a frame multiplier? Can it be approximated?

It is possible to find the best approximation of operators (in finite-
dimensional discrete spaces) using the Hilbert-Schmidt norm (see Ref.[4]
for an algorithm). The symbol of the best approximation is the weight
ω(mult), defined as follows:

ω(mult)
n =

√√√√
M∑

k=1

[(
G

(2)
Ψ

)†]

nk

‖ψk‖2
H,

where G
(2)
Ψ is the matrix

(
G

(2)
Ψ

)
pq

= | 〈ψq, ψp〉 |2 and † denotes the pseudo-

inverse. The resulting matrix acts on the sequence (xk)k =
(
(‖ψk‖H)2

)
k
.

This method corresponds to finding the weight such that the frame operator
of the weighted frame is as similar as possible to the identity (in the Hilbert-
Schmidt topology).

5.3 Procedure and results

In order to compare the efficiency of the various types of weights, we restrict
ourselves to finite dimension d <∞ and create random frames by finding M

13



random elements (M > d) and checking whether they span the whole space.
For algorithms see Ref.[3]. In each case, we calculate the condition number of
the frame operator of the weighted frame and compare the different weights.
For each of them, we test whether it improves the condition number and
whether it is the best among the given options. This is repeated 10.000
times.

In the following graphs, the color grey corresponds to the cases where
the weighted frame improves the condition number of the frame matrix and
black if the option is the best of the three given weights. So the sum of the
black bars gives the total percentage of weights that improve the condition
number.

In Figures 2 and 3, we present the results for dimensionality d = 64 and
d = 256, respectively, and increasing redundancy (= M/d). The graphs
show the improvement of condition number by weights ω(2) (= ‘2-norm’),
ω(∞) (= ‘inf.-norm’) and ω(mult) (= ‘Multiplier’), respectively. Other tests
have been made with lower dimensionalities d = 3 and d = 10. It turns
out that, for these cases, the results are sowewhat erratic. Since such low
dimensions are not very realistic for applications, we simply dropped them.
Similarly, weights ω(4) and ω(6) lead to a higher computational load and give
worse results. Thus these weights are no longer considered.

Figure 2 shows the results for the parameters: d = 64 andM = 260, 512, 1024
and 2048. The condition number is improved in 96.54%, 99.98%, 100%,
resp.100% of the tests.

In Figure 3 we have summarized the results for a set of parameters
which may be more realistic for applications, namely, d = 256 and M =
260, 512, 1024 and 2048. Now the condition number is improved in 98.87%,
99.97%, 100%, resp. 100% of the tests.

5.4 Interpretation

The hope, of course, was to find a clear trend with increasing dimensionality
and/or redundancy, but the numerical experiments do not allow such a
conclusion.

For low dimension (d = 3 and d = 10, not shown here) and low redun-
dancy, the weight ω(∞) and the weight by multiplier approximation ω(mult)

are sometimes good, but not always. For high redundancy, ω(2) seems to be
always a good guess, nearly always improving the condition number.

For higher dimensions (d = 64 and d = 256), again the weight ω(2)

nearly always improves the condition number, but, especially for higher
redundancy, the weight by multiplier is the optimal solution of the three
tested weights.

As a general rule, however, in order to improve the numerical behavior
of frames, the ‘power weight’ ω(2) should be used, because the weight by
multiplier approximation is a highly complex algorithm and the weighting
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Figure 2: Frames in d = 64 dimensions. Improvement of condition number by
weights ω(2) (= ‘2-norm’), , ω(∞) (= ‘inf.-norm’) and ω(mult) (= ‘Multiplier’).
Top left: Frame with M = 65 elements; top right: M = 128; bottom left: M = 192,
bottom right: M = 256.

by the ‘power weight’ nearly always improves the condition number. Thus
ω(2) is a good compromise.

However, the only conclusion of these preliminary results is that the
connection between optimal weight, dimensionality and redundancy should
be further investigated.

6 Numerical results for discrete Gabor frames

In this last section, we shall examine the case of discrete Gabor frames in
concrete situations. We denote a given Gabor system by G = (π(λ)g) and,
for a given weight (ωλ), the weighted Gabor system by WG = (ωλπ(λ)g).
Furthermore we will use the notation DWG for the canonical dual of the
weighted Gabor system, i.e., DWG = ( ˜ωλπ(λ)g) and by iWDG the dual
frame weighted with the reciprocal weights, i.e., iWDG =

(
1
ωλ
π(λ)g̃

)
.

According to Lemma 4.3, for semi-normalized weights, iWDG is a dual
frame of WG, but not necessarily the canonical dual. In this section we
investigate how close these two duals are to each other, i.e., how well iWDG
approximates DWG. The rationale behind the examples is the following.
Among all possible duals, the canonical one is the unique one that satisfies
the minimal norm condition. However, it is often difficult to compute. On
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Figure 3: Frames in d = 256 dimensions, with the same conventions as in Figure
2. Top left: Frame with M = 260 elements; top right: M = 512; bottom left:
M = 768; bottom right: M = 1024.

the contrary, iWDG is much easier to evaluate, and thus could be used as a
convenient substitute for DWG.

We treat the cases with several different windows, in dimension d = 144.
In addition, we consider our frames with M elements as d-periodic. Explicit
results will be given for a Gaussian, a Hanning and a Bartlett window.
Similar computations have been performed also for a Blackman window and
B-spline windows of order 3 and 5, but the results are not significantly
different, so we will skip them here.

(a, b) Gaussian Hanning Bartlett
(12, 9) 2.5041 2.8609 4.9648
(9, 8) 1.4258 2.0000 3.9512
(8, 6) 1.1324 1.1603 1.5612
(6, 6) 1.0151 1.1266 1.4483
(6, 4) 1.0075 1.0000 1.0857
(4, 4) 1.0000 1.0000 1.0375

Table 1: Frame bound ratio (M/m) of the Gabor frame G calculated for the given
windows and time-frequency shifts.

Our frame elements (atoms) read as gk,l = MlbTkag, where k = 0, 1, . . . , da−
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1 and l = 0, 1, . . . , db − 1. Thus the number of frame elements is M = rd,
where r := d/ab is the redundancy. Six pairs of time-frequency shift param-
eters are considered to construct the lattices, namely, (12,9), (9,8), (8,6),
(6,6), (6,4), (4,4), with redundancy 1.33, 2, 3, 4, 6, 9, respectively. The
frame bound ratio for the Gabor frame G calculated for each of the given
window functions and time-frequency parameters are presented in Table 1.

To investigate the error of approximation of DWG by iWDG, we consider
the relative error in Hilbert-Schmidt norm of the two synthesis matrices:

ǫ =
‖iWDG−DWG‖HS

‖DWG‖HS

=

√√√√√√√

∑
λ

∥∥∥ 1
ωλ
π(λ)g̃ − ˜(ωλπ(λ)g)

∥∥∥
2

Cd

∑
λ

∥∥∥ ˜(ωλπ(λ)g)
∥∥∥

2

Cd

.

The formula is related to the notions of ‘quadratic closeness’ [21], and ‘Bessel
norm’.[2]

To start with, let us consider a periodized Gaussian window g of length
d = 144 and the lattice parameters a = 12, b = 9, so that d/a = 12, d/b = 16
and M = 192.

We consider a weight that mimicks a local mask, such as the one used
in Ref.[1] for enhancing the contrast in a picture of the Red Spot of Jupiter.
Namely, we take the weight w equal 2 on the centered 3 × 3 block on the
lattice and equal 1 outside of this block. Hence only nine out of the 192
elements of the frame G are amplified, while the rest is unchanged, i.e.,

ωk,l =

{
2, (k, l) ∈

{
d
a − p, . . . , da − 1, 0, . . . , p

}
×
{
d
b − p, . . . , db − 1, 0, . . . , p

}

1, otherwise

where k = 0, 1, . . . da − 1 and l = 0, 1, . . . db − 1 and the parameter p equals 1.
The weighted frame WG is presented in Figure 4 in such a way that the

atoms gk,l (each with 144 coefficients) are stacked along the y axis (“frame
atom index”). The actual ordering of the frame atoms is arbitrary, because
it does not influence the frame operator L. Here atoms with the same time
shift, but different modulations, are stacked one alongside the other, starting
with the smallest time shifts.

Since the weights used are positive numbers, it suffices to display the
absolute values of the atom coefficients (z axis on Figure 4) in order to show
the effect of the weights. However, as a side effect, the atom modulation is
not visible anymore. Atoms which differ only in modulation are grouped in
clearly visible bands containing d/b = 16 atoms each.

It turns out that the inversely weighted canonical dual frame (iWDG)
and the canonical dual weighted frame (DWG) yield almost identical plots.
Thus we present in Figure 4 the absolute value of the componentwise dif-
ference iWDG-DWG between the two dual families. The only visible differ-
ences are in the locations where the weight ω = 2 was applied (see Figure
4).
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Figure 4: Nine elements of the frame G are amplified with the weight equal to 2
while the rest remains unchanged. (Left) Positions of the amplified atoms in time-
frequency domain (the plot is rescaled in order to group the marked points in the
center). (Center) The resulting weighted frame WG. Note the “spikes” which are
the amplified atoms around (0,0). (Right) Difference between iWDG and DWG.
The most notable changes are located near the places where the weight ω = 2 was
applied.

Now we construct frames with higher redundancy by using the time-
frequency shift parameters listed above and the different window functions.
The same weight w is applied to the new frames. The relative error of
approximation of DWG by iWDG, measured in the Hilbert-Schmidt norm,
is presented in Table 2.

(a, b) Gaussian Hanning Bartlett
(12, 9) 0.0802 0.0830 0.0909
(9, 8) 0.0808 0.0858 0.0908
(8, 6) 0.0786 0.0798 0.0816
(6, 6) 0.0751 0.0779 0.0796
(6, 4) 0.0703 0.0707 0.0718
(4, 4) 0.0638 0.0665 0.0680

Table 2: The relative error of approximation of DWG by iWDG with respect to
the Hilbert-Schmidt norm, in the case of Gabor frames weighted with the piecewise
constant weights and a 3 × 3 block on the lattice. The redundancy increases with
decreasing a and b.

Next, let us change the number of amplified elements by increasing the
size of the central square block on the lattice. The weight w equals 2 on this
block and 1 outside. The size of the block (mask) changes from 3× 3, 5 × 5
to 7 × 7 and 9 × 9, hence the number of amplified elements of the frame
G increases from 9, 25, to 49 and 81. For the case of a Gabor frame with
a Gaussian window g and time-frequency parameters (a, b) = (12, 9), this
constitutes 4.7%, 13%, 25.5% and 42.2% of all frame elements, respectively.
We apply the weights ωk,l with the parameter p = 2 for the 5 × 5 block,
p = 3 for the 7 × 7 block and p = 4 for the 9 × 9 block.

Figure 5 shows the results for the Gaussian window, for the other window
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functions the results are very similar, hence we skip them here. The relative
error of approximation of DWG by iWDG with respect to the Hilbert-
Schmidt norm is presented as a function of the increasing block size. The
simulations are repeated for the frames with higher redundancy. In each
case, the error increases linearly with the size of the block on the lattice.
The linear relation is observed also for the other window functions.

3x3 5x5 7x7 9x9
mask

0.0

0.1

0.2

er
ro

r
Redundancy 1.33
Redundancy 2.00
Redundancy 3.00
Redundancy 4.00
Redundancy 6.00
Redundancy 9.00

Figure 5: Linear dependence of the relative error of approximation on the mask size
for varying redundancies. Increased mask size leads to a larger number of amplified
frame elements and generates a larger error when approximating the canonical dual
frame DWG with the inversely weighted dual frame iWDG. Higher redundancy leads
to lower errors and this effect is stronger for larger masks.

6.1 Interpretation

The redundancy of the frame has a stronger influence on the error of the
approximation of DWG by iWDG than the size of the applied mask. Inter-
estingly the influence is almost linear.

Another important factor is the choice of the window, but Gabor frames
exhibit a remarkable indifference to the change of window in the situations
we considered. Although the Gaussian window gave the best results, other
window functions such as Hanning, Bartlett, Blackmann or B-spline win-
dows of order 3 and 5 are only slightly worse.

7 Perspectives

For finding the optimal weights, further numerical tests should be conducted.
In particular, a geometric classification of those frames, where the given
weights work well or not at all, will be interesting. Furthermore, the Hilbert-
Schmidt operator norm is easy to use for measuring the approximation error,
but it would be more interesting to use the operator norm. This could be
obtained, for instance, by using LMI algorithms.[8]

The weights in Section 5 can be seen as a measure of the off-diagonal be-
havior of the Gram matrix. It is well-known[14] that the cross-Gram matrix
of the frame and its canonical dual, i.e., G

Ψ,eΨ
, carries a lot of information
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about the frame. In further numerical tests, we will evaluate the weights
using this matrix.
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