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This paper deals with the wavelet-based performance analysis of the safety barrier for
use in a full-scale test. The test involves a vehicle, a Ford Fiesta, which strikes the
safety barrier at a prescribed angle and speed. The vehicle speed before the collision was
measured. Vehicle accelerations in three directions at the centre of gravity were measured

during the collision. The yaw rate was measured with a gyro meter. Using normal speed
and high-speed video cameras, the behavior of the safety barrier and the test vehicle
during the collision was recorded. Based upon the results obtained, the tested safety
barrier, has proved to satisfy the requirements for an impact severity level. By taking

into account the Haar wavelets, the property of integral operational matrix is utilized to
find an algebraic representation form for calculate of wavelet coefficients of acceleration
signals. It is shown that Haar wavelets can construct the acceleration signals well.
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1. Introduction

Restraint systems are safety devices that are designed to assist in restraining the

occupant in the seating position, and help reduce the risk of occupant contact with

the vehicle interior, thus helping reduce the risk of injury in a vehicular crash event.

In todays quest for continued improvement in automotive safety, various restraint

systems have been developed to provide occupant protection in a wide variety of

crash environments under different directions and conditions. It is extremely diffi-

cult to present rigorous mathematical treatments to cover occupant kinematics in

complicated real world situations 5’40.

Occupant safety during a crash is an important consideration in the design

of automobiles. The crash performance of an automobile largely depends on the

ability of its structure to absorb the kinetic energy and to maintain the integrity
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of the occupant compartment. To verify the crash performance of automobiles,

extensive testing as well as analysis are needed during the early stages of design.

Various types of full car and component level tests are performed to ensure the

structural performance of an automobile during an accident. Two full car tests

required by the U.S. National Highway Traffic Safety Administration (NHTSA)

are the frontal impact and side impact. In the frontal impact test, the test vehicle

hits a rigid wall and the injury is measured in terms of accelerations at various

locations (such as head, chest, etc.), using dummies as human surrogates. The

occupant protection can be improved by designing the front end in structure to

minimize deceleration of the occupant while maintaining the structural integrity of

the occupant compartment. In the test procedure for a side impact, a stationary

vehicle is struck by a specially designed barrier called an MDB (moving deformable

barrier). Two devices representing occupants (SIDs or side impact dummies) are

located in the front and rear seat of the struck side of the vehicle. The injury is

measured in terms of the peak accelerations of a SID’s chest and pelvis. The injury

protection for the occupant can be improved by making the car structure stiffer

while making the car interior that comes into contact with the occupant softer13.

In the last ten years, emphasis on the use of analytical tools in design and

crash performance has increased as a result of the rising cost of building prototypes

and the shortening of product development cycles. Currently, lumped parameter

modeling (LPM) and finite element modeling (FEM) are the most popular analytical

tools in modeling the crash performance of an automobile2’6. The use of lumped

parameter modeling in crash-worthiness began in the aerospace industry and was

gradually extended to the auto industry. The first successful lumped parameter

model for the frontal crash of an automobile was developed by Kamal20. From then

on this technique was extensively used throughout the auto industry for various car

models. In a typical lumped parameter model, used for a frontal crash, the vehicle

can be represented as a combination of masses, springs and dampers. The dynamic

relationships among the lumped parameters are established using Newton’s laws

of motion and then the set of differential equations are solved using numerical

integration techniques. The major advantage of this technique is the simplicity

of modeling and the low demand on computer resources. The problem with this

method is obtaining the values for the lumped parameters, e.g. mass, stiffness, and

damping. The current approach is to crush the structural components using a static

crusher to get force deflection characteristics. The mass is lumped based on the

experience and judgment of the analyst. However, because of improper boundary

conditions during the component test, it has been observed in many cases that

the crush mode for a particular component during the static component crush is

quite different from that seen in a full car test. Usually complicated fixtures and

additional parts are attached to the component being tested to achieve the proper

end conditions. This adds complexity and cost to the component crush test. Since

the early 60s, the finite element method (FEM) has been used extensively for linear

stress, deflection and vibration analysis. However, its use in crashworthiness analysis
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was very limited until a few years ago. The availability of general purpose crash

simulation codes like DYNA3D and PAMCRASH, an increased understanding of

the plasticity behavior of sheet metal, and increased availability of the computer

resources have increased the use of finite element technique in crash simulation

during the last few years16’21’32’38. The major advantage of an FEM model is

its capability to represent geometrical and material details of the structure. The

major disadvantage of FE models is cost and time. To obtain good correlation of

an FEM stimulation with test measurements, extensive representation of the major

mechanisms in the crash event is required. This increases costs and the time required

for modeling and analysis.

On the other hand, in recent years, wavelet transform as a new technique for

time domain simulations based on the time-frequency localization, or multiresolu-

tion property, has been developed into a more and more complete system. This

transform found great success in practical engineering problems, such as signal pro-

cessing, pattern recognition and computational graphics14’18’35. Recently, some of

the attempts are made in solving surface integral equations, improving the finite

difference time domain method, solving linear differential equations and nonlin-

ear partial differential equations and modeling nonlinear semiconductor devices.

Several articles have been published recently in the fields of applied mathematics

and physics that present wavelet based methods for resolution of (partial differen-

tial equations) PDEs1’4. These are classified as collocation methods or Galerkin

methods3’7’10’15’17’19’22’23’24’25’26’27’28’29’30’31’37. The approximation of general

continuous functions by wavelets is very useful for system modeling and identifica-

tion. In recent years, the analytical study of adaptive nonlinear control systems using

universal function approximators has received much attention. Recently, the paper

Onchis and Suarez Sanchez34 studied the spectral decomposition and the adaptive

analysis of data coming from car crash simulations. The mathematical ingredient

of the proposed signal processing technique is the flexible Gabor-wavelet transform

or the α-transform that reliably detects both high and low frequency components

of such complicated short-time signals. We go from the functional treatment of this

wavelet-type transform to its numerical implementation and we show how it can

be used as an improved tool for spectral investigations compared to the short-time

Fourier transform or the classical wavelet transform.

The present work intends to, emphasizing the advantages of wavelets, analyze

performance of the safety barrier for use in a full-scale test. Also in this article, we

use the Haar wavelets to calculate wavelet coefficients. The test involves a vehicle,

a Ford Fiesta, which strikes the safety barrier at a prescribed angle and speed.

The vehicle speed before the collision was measured. Vehicle accelerations in three

directions at the centre of gravity were measured during the collision. The yaw

rate was measured with a gyro meter. Using normal speed and high-speed video

cameras, the behavior of the safety barrier and the test vehicle during the collision

was recorded. Based upon the results obtained, the tested safety barrier, has proved

to satisfy the requirements for an impact severity level. By taking into account the
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Haar wavelets, the property of integral operational matrix is utilized to find an

algebraic representation form for calculate of wavelet coefficients of acceleration

signals. It is shown that Haar wavelets can construct the acceleration signals well.

This paper is organized as follows. Section 2 describes the wavelet properties.

Vehicle kinematics in a fixed barrier impact, including the vehicle dimensions and

position of the center of gravity, are summarize in Section 3. Instrumentation during

the test is given in Section 4. Section 5 proposes wavelet-based analysis of the

measured signals. Finally, Section 6 summarizes the paper.

2. Orthogonal families of Wavelets

Wavelets are a relatively new mathematical concept, introduced at the end of the

1980s11’12’33. The term ”wavelet” is used in general to describe a function that

features compact support. This means that the function is located spatially, only

being different from zero in a finite interval.

The great advantage of this type of function, compared to the conventional

functions used in data representation, is that different resolution levels can be used

to describe distinct space or time regions. This feature is quite useful in signal,

sound, and image compression algorithms. When a data set goes through a wavelet

transformation, it is decomposed into two types of coefficients: one represents gen-

eral features (scaling function coefficients) and another describes localized features

(wavelet coefficients). In order to perform data compression, the wavelet coefficients

corresponding to regions in space of less importance are partially rejected. Then,

when the function is reconstructed, high resolution is maintained only in the rele-

vant regions. This localized resolution feature does not exist in plane waves, which

have constant resolution throughout the entire domain.

Two functions, the mother scaling function, φ , and the mother wavelet, ψ ,

characterize each orthogonal family. These are defined by the following recursive

relations

φ(x) =
√
2

m∑

j=−m

hjφ(2x− j), ψ(x) =
√
2

m∑

j=−m

gjφ(2x− j). (2.1)

where hj and gj are the filters that characterize the family of degreem . These filters

must satisfy orthogonality and symmetry relations. Due to the choice of the filters

hj and gj , the dilations and translations of the mother scaling function, φjk(x) , and

the mother wavelet, ψj
k(x) , form an orthogonal basis of L2(R). This property has an

important consequence: any continuous function, f(x) can be uniquely projected

in this orthogonal basis and expressed as, for example, a linear combination of

functions ψj
k .

f(x) =
∑

j∈Z

∑

k∈Z

djkψ
j
k(x) . (2.2)

where djk =
∫
∞

−∞
f(x)ψj

k(x)dx.
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2.1. Expansion of a continuous function

Regarding to multiresolution analysis, the expansion of a continuous function in

wavelet theory can be performed according to two representations. The first scaling

function representation involves only the scaling functions; the second, wavelet rep-

resentation, involves both wavelets and scaling functions. The representations are

equivalent and need the exact same number of coefficients. One can move from one

representation to the other by using a process designated as wavelet transform39.

The scaling function representation is given by

f(x) =

2Jmax
∑

k=0

sJmax

k φJmax

k (x) . (2.3)

where sJmax

k =
∫
f(x)φJmax

k (x)dx is the scaling function coefficient, Jmax is the

maximum resolution level, and k represents the spatial location. The wavelet rep-

resentation is given by

f(x) =
2Jmin
∑

k=0

sJmin

k φJmin

k (x) +

Jmax−1∑

j=Jmin

2j∑

k=0

djkψ
j
k(x) . (2.4)

where d is the wavelet coefficient and Jmin is the minimum resolution level,

djk =

∫
∞

−∞

f(x)ψj
k(x)dx, sJmin

k =

∫
∞

−∞

f(x)φjk(x)dx. (2.5)

Integrations have to be performed in order to compute the expansion coefficients.

Several methods have been proposed in the literature for accomplishing this, starting

from a function’s discrete values. These methods necessarily introduce a certain

approximation error and increase the complexity of the problem, namely in the

solution of PDEs. There is, however, a wavelet family for which these integrations

are exact: the interpolating wavelets.

2.2. Haar Wavelet

The oldest and most basic of the wavelet systems is named Haar wavelets28 which

is a group of square waves with magnitudes of ±1 in certain intervals and zero

elsewhere,in other words,

ψ(t) =







1 if 0 ≤ t < 1
2 ,

−1 if 1
2 ≤ t < 1,

0 otherwise

(2.6)

The normalized scaling function is also defined as φ(t) = 1 for 0 ≤ t < 1 and

zero elsewhere. Just these zeros make the Haar transform faster than other square

functions such as Walsh function9. We can easily see that the φ(.) and ψ(.) are com-

pactly supported, they give a local description, at different scales j, of the considered

function.
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The wavelet series representation of the one-dimensional function y(t) in terms

of an orthonormal basis in the interval [0, 1) is given by

y(t) =

∞∑

i=0

ai ψi(t) (2.7)

where ψi(t) = ψ(2jt− k) for i ≥ 1 and we write i = 2j + k for j ≥ 0 and 0 ≤ k < 2j

and also defined ψ0(t) = φ(t). Since it is not realistic to use an infinite number of

wavelets to represent the function y(t), (2.7) will be terminated at finite terms and

we consider the following wavelet representation ŷ(t) of the function y(t):

ŷ(t) =

m−1∑

i=0

ai ψi(t) := aTΨm(t), (2.8)

where a :=
[
a0 a1 . . . am−1

]T
and Ψm(t) := [ψ0(t)ψ1(t) . . . ψm−1(t)]

T for m = 2j

and the Haar coefficients ai are determined as

ai = 2j
∫ 1

0

y(t)ψi(t) dt. (2.9)

The approximation error Ξy(m) := y(t) − ŷ(t) depends on the resolution m. For

example, at resolution scale j = 3 , the eight Haar functions can be represented as

H8 =
















ψ0(t)

ψ1(t)

ψ2(t)

ψ3(t)

ψ4(t)

ψ5(t)

ψ6(t)

ψ7(t)
















=
















1 1 1 1 1 1 1 1

1 1 1 1 −1 −1 −1 −1

1 1 −1 −1 0 0 0 0

0 0 0 0 1 1 −1 −1

1 −1 0 0 0 0 0 0

0 0 1 −1 0 0 0 0

0 0 0 0 1 −1 0 0

0 0 0 0 0 0 1 −1
















, (2.10)

where the eight columns of the matrix represent the values of ψi(t) within the eight

time intervals. In (2.10) the number of rows denotes the order of the Haar function.

Generally, the matrix Hm can be represented as

Hm :=
[
Ψm(t0) Ψm(t1) . . . Ψm(tm−1)

]
, (2.11)

where i
m

≤ ti <
i+1
m

and using (2.8), we get
[
ŷ(t0) ŷ(t1) . . . ŷ(tm−1)

]
= aTHm. (2.12)

For further information see the references8’28’29’30.

2.3. Integral Operation Matrix

In the wavelet analysis of dynamical systems, we consider a continuous operator Õ

on the L2(ℜ), then the corresponding discretized operator in the wavelet domain

at resolution m is defined as28

Õ
m

= Tm ÕTm (2.13)
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where Tm is the projection operator on a wavelet basis of proposed resolution. Hence

to apply Õ
m

to a function y(t) means that the result is an approximation (in the

multiresolution meaning) of Õ y(t) and it holds that

lim
m→∞

‖Õm
y − Õ y‖2 = 0, (2.14)

where the operator Õ
m

can be represented by a matrix Pm.

In this paper, the operator Õ is considered as integration, so the corresponding

matrix Pm =<
∫ t

0
Ψm(τ) dτ,Ψm(t) >=

∫ 1

0

∫ t

0
Ψm(τ) dτ ΨT

m(t) dt represents the in-

tegral operator for wavelets on the interval at the resolution m. Hence the wavelet

integral operational matrix Pm is obtained by
∫ t

0

Ψm(τ) dτ = PmΨm(t). (2.15)

For Haar function (2.6), the square matrix Pm satisfies the following recursive

formula8’28’29’30:

Pm =
1

2m

[

2mPm
2
−Hm

2

H−1
m
2

0

]

(2.16)

with P1 = 1
2 and H−1

m = 1
m
HT

m diagonal(r) where Hm defined in (2.11) and r :=

(1, 1, 2, 2, 4, 4, 4, 4, . . . , (
m

2
), (

m

2
), . . . , (

m

2
)

︸ ︷︷ ︸

(m
2
)elements

)T for m > 2.

3. Vehicle kinematics in a fixed barrier impact

The first and second integrals of the vehicle deceleration, a(t), are shown below. The

initial velocity and initial displacements of the vehicle are v0 and x0, respectively.

a =
dv

dt
, dv = a dt,

∫ v

v0

dv =

∫ t

0

a dt, v = v0 +

∫ t

0

a dt (3.1)

x = x0 +

∫ t

0

(

v0 +

∫ t

0

a dt

)

dt, (3.2)

In the fixed barrier test, vehicle speed is reduced (velocity decreases) by the struc-

tural collapse, therefore, the vehicle experiences a deceleration in the forward direc-

tion. To study the effect of vehicle deceleration on occupant-restraint performance

in a real test, the performance of the safety barrier was determined by performing

a full-scale test at Lista Airport36. The test involves a vehicle, a Ford Fiesta, which

strikes the safety barrier at a prescribed angle and speed. The vehicle speed before

the collision was measured. Vehicle accelerations in three directions at the centre

of gravity were measured during the collisison. The yaw rate was measured with

a gyro meter. Using normal speed and high-speed video cameras, the behaviour of

the safety barrier and the test vehicle during the collision was recorded.
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3.1. Vehicle dimensions

Figure 1 shows the characteristic parameters of the vehicle, and these parameters

are listed in Table 1.

Table 1. Vehicle dimensions in [m].

Wheel Wheel Frontal Rear

Width Length Height track base overhang overhang

1.58 3.56 1.36 1.42 2.28 0.63 0.65

Fig. 1. Vehicle dimensions.

3.2. The position of the center of gravity

To determine the position of the center of gravity each test vehicle was first weighed

in a horizontal position using 4 load cells. Then the vehicle was tilted by lifting the

front of the vehicle. In both positions the following parameters were recorded:

• m1 : wheel load, front left

• m2: wheel load, front right
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• m3 : wheel load, rear left

• m4 : wheel load, rear right

• mv : total load

• θ : tilted angle

• l : wheel base

• d : distance across the median plane between the vertical slings from the lift

brackets at the wheel centers and the load cells.

The horizontal distance between the center of gravity and the front axle center-

line, i.e. Longitudinal location, is defined as follows:

CGX = (
m3 +m4

mv

)l

and Laterally location is the horizontal distance between the longitudinal median

plane of the vehicle and the center of gravity (positive to the left) which is defined

as

CGY = (
m1 +m3 − (m2 +m4)

mv

)
d

2

Also, location of the center of gravity above a plane through the wheel centers is

CGZ = (
m1 +m2 −mf )

mv tanθ
)l

where

• mf : front mass in tilted position

• mb : rear mass in tilted position

Table 2. shows the measured parameters to calculate the center of gravity. The

position of the centre of gravity for the test vehicle is measured and the result is

listed in Table 3.

Table 2. Measured parameters.

m1 [kg] m2 [kg] m3 [kg] m4 [kg] mv [kg] mf [kg] mb [kg] d [m] l [m] θ [deg]

235 245 182 157 819 443 376 1.71 2.28 22.7

Table 3. The position of the centre of gravity.

Longitudinal location Lateral location Height
CGX [m] CGY [m] CGZ [m]

0.94 0.02 0.50
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4. Instrumentation

During the test, the following data should be determined:

• Acceleration in three directions during and after the impact

• Velocity 6 m before the impact point

The damage should be visualized by means of:

• Still pictures

• High speed video film

The observations should establish the base for a performance evaluation. Eight video

cameras were used for documentation purposes. These cameras are placed relative

to the test item as shown in Figure 1. Two 3-D accelerometers were mounted on

a steel bracket close to the vehicles centre of gravity. This bracket is fastened by

screws to the vehicle chassis. The accelerometer from which the measurements are

recorded is a piezoresistive triaxial sensor with accelerometer range: ±1500g. The

yaw rate was measured with a gyro instrument with which it is possible to record

1o/msec. Figures 2-4 show the measurements of the 3-D accelerometer in x−,y−
and z− directions.

Data from the sensors was fed to an eight channel data logger. The logger has a

sampling rate of 10 kHz. The memory is able to store 6,5 sec of data per channel.

The impact velocity of the test vehicle was measured with an equipment using two

infrared beams. The equipment is produced by Alge Timing and is using Timer S4

and photo cell RL S1c. On the test vehicle a plate with a vertical egde was mounted

on the left side of the front bumper. This vertical egde will cut the reflected infrared

beams in the timing equipment and thereby give signals for calculation of the speed.

The test vehicle was steered using a guide bolt which followed a guide track in the

concrete runway. About 7m before the test vehicle hit the test item the guide bolt

was released. Vehicle accelerations at the centre of gravity was measured, and also

the yaw rate of the vehicle. These measurements make it possible to calculate the

Acceleration Severity Index (ASI), the Theoretical Head Impact Velocity (THIV),

the Post-impact Head Deceleration (PHD) value and the yaw rate. The impact

speed of the test vehicle was determined. The ASI-, the THIV- and the PHD-values

are calculated according to EN 1317-1 clause 6 and clause 7, and the results are

shown in Table 4. Using normal speed- and high-speed video cameras, the behavior

of the safety barrier and test vehicle during the collision was recorded, see Figures

5-6. The value of ASI corresponds to the requirement for impact severity level B.

The THIV- and PHD-values are below the limiting values.

5. Wavelet-Based Signal Analysis

This section attempts to show the effectiveness of the wavelet technique to represent

the measured signals of the test. By choosing the resolution level j = 7 (or m =

28) and expansion of the acceleration signal x(t), v(t), a(t) in (3.1)-(3.2) by Haar
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Table 4. The calcula-

tion results.

ASI THIV PHD

1.28 29.9 7.8

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

−40

−30

−20

−10

0

10

20

t[ms]

a x [g
]

Fig. 2. Acceleration signal in x- direction.
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10

20
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40
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a y [g
]

Fig. 3. Acceleration signal in y- direction.

wavelets, we have x(t) = XΨm(t), v(t) = VΨm(t) and a(t) = AΨm(t), in which

the row vectors X,V,A ∈ ℜ1×m are the Haar wavelet coefficient vectors. Utilizing

the property of the Haar integral operation matrix, Haar wavelet representation of

equations (3.1)-(3.2) are, respectively,

VΨm(t) = V0Ψm(t) +

∫ t

0

AΨm(τ) dτ = V0Ψm(t) +APmΨm(t) (5.1)
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Fig. 4. Acceleration signal in z- direction.

Fig. 5. The situation recorded at the first contact.

and

XΨm(t) = X0Ψm(t) +

∫ t

0

V0Ψm(τ)dτ +

∫ t

0

∫ t

0

AΨm(τ) dτ dt,

= X0Ψm(t) + V0PmΨm(t) +AP 2
mΨm(t) (5.2)

Constituting the Haar wavelet properties in (5.1)-(5.2), a seven-level wavelet de-

composition of the measured x-acceleration signal (ax) is performed and the results,

i.e. the approximation signal (a7) and the detail signals (d1-d7) at the resolution

level 7, are depicted in Figures 7-14. One advantage of using these multilevel decom-

position is that we can zoom in easily on any part of the signals and examine it in

greater detail. Using the approximation signal (a1) and the detail signal (d1) at the

resolution level 1 by Haar wavelets, Figure 15 compares the constructed signal ax(t)

(solid line) with the real signal (dashed line). It is noted that the approximation

error between those curves in Figure 15 is decreasing when the resolution level j
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Fig. 6. The situation recorded 0.148 sec after the impact.

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

−10

−5

0

5

10

d 1

Fig. 7. Detail d1 of the 7-level Haar wavelet decomposition.

increases. The results in Figures 7-15 show the capability of the Haar wavelets to

reconstruct the measured signals well.

6. Conclusions

This paper studied the wavelet-based performance analysis of the safety barrier for

use in a full-scale test. The test involves a vehicle, a Ford Fiesta, which strikes

the safety barrier at a prescribed angle and speed. The vehicle speed before the

collision was measured. Vehicle accelerations in three directions at the centre of

gravity were measured during the collision. The yaw rate was measured with a

gyro meter. Using normal speed and high-speed video cameras, the behavior of the

safety barrier and the test vehicle during the collision was recorded. Based upon the

results obtained, the tested safety barrier, has proved to satisfy the requirements

for an impact severity level. By taking into account the Haar wavelets, the property
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Fig. 8. Detail d2 of the 7-level Haar wavelet decomposition.
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Fig. 9. Detail d3 of the 7-level Haar wavelet decomposition.
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Fig. 10. Detail d4 of the 7-level Haar wavelet decomposition.

of integral operational matrix was utilized to find an algebraic representation form

for calculate of wavelet coefficients of acceleration signals. It was shown that Haar

wavelets can construct the acceleration signals well. Future work will investigate the

vehicle crash systems by considering nonlinear terms in the model or using other

wavelet functions rather than Haar functions.
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Fig. 11. Detail d5 of the 7-level Haar wavelet decomposition.
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Fig. 12. Detail d6 of the 7-level Haar wavelet decomposition.
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Fig. 13. Detail d7 of the 7-level Haar wavelet decomposition.
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