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1. Introduction

Frames play an important role in signal transmission, sampling and approximation
theory.*7:16:18:25 Different from bases, the representation of a signal via frames is
redundant, i.e. the coefficients in the expansion are not necessarily unique. This is
advantageous in many situations, for example when some data is lost. Frequently,
for instance in signal processing, the signal might belong to some subspace of the
whole Hilbert space H and then only expansions in this subspace are interesting.
Here, it is necessary to work with frame sequences, that is a sequence in a Hilbert
space which is a frame only for its closed span.

A main question is which properties of frames and Riesz or frame sequences are
preserved if we slightly modify the elements of the systems. This gives rise to the
so-called perturbation theory. For the first time in Ref. 18, the idea of a specific
perturbation of the typical exponential orthonormal basis of L?[—v,v] appears.
Later, frame perturbations have been studied in Refs. 8, 12 and 20, and further on
the problem of frame sequence perturbation e.g. in Refs. 15 and 6. There are various
results about stability under perturbations for frames and frame sequences, the
so-called Paley—Wiener perturbation theorems and also the compact perturbation
theorems.!0:12:13 The additional problem that arises when dealing specifically with
frame sequences, is that the perturbation might not belong to the subspace that
the original sequence spans. For this case the notions of gap and infimum cosine
angle'®2324 between the corresponding subspaces have to be involved.

Given a frame {f;}rez for a Hilbert space H, it is known that there exists a
dual frame {gi }rez, which is a frame such that

F=Y (foan e VEEHR or f=Y (f )V [ EMN,
kEZ keZ
If { fx } ez is an overcomplete frame, there exist infinite alternatives for dual frames.
The choice of dual that gives the classical coefficients in the frame expansion is the
canonical dual frame.

In this work, we first show that if we do a sufficiently “small” perturbation
of a frame, the canonical dual of the new frame is also a “small” perturbation of
the canonical dual of the first one. We then obtain a similar result for the case of
frame sequences. We exploit this fact in order to obtain different reconstructions of
functions that belong to the perturbed space, involving — unlike in the traditionally
used frame expansion — the canonical dual of the original frame sequence. We
estimate for these cases the deviation from perfect reconstruction.

Once obtained these results for general Hilbert spaces, we consider the con-
crete case where H = L?(R?) and the frame sequences are generated by irregular
translates of a single function. There is a close connection between frames of trans-
lates and frames of complex exponentials via the Fourier transform. Beurling® gave
sufficient conditions on a sequence {\;}rez € R in order to have frames of expo-
nentials when restricted to a ball. These are given in terms of density. Using this,
frame properties of irregular translates of a bandlimited function were obtained in
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Ref. 2. More precisely in Ref. 2 the authors give conditions on the translates of a
bandlimited function in order to obtain frames and Riesz or frame sequences.

In the present work, we extend these results for a more general class of generating
functions. We obtain conditions on irregular translates of a function in order to be
frames and Riesz or frame sequences, weakening the bandlimitedness assumption.
For this we study perturbations of irregular translates of a bandlimited function,
where the perturbed and the original generating functions differ in a polynomially
decaying function. We compute the estimation error for the approximation of a
function in the perturbed space in this last particular case and further compare it
to the error bound obtained before in the general Hilbert space case.

The paper is organized as follows. In Sec. 2, we give the definitions and state
known results we use later. In Sec. 3 we prove that the canonical dual of a perturbed
frame (frame sequence) is a perturbation of the canonical dual of the initial frame
(frame sequence). We give alternative approximations of functions in the perturbed
space and show a bound for the approximation error. Finally, in Sec. 4, we work
in L?(R?%) perturbing irregular translates of a bandlimited function by adding a
polynomially decaying component.

2. Preliminaries

In this section, we set definitions and known results that we will need throughout
the paper.

Given a separable Hilbert space H with norm [|-||, a sequence { fy}rez C H is a
frame for H if there exist 0 < A < B such that
AFIP <D f) 1P < BIIFI (2.1)
kezZ

for all f € H. The constants A and B are called frame bounds.

If only the right inequality in (2.1) is satisfied we say that {fi}rez is a Bessel
sequence with Bessel bound B. To every Bessel sequence { fi}rez we associate the
analysis operator Cr : H — (*(Z) defined by Crf = {{f, fx)}rez for f € H, and
the synthesis operator Up : (*(Z) — H given by Upc = Y, o cx fx for ¢ € (2(Z).

If {fr}rez C H is a frame the frame operator defined by

Sp:H—H, Spf=UrCrf=> (f fx)fr,
keZ
is bounded, positive and invertible. The sequence { fk}kez, where fk = Sgl Sr, is

called the canonical dual frame for {fi}rez, and each f € H has the following
frame decomposition
F=Y FSa b =D _(f fu)SE fre
keZ keZ
It can be equivalently written as f = UrCyf = UzCrf. Throughout the paper,
we will always denote by the subscript to which collection the analysis, synthesis
and frame operators are associated.
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A sequence { fr}rez C H is a Riesz basis for H if it is complete in H and if there
exist 0 < A < B such that for every finite scalar sequence {c}rez one has

2
< Bl|c||%.

Alle||% < Hchfk
keZ

The constants A and B are called Riesz bounds.

We say that {fi}trez C H is a frame sequence (Riesz sequence) if it is a frame
(Riesz basis) for the space it spans.

In this paper, we will work with perturbed sequences. More precisely we will
use the following notion of perturbation.

Definition 2.1. Let {fi}rez be asequence in H and p > 0. We say that a sequence
{gk}rez in H is a p-perturbation of { fx}rez if for every finite sequence ¢ € ((Z),

> erlfi —gr)

kEZL

< el (2.2)

Observe that if condition (2.2) is satisfied for all finite sequence ¢ € £2(Z), it is
valid for all ¢ € (?(Z).

Remark 2.1. Note that condition (2.2) is equivalent to say that {fx — gk }rez is
a Bessel sequence in H with Bessel bound p2. That is, {gx }rez is a p-perturbation

of { fr}rez if and only if =, ., [(f, fr — gi)|? < p?| fl|? for all f € H.

An interesting question about the perturbed sequence is when it inherits the
properties of the original one. For instance, it is known that if {fx}rez is a Riesz
sequence with lower bound A, the perturbed sequence {gx}rez is also a Riesz
sequence when p < v/A, cf. Theorem 15.3.2 in Ref. 11. For the case that {fx}rez
is a frame sequence the condition y < v/A is not enough to ensure that {g}rez
is also a frame sequence. In order to specify when {gi}rez is a frame sequence we
need to consider the gap between the spaces spanned by { fx}rez and {gi}rez.

For general nonempty subspaces V,W C H the gap?® between V and W is
defined as

(VW)= sup |If = Pw/l,
fevilifli=1

where Py denotes the orthogonal projection of ‘H onto W.

In Refs. 13 and 24 the infimum cosine angle respectively the supremum cosine
angle are defined by

R(V,W):= _inf [Pyfl eand S(V.W):= sup [Pwfl.
FeVilifil=1 FeVilifil=1

It can be seen that §(V, W) and R(V, W) are related by R(V, W) = /1 — 6(V, W)?2.

We denote by I the identity operator on H, and the restriction of an operator
T to a subspaces K by T'|x.
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The following theorem states conditions for the perturbed sequence to be a
frame, a Riesz or a frame sequence. Statement (a) appeared in Refs. 10, 15 and 11,
and statements (b) and (c) are from Ref. 13.

Theorem 2.1. Let {fi}trez be a sequence in 'H and assume {gitrez is a p-
perturbation of { fi}rez. Then the following holds:

(1) If {fr}rez is a frame for H (Riesz basis or Riesz sequence in H) with frame
(Riesz) bounds 0 < A< B and pu < VA, then {9k }rez is a frame for H (Riesz
basis or Riesz sequence in H) with frame (Riesz) bounds A(1— u/v/A)?, B(1+
1/VB)?.

(ii) Suppose that {fi}trez is a frame sequence with frame bounds 0 < A < B
and that Hp = span{fy:k € Z}. If u < VA, then R(Hp,Hg) > 0, where
He =spanfgr : k € Z}.

(iii) If in addition to (b), R(Ha,Hr) > 0, then {gi}rez is a frame for Hg with
frame bounds A(1— u/vA)? B(S(Ha, Hr) + 1/vVB)? and moreover, Py, |3,
s an isomorphism from Hg to Hp.

Remark 2.2. Since conditions R(Hg, Hr) > 0 and 6(Hg, Hr) < 1 are equivalent,
either of them can be used as hypothesis in (c) of the above theorem.

3. Canonical Duals: Perturbations and Reconstruction Errors

We will devote this section to prove a result concerning the canonical duals for
frames and frame sequences. Essentially, we prove that the canonical duals of “close”
frames (frame sequences respectively) are also “close”. In other words, we show that
the canonical dual of a perturbed frame is a perturbation of the canonical dual of
the original frame.

Throughout this section, we will use the following elementary Banach Algebra’s
result. Since we could not find a reference for a proof, we provide it here.

Lemma 3.1. Let x,y € B, where B is a Banach algebra with unit element e and
norm || -||g. If y is invertible and ||z — y||s < ally~t||g" for some a < 1, then x is
invertible and ||x=! — y~ Y5 < |ly~sa(l — o)7L,

Proof. From the assumption on x and y it follows that |le — zy~t||z < ||z —
ylslly~ts < a. That means that zy~!
Neumann series (zy~')~' = > (e —2y~!)". The invertibility of  follows easily
from that of zy~!. Now,

is invertible with the inverse given by von

=" =y s =y (v~ (e —ay )5 <y "llsllyz"Islle — zy "5

o0 o0
<y Mslle =2y s D _lle =2y g = lly "5 D _lle — 2y~ "3

n=0 n=1
00
<lly™s Yo" =y sl — )" .
n=1
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3.1. Perturbation of frames

In this subsection, we will work with frames for the whole Hilbert space H.

Theorem 3.1. Let {fi}rez be a frame for H with frame bounds 0 < Ap < Bp,

and let {gr}kez be a p-perturbation of {fr}rez with 0 < p < \/Ar + Br — /BF.
Then {gi}rez is a frame for H and, for every finite sequence ¢ € (*(Z),

> el fi — gi)

kEZ

< Allellez,

where

(3.1)

(VBr + 1) (2VBr + )
A A (” AF—(NEw)u)

and {fk}kez, {Gi}rez are the canonical dual frames for {fr}rez and {gi}rez,
respectively.

Proof. Since VAp + Br —+/Br < v/Ap, by Theorem 2.1(a) we have that {gx}rez
is a frame for H with frame bounds Ag = Ap(1 — p/v/Ar)? and Bg = Bp(1 +
w/v/Br)?. We denote by Sp and Sg the frame operators associated to { fx }rez and

{9k} ez, respectively.
Now, we set

> el fe — gi)

kEZ

= S5 Ure — S5 Usell < IS5 (Ure — Ugo)|

+ (8" = 55" Ueacll

< plelle 1S lop + v/ Ballclez S5 = Sg* lop-

In order to estimate ||Sp' — S5'|op We utilize Lemma 3.1. By the perturbation
conditions of {fxr}rez and {gi}rez together with Remark 2.1, we obtain

15F = Scllop = [UrCF — UcCg|lop < [[Ur(CF — Cg)llop + (Ur — Ug)Cg|lop
< VBru+ V/Bap < |55 Y2 YIC

Let a = 7”91”;; VBe The perturbation condition implies that Bg < Br + L,
hence ap < A;1(2\/BF + p)u. By assumption on p, we obtain that ap < 1.
Therefore, by Lemma 3.1, it follows that [|Sz" — S5! [lop < %HS;lHOp.

Finally, collecting all the estimates,

> el fi = gi) <<L+VBG e >||C||e2,
kezZ ~— \Ar Arp 1—au

Therefore, setting

o M VBe ap ( 4 WBr+p)(@2VBr +u))
AF AF ].—Oé/l, AF AF—(Q\/ +,U)
we complete the proof. O

1450019-6



Canonical Dual Systems, Approrimate Reconstructions and Applications

Remark 3.1. Note that the constant A is small provided p is small.

For the special case of perturbations of a Riesz basis Theorem 3.1 is also true
asking only 0 < pu < +/Ap. Riesz bases are in particular frames. Different from
frames, each Riesz bases has a unique dual which is the canonical dual.

Proposition 3.1. Let {fi}rez be a Riesz basis for H with Riesz bounds 0 < Ap <
Bp, and let {gi}rez be a p-perturbation of {fi}trez with 0 < pu < \/Ar. Then
{9k }kez is a Riesz basis for H and, for each finite sequence c € (*(Z),

> elfi — di)

kEZ

where A = p(Ap — pv/Ap) ™" and {fk}keZ, {Gk}rez are the duals for {fr}rez and
{9k }rez, respectively.

< Alellez,

Proof. Since {gi}rez is a p-perturbation of {fx}rez with u < /Ag, by Theo-
rem 2.1(a) {gk }rez is a Riesz basis for H. Denote by Ag its lower Riesz bound. Let
c € (?(Z) be a finite sequence. Since {fi}rez is a Riesz basis for H, the analysis
operator Cr : H — (?(7Z) is onto, hence there exists h € H such that ¢ = Cph.
Now, using that I = UzCg = UzCr and Remark 2.1, we have

2kl = 90| = Uz Ugel| = |UsCrh = UCihll = (1 = UgCrlh]
=[[(UsCc — UgCr)h| < IUglloplICa — Crllopl|hll
[ [
< hl| < ———lellge,
where the last inequality follows from a frame property of {fi}rez. Replacing A
with the estimate in Theorem 2.1(a) completes the proof. O

We want to point out that duals of perturbed frames are also studied in Ref. 14.
Different from our approach, in Ref. 14 the authors work with the notion of approx-
imately dual frames. Two Bessel sequences { fi }rez and {gx }rez are approzimately
dual frames if ||I — UpCqllop < 1, or equivalently || — UgCFrllop < 1. They show
that if {fr}rez is a frame for H and {gi}rez is a p-perturbation of { fx}rez with
1 < VAp, then |1 —UzCq|lop < 1/ v/Ar < 1, meaning the canonical dual { f;}rez
of { fx}rez, is approzimately dual to {gi}rez. Inexplicitly, this notion also measures
the closeness of two canonical dual systems {]?k}kez and {gx }kez, since

1
I -UzC =||(Us —Uz)C < —=.

|| F GHOp H( G F) G”Op \/E

Theorem 3.1 above instead measures the similarity between the two canonical sys-
tems explicitly in terms of p and frame bounds of {f}rez and {gi}rez-

1450019-7
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3.2. Perturbation of frame sequences

In this section, we show a similar result to Theorem 3.1 for frame sequences. The
main difficulty in the case of frame sequences is that the frame operators do not
have the same domain.

We begin by setting our Standing Assumptions which will be in force for the
remainder of this section.

Standing Assumption:

o {fi}lrez is a frame sequence in H with frame bounds Ap < Bp.

o {gr}rez in H is a p-perturbation of { fx}rez such that 0 < p < /Ap.
o Hp =span{fy:k € Z} and Hg = Span{gy : k € Z}.

e 0(Hg, Hr) < 1.

Remark 3.2. Note that under our Standing Assumptions, {gi}rez is a frame
sequence — as a consequence of Theorem 2.1 — which frame bounds we call Ag <
Bg. We will use later that 6(Hq, Hr) < 1is equivalent to say that Py, |n, : Ha —
Hp is an isomorphism, cf. Refs. 15 and 13. Moreover, R(Hg, Hr) = ||PHF|7;1G o
cf. Proposition 2.1 in Ref. 22.

We now present the main result of this section.

Theorem 3.2. Let { fi}rez and {gr}rez be sequences in H satisfying the Standing

Assumptions. If for a = Li% Vfé)), pa < 1, then for all finite sequences ¢ €

(2),
> el fi — gi)

kEZ

< Allellez,

where

VvVBr pa +\/BF5(Hg,HF)+,u

)\ =
Ap 1 - pa AcR(Ha, HF)

(3.2)

and {fk}kez7 {Gk}trez are the canonical dual frames for {fi}rez and {gx}rez,
respectively.

Remark 3.3. Using explicit expression for the upper frame bound Bg, it can be
easily computed that pa < 1 only for

1< 27 (/Br(1+ S(Hg, Hr))2 + 4Ar R(Ha, Hr) — v/ Br(1 + S(Ha, HF))).

This bound on g is much smaller than \/Ap, which is sufficient, together with
R(He, HF) > 0, for establishing frame property of {g }rez-

For the proof of Theorem 3.2 we need following lemmas.

Lemma 3.2. Let {fr}rez and {gi}rez be sequences in H satisfying the Standing
Assumptions. Then ||Upc — Py, Ugcl|l < pl|c|le2 for all finite sequences ¢ € £(Z).

1450019-8
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Proof. Let ¢ € £%(Z) be a finite sequence. Since Py, fr = fr we have that

|Urc — PrpUgc|| = || Prp(Urc — Ugc)|| < ||[Upe — Ugc| < plle]¢2- O

The following lemma is a consequence of Lemma 3.1.

Lemma 3.3. Let {fi ez and {gi }rez be sequences in H satisfying the hypotheses
of Theorem 3.2. Then,

_ _ jize’
HSFl - PHFSGIPHF|HGHOP < HS 1H0p1—

Proof. Let f € Hp. Since Py, |x, is an isomorphism, there exists h € Hg such
that h = PHF|7__(10f and Py, h = f. Moreover, Cr Py, h = Crh. Therefore, by the
triangle inequality

1Prp S Prp |y, f = SEfI = |1 PrpUcCah — UrCr Py b
< [(PrpUc — Up)Cahl|| + |Up(Cah — Crh)]|.
Using that {fi}rez and {gi}rez are frame sequences and Lemma 3.2, we obtain
1P+ S Pr e, f = SefIl < (v Ba + v Br) |2
< (VB + VBr)||Pri Ik lop £

Yol Y Pe Ve
oo P AL R(Ha, Hr)
ﬁ,—/

[e3

< [ISg 171l

where the last inequality is due to | Sz'|lop < Az" and R(Hg, Hr) = || Pr \;{g llop -
By assumption, pa < 1, hence, directly by Lemma 3.1, it follows that

e
85" = Pre S Preeligs o < IS5 lop T2 0

We are now in the position to prove Theorem 3.2.

Proof of Theorem 3.2. Let ¢ € (*(Z) be a finite sequence. In order to estimate

> (St fr — Sgtor)

kEZ

= |S7'Urc — S5 Use| < IS5 Ur — S5 Usllop €|z,

we use the triangle inequality,

1S5 Ur — S Ucllop < 1(S5" = PrySG " Pri |3 ) U llop

Tr
+ ”PHFSélPHF‘;[LUF - SélUGHOP'

T
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The first term, 77, can be estimated using Lemma 3.3 and the frame property of
{fk}rez, thus becoming

-1 -1 1 /By < VBr  pa
Ty < HSF _PHFSG PHF|7—(G||OPHUFHOP < HS HOpl Ap 1 _Ma'

For the second term 7177, we compute
Tir < |PrpSG" Prr s Ur = Sg ' Prr 3o Urllop + 156 Prr I3 Ur — S5 Uc lop
<N1Prr S5t — S5 lop | Prie b, Urllop + 155 lopll P 52, Ur — Usllop-
Since P, Sg' — Sg't = —Py1Sg" and ||Scllo) < Ag'

_ _ i | Prayll
1PreSgt = SG lop = [1PrsSG lop = sup o
yera\foy 1Scyll

< AG' sup 1Pyl
yEHg, llyll=1

= AZ'(1 = R(He, Hp)?)®
= AZ'6(He, Hr). (3.3)
On the other hand, Lemma 3.2 yields
1P |30, Ur — Ucllop = | Prr |34, (Ur — PrpUG) lop
< 1Pl lonlUF = PrenUclop
< R(Ha, Hp) . (3.4)
Thus, by (3.3), (3.4) and || Py, |5 Urllep < VBrR(Ha, Hr) 2,

\/BF(S(Hg,HF) + u
AcR(Ha, Hr)
Finally, collecting all the estimates, we obtain

vV BF ji1e% n \/BF§(HG7HF)+/14
Ap 1— pa AcR(Ha, Hp) =

T <

1SF'Ur — Sg'Ucllop < Ty + Tir <
Remark 3.4. Since both {f;}rez and {gx}rez are frame sequence, we have that
for f € Ha, ||fll > VAg||Csf|, and by Lemma 3.2,
1f = Prp fIl < |(Ue — UF)CéfH + [(Ur = PrUc)Ca fl < 2ulCafl-

Therefore, §(Ha, Hr) < Consequently, A< u(AF(l VB +27{7 Vf;{: V):?/z)

and from this it follows that A tends to zero when p tends to zero.

Theorem 3.2 states that if two frame sequences are “close”, then their canonical
duals are also “close”. This leads to consider the following approximations of a
function belonging to H¢, where we replace in the classical frame decomposition the

1450019-10
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dual of the perturbed sequence {gx }rez by the dual of the original frame sequence

{fr}rez-

Corollary 3.1. Let {fi}rez and { gy }rez be sequences in H satisfying assumptions
of Theorem 3.2, and let f € Ha. Then the following hold:

@) If = fill < VBGAf|l, where fr = Ypen(f, fr)gr € Ha;
(i) If = foll < VBaAlfIl, where fo =3 ez (f: gk) fr € Hrs

where X is defined in (3.2), Bg denotes the upper frame bound of {gi}trez and
{fr}trez, {Gk}rez are canonical dual frames for { fi}rez and {gi }rez, respectively.

Remark 3.5. For perturbed frame sequences another kind of dual windows can
be considered, namely oblique dual frames. Such frames can be constructed when
a direct sum condition H = Hr ® Hé is satisfied. This condition is equivalent to
having R(HFr, Hg) > 0 and R(Hg, Hr) > 0, which is met for perturbation of frame
sequences, as in Theorem 2.1. For a detailed exposition of oblique dual frames we
refer the reader to Ref. 19.

4. Perturbation of the Generator of Frames of Translates

In order to use approximate reconstructions, the previous results all assumed that
a pair of frames, one being a perturbation of another, is given. When considering
frame sequences for closed subspaces it is a nontrivial task to verify when a given
sequence { g }rez is a perturbation of {fi}rez. A condition that causes difficulty is
that on the gap between spaces, §(Hea, Hr). However, in particular situations the
gap can be computed. One instance of such a case are frames of translates.

In order to apply results developed in the previous section, we restrict ourselves
to a space H = L%(R?) with the usual norm ||-||2. We consider frame sequences of
irregular translates i.e. of the form {f(- — Ag) }rez, where {\; }rez is an arbitrary
sequence in R? and f € L?(R?). Frames of irregular translates appear in numerous
applications, for example when dealing with jittered samples in sound analysis.
Frames of irregular translates were studied for example in Ref. 1, 21 and 2.

We denote the translation of f by Ay as f(-—Ax) = fx,. We consider translations
along a set of points A = {\; : k € Z} C R? that form a vy-separated set. That is,
there exists v > 0 such that [|[A\x — Ap|| > v for Ak, Ay € A, whenever k& # m and
|| - || denotes a standard Euclidean distance in R,

Let E be a bounded subset of RY. When we say that the exponentials
{e=2me) Y 7 are a frame for L?(E) we mean that the set {e 2™ ) xplies
has the property, where x g denotes the characteristic function of E.

We denote by Pg the space defined by

Pg = {h € L*(R?) : supp h C E}. (4.1)

Let f € L?(R?) be a bandlimited function i.e. supp(f) is compact. We consider
a perturbation {gx, }xez of {f, }rez such that the difference between f and g is a
function with polynomial decay.

1450019-11
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When dealing with polynomially decaying functions, we will repeatedly use the
following lemma which is the version in R? of Lemma 2.2 in Ref. 17. Its proof is
analogous to the one-dimensional case.

Lemma 4.1. Let A = {)\ : k € Z} C R? be a y-separated set and p > 1. Then

d
(24— 1) (% +p>
ess sup E (I+lz—M])P<2 |29 +

veri 2 <1+ %&)p(p_l)

Now, we state the first result about a perturbation of a bandlimited function.

Theorem 4.1. Let {\; : k € Z} C R? be a vy-separated set and f € L*(R?) such
that supp(f) = E is compact. Consider g = f +r with r € L?>(R?) satisfying

r(z)] < C(L+ [J=[))~" (4.2)

for some p > d and C a positive constant. Set

d
(24 -1) <£ +p>
20%Ci | g1, v

(4.3)

d
w2d!
I(g+1)

where Cy = and I is the Gamma function. Then:

(a) If {fr,}rez is a Riesz sequence in L?*(RY) with lower Riesz bound Ap and
p? < Ap, then {gx, }rez is a Riesz sequence.

(b) Let {fz Yrez be a frame sequence in L?(R?) with lower frame bound Ar and
p? < Ap. Assume that there exist a, 3 > 0 such that o < |f(w)| < B a.e. in
E and that Hp = span{fy, : k € Z} = Pg. Denote Hg = Span{gy, : k € Z}.
If there exists 0 < m such that |§] > n a.e. on E, then 6(Hg, Hr) < 1 and so
{9, }rez is a frame sequence.

Proof. (a) Let ¢ € £%(Z) be a finite sequence indexed by F' C Z. Then

2
CLT
E kT Xk <E CET N » E Cm’l“)\m>

keF 2 keF meF

Y lewllemll(rara)l

kmeF

> exlgne — ) i

keF

2

IN
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1
<5 2 (el +lem)liraman)]

k,meF

IN

. [zw S e randl + S leml Sl ma)l

keF meF meF keF

IN

el sup Sl

Zgez
Using the assumption (4.2) on r, we find that

Sl £ € [ A+l S0+ a4 A = Al Vo

kEZ kezZ

<Cesssup S+ o+ h = Anl)” [ (14 ol o

z€R =

c?c
< deSESHle+||$+)\k_ Aml) 7P
—d zER4 kez

where [pq(1+ ||z]])"Pdx = p(’:dd with Cy = 7%/2d\T'(d/2 4+ 1)~! and T the Gamma
function. By Lemma 4.1, we have that

d
(2 -1) <£ +p>
20 Cd 2d71+ v 2

supZ| Tans A, - ——a N7 =pu°.
< ) (p—1)

mEZkeZ 14—

Vd

Since 1 < v/Ap, by Theorem 2.1(a) {gx, }xez is a Riesz sequence.
(b) We already showed in part (a) that

> anlon = fa)

keF

< pllelle
2

for every finite sequence {ciltrez € ¢*(Z), where u < \/Ap. Hence, by The-
orem 2.1(b), it follows that R(Hp,Hg) > 0. We want to verify that also
R(Hg,Hr) > 0. By Proposition 3.3 in Ref. 6, R(Hr, Hg) > 0 and R(Hg, Hr) >0
if and only if Py, |x, is invertible. From Lemma 3.1 in Ref. 6 we also know that
R(Hp,Hg) > 0 implies that Py, |x. is onto. Hence it is only left to check that
Py, |7, 1s injective. For this, let ¢ € He such that Pp,¢ = 0. Since the Fourier
transform is an isometry, P/HF\QS = P;GQAS where Hp = {h:h € Hp}. Now, using
that Hp = Pg it follows that Pﬁ;qAS = XE(;AS. Hence, qAS = 0 a.e. in E. We have to

see now that (E =0 a.e. also in E°.
Let {¢n}nen be a sequence such that ¢, — ¢ in L?(RY), where ¢, =
Y oker, ChOx, With F, C Z a finite set. We write ¢, (w) = 0,(w)g(w), where

On(w) = Yer, che” 2™ ). Then Pryn = X800 — Pripd = 0.

1450019-13
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For w € E¢ we have @(w) = 0, (w)g(w) = 0, (w)7(w). Then, analogously as in
part (a) we obtain that

| oo = [ @i < [ 10,w)5w)Pw

d
(24— 1) (% +p>
<[l 2C%C | g1

? pd (H%)p(p—l) |

where ¢" = {c]}kep,. We will show that ||c"||% — 0 if n — +oo0.

E CZTAk

keF,

Since {fx, }rez is a frame sequence in L?(R?) and there exist «, 3 > 0 such that
a < |f(w)] < Bae. in B, then {e~27 )Y, 7 is a frame for L2(E), cf. Proposition
3.6 in Ref. 2. Denote its frame bounds A; and Bj.

We can assume without loss of generality that F; C Fy... C F, C ... and
Unen Frn = Z. Let H,, = span{e= 2™k cp o and {e, }nen C (0, Ap) be a decreas-
ing sequence converging to zero. As a consequence of Lemma 3.4 in Ref. 9, there
exists a finite set J, containing F;, such that

2

3
D e ) P < BBy, for every b€ H.
ke J, !

Let S, denote the frame operator of {e= 2™}, ;. Then Sy, |4, is an iso-

morphism from H,, onto S, (H,). It can be seen analogously as in the proof of

Theorem 3.5 in Ref. 9 that ||(Sy, |1,.) Hop < Alisn' Now, since 6,, € H, C
278 (AR,

e,

6, = Z <0n,S 1 —27”<>\k7 )>e—27ri()\k,<)'
keJn

span{e™

Using that {6*2”0"*"')}%% is a linearly independent system and that F,, C J,, we
find

(0, Sy e 2 n ) = {cz if ke Fy,

0 if k€ J,\Fp.

NOW, S;nlen (= Span{ef%rz Ak >}k€J and <S;n10n’6727ri()\k,.>> _ <9n7
S;ﬂle—2m<>\k,->> =0 for k € J,\F,. Hence SJn 0, € H, and so 0, = S, (S;nlen) c
SJn (Hn)'

Then we have

el = D 1n, S5,/ e727 R 2 = 3 1(85, 100, 72O P
keJn ke,
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< BullS7 0nllZ2(m) < Bill (S, lre) " Iap 160172 )

] 2
2
< B <A1 — €n) 10072k

Note that since XE@ = xgb0ng — 0 and |§| > n a.e. on E, it follows that 6,, — 0
in L?(E). From this, we obtain that ||c¢"||% — 0. Thus, XEedn — 0 in L*(R%) and
finally 3 =0 a.e R%. Therefore, Py, |7 is injective and so R(Hg, Hr) > 0. Then,
by Theorem 2.1(c) {gx, }rez is a frame sequence. O

Remark 4.1. When d = 1, that is for L?(R), x4 in Theorem 4.1 is given by
4C? -1
p—1 (1+y)Pp—-1)

This follows from [, (14 |z[)"Pdx =2(p —1)~".

Remark 4.2. Theorem 4.1 can be extended for y-relatively separated sets. We say
that A C R is a v-relatively separated set if rel(A) := max,cga #{A N ([0,~]¢ +
x)} < 400, cf. Ref. 11. In this case, the estimate in Lemma 4.1 becomes

2 -1) <£ +p>
ess sup S (1+ o — Mgl)) 7 < rel(A)2 291 + i

v€R ez (1 + %)p (p—1)

Roughly speaking, Theorem 4.1 states that {g, }rez is a frame sequence pro-

vided r has sufficient decay. We are interested now in approximating a function
h € Hg by hi =3, cz(h, ]/”;;>g,\m7 and to estimate the error ||hq — hll2. When in
addition to the hypotheses of Theorem 4.1 we ask 1 < min{1, %} where
0 < Ar < Bp are the frame bounds of {f\, }rez, then we are under hypotheses
of Theorem 3.2 and, in particular, Corollary 3.1 can be used to estimate the error
|h1 — h||2. Since in this case, an expression for the canonical dual of {fx, }rez is

known, cf. Ref. 3, we are able to compute the error as Theorem 4.2 shows.

Theorem 4.2. Under the same hypothesis of Theorem 4.1 part (b), let h € Ha
and hy = co(h, fx,)9n,, - Then, we have

Vd
, (24 —1) (— +p
VBe_2C*Cu | iy v .
A2,

h—h <|SHg, Hr) + ——— +
| 12 (Ha Hr) JAr A p—d <1+l>p(p_1)
Vd
d
where Cyg = % and I is the Gamma function.
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Proof. Since h € Hg and {gx, }rez is a frame for Hg, h = >, ., ckgn,, where
¢k = (h, Sélg,\k) and S¢ is the frame operator associated to {gx, }rez. Therefore,

h(w) = (Z Ckez’”“k’“’)) g(w) = O(w)g(w).

kEZ
On the other hand, the canonical dual frame for {f\, }rez has the form

f
p—— — k DE,
I = |f|2¢>\ °

0 otherwise,

where {1, }rez is the canonical dual frame for {e=27 )1, 5 cf. Ref. 3. Then,
using that g = f + 7 we have

7 T J/C\ —27i B
hy = Z <h7 Wl/}/\mXE e 2mimg

meZ

- Z (/E 9(w)ﬁdw+/}39(w)ﬂw)ﬁdw> e 2mim )G

meEZ

=3 (Z el ™) s ) Ly +ch<e2ﬂ<%'>aﬁ;>> e g

kEZ keZ

= ch (Z <€_2m</\k’4>,¢/\m>L2(E)€_2m<Am’A>> g

meZ

DD I G W Bl

meZ kel
NOW, since Zmez<672ﬂi()\k,~)’¢>\m>L2(E)6727ri()\mr> — XE6727ri()\k,'>,
T = xph+ R(w) = Pu,h + R(w),
where R=) /> o ce(ra,, f;>9>\m- Therefore,
1h = hallz < ||k = Prphlls + [ Rll2 < 6(Ha, He)llhll2 + (|2 (4.4)

If we call d,,, = ZkeZ ck<r,\k,]/‘;> for each m € Z, then

IRl = H > dmon.,
meEZ

, < \/B_GH{dm}mGZH€2~ (45)
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In order to estimate |[{d,, }mezl/s2(z), we compute

(o]

keZ

2

2 Il =2

meZ meZ

and if ¢ := ), ., cxra,, using that {J/”;}k.ez is a frame for H g, we obtain

STldml? = Y 1d )P =3 (Prrt )P < ARSI (4.6)

meZ meEZ mEeEZ

Therefore, replacing (4.6) in (4.5) it follows that

vV Bg chh\k
VAF ||kez

Now as in the proof of Theorem 4.1

IRll2 <

2

Vd
, (2 -1) (— +p
VBG 20°C [ ga Y

P lellez
o R (e

IRz <

and using the frame condition of {SélgM}keZ to estimate the norm of ¢ in terms
of the norm of f, we finally obtain that

Vd
9d _ 1) [ X2
VBe 2020y | ( )( S +p>
IRz < TArAe p—d 2077+ T\ I £ll2- |
o (1) o=

Remark 4.3. For the space L?(R), that is for d = 1, the estimate of Theorem 4.2
in terms of v, p, the gap 6(Hg, Hr) and frame bounds of {gx, }rez and {fx, }rez
is given by

Bo  4C? -1
h—h12<(5<HG7HF>+ vBa 10 [1 1t Dh

VArpAgp—1 1+ —1)

We mentioned before Theorem 4.2 that if in addition to hypothesis of Theo-
%}, the error ||h1 — hll2 can be estimated
using Corollary 3.1. As it is expected, the error that Corollary 3.1 gives is, in gen-
eral, greater than the error obtained in Theorem 4.2. For instance, this can be easily

seen in case when Ar = Bp = 1. However, we emphasize that both errors are small

rem 4.1, p satisfies p < min{1,

when g is small and g is sufficiently small if we choose p big enough.
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