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Abstract

We consider a class of (N,M)-elementary step functions on the p-adic Vilenkin
group. We prove that (N,M)-elementary step function generates a MRA on p-adic
Vilenkin group iff it is generated by a special N -valid rooted tree on the set of
vertices {0, 1, . . . p − 1} with the vector (0, ..., 0) ∈ ZN as a root. Bibliography: 15
titles.

keywords: zero-dimensional group, Vilenkin group, multiresolution analy-
sis, wavelet bases, tree.

1 Introduction

In articles [1]-[4] first examples of orthogonal wavelets on the dyadic Cantor
group (p = 2) are constructed and their properties are studied. Yu.Farkov

[5]-[7] found necessary and sufficient conditions for a refinable function to
generate an orthogonal MRA in the L2(G) -spaces on the p-adic Vilenkin
group G. These conditions use the Strang-Fix and the modified Cohen

properties.
In [7] this construction is given in a concrete fashion for p = 3. In [8],

some algorithms for constructing orthogonal and biorthogonal compactly
supported wavelets on Vilenkin groups are proposed. In [5]-[8] two types

of orthogonal wavelet examples are constructed: step functions and sums
of Vilenkin series.

Khrennikov, Shelkovich, and Skopina [10],[11] introduced the concept
of a p-adic MRA with orthogonal refinable function, and described a gen-
eral pattern for their construction. This method was developed for an

orthogonal refinable function ϕ with condition suppϕ̂ ⊂ B0(0), where
B0(0) = {x : |x|p ≤ 1} is the unit ball in the field Qp. Similar results

were obtained for an arbitrary zero-dimensional group [13]. The condition
suppϕ̂ ⊂ B0(0) is very important. S. Albeverio, S. Evdokimov, M. Skopina

1This research was carried out with the financial support of the Russian Foundation for Basic Research
(grant no. 13-01-00102).
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[12] proved that if a refinable step function ϕ generates an orthogonal p-

adic MRA, then suppϕ̂(χ) ⊂ B0(0).
On the other hand on Vilenkin groups Yu.A.Farkov constructs examples

of step refinable functions ϕ, which generate an orthogonal MRA with
suppϕ̂ ⊂ G⊥

1 . In the author’s work [14] a necessary condition for a support

of orthogonal refinable step function are found: if step refinable (1,M)-
elementary function ϕ generates an orthogonal MRA on p-adic Vilenkin
group, then suppϕ̂ ⊂ G⊥

p−2. In [15] some trees was used to construct

refinable function .
In this work we consider more general situation and study a structure of

the set suppϕ̂. We define a concept of N -valid tree and prove that (N,M)-
elementary function ϕ generates an orthogonal MRA on p-adic Vilenkin

group iff the function ϕ is generated by means of someN -valid tree. For any
N -valid tree we give an algorithm for constructing corresponding refinable

function and orthogonal wavelets.
The paper is organized as follows. We consider p-adic Vilenkin group

G as a zero-dimensional group (G, +̇) with condition pgn=0. Therefore,

in section 2, we recall some concepts and facts from the theory of zero-
dimensional group. We will systematically use the notation and the results

from [13],[14].
In section 3 and the following sections we consider MRA on p-adic

Vilenkin group G. In section 3 we study refinable step-functions which
generate the orthogonal MRA. We define a class of (N,M)-elementary set
and prove that the shifts system ϕ(x−̇h)h∈H0

is orthonormal if suppϕ̂ is

(N,M)-elementary set.
In section 4 we introduce such concepts as ”a set generated by a tree”

and ”a refinable step function generated by a tree” and prove, that any
rooted N -valid tree generates a refinable step function that generates an

orthogonal MRA on Vilenkin group.
In section 5 we give an algorithm for constructing orthogonal wavelets

according to the tree.

2 Preliminaries

We will consider the Vilenkin group as a locally compact zero-dimensional

Abelian group with additional condition pngn = 0. Therefore we start
with some basic notions and facts related to analysis on zero-dimensional

groups. One may find more information on the topic in [12]–[14].
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Let (G, +̇) be a locally compact zero-dimensional Abelian group with

the topology generated by a countable system of open subgroups

· · · ⊃ G−n ⊃ · · · ⊃ G−1 ⊃ G0 ⊃ G1 ⊃ · · · ⊃ Gn ⊃ · · ·

where
+∞⋃

n=−∞

Gn = G,
+∞⋂

n=−∞

Gn = {0},

pn is an order of quotient group Gn/Gn+1. We will always assume that

all pn are prime numbers. We will name such chain as basic chain. In this
case, a base of the topology is formed by all possible cosets Gn+̇g, g ∈ G.

We further define the numbers (mn)
+∞
n=−∞ as follows:

m0 = 1, mn+1 = mn · pn.

Let µ be a Haar measure on G, we know that µGn = 1
mn
. Further, let∫

G

f(x) dµ(x) be the absolutely convergent integral of the measure µ.
Given n ∈ Z, consider an element gn ∈ Gn \ Gn+1 and fix it. Then any

x ∈ G has a unique representation in the form

x =
+∞∑

n=−∞

angn, an = 0, pn − 1. (2.1)

The sum (2.1) contain finite number of terms with negative subscripts,

that is,

x =
+∞∑

n=m

angn, an = 0, pn − 1, am 6= 0. (2.2)

We will name system (gn)n∈Z as a basic system.
Classical examples of zero-dimensional groups are Vilenkin groups and

groups of p-adic numbers (see [12, Ch. 1, § 2]). A direct sum of cyclic

groups Z(pk) of order pk, k ∈ Z, is called a Vilenkin group. This means
that the elements of a Vilenkin group are infinite sequences x = (xk)

+∞
k=−∞

such that:

1) xk = 0, pk − 1;

2) only a finite number of xk with negative subscripts are different from
zero;
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3) the group operation +̇ is the coordinate-wise addition modulo pk,

that is,

x+̇y = (xk+̇yk), xk+̇yk = (xk + yk) mod pk.

A topology on such group is generated by the chain of subgroups

Gn =
{
x ∈ G : x = (. . . , 0, 0, . . . , 0, xn, xn+1, . . . ), xν = 0, pν − 1, ν ≥ n

}
.

The elements gn = (. . . , 0, 0, 1, 0, 0, . . . ) form a basic system. From def-
inition of the operation +̇ we have pngn = 0. Therefore we will name a
zero-dimensional group (G, +̇) with the condition pngn = 0 as Vilenkin

group.
By X we denote the collection of the characters of a group (G, +̇); it is

a group with respect to multiplication, too. Also let G⊥
n = {χ ∈ X : ∀x ∈

Gn , χ(x) = 1} be the annihilator of the group Gn. Each annihilator G⊥
n

is a group with respect to multiplication, and the subgroups G⊥
n form

an increasing sequence

· · · ⊂ G⊥
−n ⊂ · · · ⊂ G⊥

0 ⊂ G⊥
1 ⊂ · · · ⊂ G⊥

n ⊂ · · · (2.3)

with
+∞⋃

n=−∞

G⊥
n = X and

+∞⋂

n=−∞

G⊥
n = {1},

the quotient group G⊥
n+1/G

⊥
n having order pn. The group of characters X

is a zero-dimensional group with a basic chain (2.3). The group may be

supplied with the topology using the chain of subgroups (2.3), the family
of the cosets G⊥

n · χ, χ ∈ X, being taken as a base of the topology. The

collection of such cosets, along with the empty set, forms the semiring X .
Given a coset G⊥

n ·χ, we define a measure ν on it by ν(G⊥
n ·χ) = ν(G⊥

n ) = mn

(so that always µ(Gn)ν(G
⊥
n ) = 1). The measure ν can be extended onto

the σ-algebra of measurable sets in the standard way. One then forms the

absolutely convergent integral

∫

X

F (χ) dν(χ) using this measure.

The value χ(g) of the character χ at an element g ∈ G will be denoted

by (χ, g). The Fourier transform f̂ of an f ∈ L2(G) is defined as follows

f̂(χ) =

∫

G

f(x)(χ, x)dµ(x) = lim
n→+∞

∫

G−n

f(x)(χ, x)dµ(x),
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with the limit being in the norm of L2(X). For any f ∈ L2(G), the inversion

formula is valid

f(x) =

∫

X

f̂(χ)(χ, x) dν(χ) = lim
n→+∞

∫

G⊥
n

f̂(χ)(χ, x) dν(χ);

here the limit also signifies the convergence in the norm of L2(G). If f, g ∈
L2(G) then the Plancherel formula is valid

∫

G

f(x)g(x)dµ(x) =

∫

X

f̂(χ)ĝ(χ) dν(χ).

Provided with this topology, the group of charactersX is a zero-dimensional

locally compact group; there is, however, a dual situation: every element
x ∈ G is a character of the group X, and Gn is the annihilator of the

group G⊥
n . The union of disjoint sets Ej we will denote by

⊔
Ej.

For any n ∈ Z we choose a character rn ∈ G⊥
n+1\G

⊥
n and fixed it. (rn)n∈Z

is called a Rademacher system. Let us denote

H0 = {h ∈ G : h = a−1g−1+̇a−2g−2+̇ . . . +̇a−sg−s, s ∈ N, aj = 0, p− 1},

H
(s)
0 = {h ∈ G : h = a−1g−1+̇a−2g−2+̇ . . . +̇a−sg−s, aj = 0, p− 1}, s ∈ N.

The set H0 is an analog of the set N0 = N
⊔
{0}.

If in the zero-dimensional group G pn = p for any n ∈ Z then we

can define the mapping A : G → G by Ax :=
∑+∞

n=−∞ angn−1, where
x =

∑+∞
n=−∞ angn ∈ G. The mapping A is called a dilation operator

ifA(x+̇y) = Ax+̇Ay for all x, y ∈ G. By definition, put (χA, x) = (χ,Ax).

Lemma 2.1 ([14]) For any zero-dimensional group
1)
∫
G⊥

0

(χ, x) dν(χ) = 1G0
(x), 2)

∫
G0

(χ, x) dµ(x) = 1G⊥

0
(χ).

Lemma 2.2 ([14]) If pn = p for any n ∈ Z and the mapping A is additive
then

1)
∫
G⊥

n

(χ, x) dν(χ) = pn1Gn
(x),

2)
∫
Gn

(χ, x) dµ(x) = 1
pn
1G⊥

n
(χ).

Lemma 2.3 ([14]) Let χn,s = rαn
n r

αn+1

n+1 . . . r
αn+s

n+s be a character which does
not belong to G⊥

n . Then
∫

G⊥
nχn,s

(χ, x) dν(χ) = pn(χn,s, x)1Gn
(x).
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Lemma 2.4 ([14]) Let hn,s = an−1gn−1+̇an−2gn−2+̇ . . . +̇an−sgn−s /∈ Gn.

Then ∫

Gn+̇hn,s

(χ, x) dµ(x) =
1

pn
(χ, hn,s)1G⊥

n
(χ).

Definition 2.1 ([14]) Let M,N ∈ N. We denote by DM(G−N) the set of
step-functions f ∈ L2(G) such that 1) supp f ⊂ G−N , and 2) f is constant

on cosets GM+̇g. D−N(G
⊥
M) is defined similarly.

Lemma 2.5 ([14]) Let M,N ∈ N. f ∈ DM(G−N) if and only if f̂ ∈
D−N(G

⊥
M).

3 MRA and refinable function on Vilenkin groups

In what follows we will consider groups G for which pn = p and pgn = 0
for any n ∈ Z. We know that it is a Vilenkin group. We will denote a

Vilenkin group as G.
In this group we can choose Rademacher functions in various ways. We

define Rademacher functions with the equation
(
rn,
∑

k∈Z

akgk

)
= exp

(
2πi

p
an

)
.

In this case

(rn, gk) = exp

(
2πi

p
δnk

)
.

Our main objective is to find a simple algorithm to get a refinable step-

function that generates an orthogonal MRA on Vilenkin group.

Definition 3.1 A family of closed subspaces Vn, n ∈ Z, is said to be

a multiresolution analysis of L2(G) if the following axioms are satisfied:

A1) Vn ⊂ Vn+1;

A2)
⋃

n∈Z Vn = L2(G) and
⋂

n∈Z Vn = {0};

A3) f(x) ∈ Vn ⇐⇒ f(Ax) ∈ Vn+1 (A is a dilation operator);

A4) f(x) ∈ V0 =⇒ f(x−̇h) ∈ V0 for all h ∈ H0; (H0 is analog of Z).

A5) there exists a function ϕ ∈ L2(G) such that the system (ϕ(x−̇h))h∈H0

is an orthonormal basis for V0.

6



A function ϕ occurring in axiom A5 is called a scaling function.

Next we will follow the conventional approach. Let ϕ(x)∈L2(G), and
assume that (ϕ(x−̇h))h∈H0

is an orthonormal system in L2(G). With the

function ϕ and the dilation operator A, we define the linear subspaces
Ln = (ϕ(Anx−̇h))h∈H0

and closed subspaces Vn = Ln. It is evident that

the functions p
n
2ϕ(A\x−̇h)h∈H0

form an orthonormal basis for Vn, n ∈ Z. If
subspaces Vn form a MRA, then the function ϕ is said to generate an MRA
in L2(G). If a function ϕ generates an MRA, then we obtain from the axiom

A1
ϕ(x) =

∑

h∈H0

βhϕ(Ax−̇h)
(∑

|βh|
2 < +∞

)
. (3.1)

Therefore we will look up a function ϕ ∈ L2(G), which generates an MRA
in L2(G), as a solution of the refinement equation (3.1), A solution of
refinement equation (3.1) is called a refinable function.

Lemma 3.1 ([14]) Let ϕ ∈ DM (G−N) be a solution of (3.1). Then

ϕ(x) =
∑

h∈H
(N+1)
0

βhϕ(Ax−̇h) (3.2)

The refinement equation (3.2) may be written in the form

ϕ̂(χ) = m0(χ)ϕ̂(χA
−1), (3.3)

where

m0(χ) =
1

p

∑

h∈H
(N+1)
0

βh(χA−1, h) (3.4)

is a mask of the equation (3.3).

Lemma 3.2 ([14]) Let ϕ ∈ DM(G−N). Then the mask m0(χ) is constant
on cosets G⊥

−Nζ. If ϕ̂(G⊥
−N) 6= 0 then m0(G

⊥
−N) = 1.

Lemma 3.3 ([14]) The mask m0(χ) is a periodic function with any period

rα1

1 r
α2

2 . . . rαs
s (s ∈ N, αj = 0, p− 1, j = 1, s).

So, if m0(χ) is a mask of (3.3) then

T1) m0(χ) is constant on cosets G⊥
−Nζ,

T2) m0(χ) is periodic with any period rα1

1 r
α2

2 . . . rαs
s , αj = 0, p− 1,

T3) m0(G
⊥
−N) = 1.

Therefore we will assume that m0 satisfies these conditions.
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Theorem 3.1 ([14]) m0(χ) is a mask of equation (3.3) on the classD−N(G
⊥
M)

if and only if

m0(χ)m0(χA
−1) . . .m0(χA

−M−N) = 0 (3.5)

on G⊥
M+1 \ G⊥

M . If, in addition, the system ϕ(x−̇h)h∈H0
is orthonormal,

then ϕ(x) generate an orthogonal MRA.

So, to find a refinable function that generates orthogonal MRA, we need to

take a function m0(χ) that satisfies conditions T1, T2, T3, (3.5), construct
the function

ϕ̂(χ) =

∞∏

k=0

m0(χA
−k) ∈ D−N(G

⊥
M)

and check that the system ϕ(x−̇h)h∈H0
is orthonormal.

For any zero-dimensional group G the shifts system (ϕ(x−̇h))h∈H0 is
orthonormal if the condition |ϕ̂(χ)| = 1G⊥

0
(χ) is valid [14]. For Vilenkin

group G we can give another condition.

Definition 3.2 Let N,M ∈ N. A set E ⊂ X is called (N,M)-elementary
if E is disjoint union of pN cosets

G
⊥
−Nζj = G

⊥
−N r

α−N

−N r
α−N+1

−N+1 . . . r
α−1

−1︸ ︷︷ ︸
ξj

rα0

0 . . . r
αM−1

M−1︸ ︷︷ ︸
ηj

= G
⊥
−Nξjηj,

j = 0, 1, ..., pN − 1, j = α−N +α−N+1p+ · · ·+α−1p
N−1 (αν = 0, p− 1) such

that

1)
pN−1⊔
j=0

G
⊥
−Nξj = G

⊥
0 , G

⊥
−Nζ0 = G

⊥
−N ,

2) for any l = 0,M +N − 1 the intersection (G⊥
−N+l+1 \G

⊥
−N+l)

⋂
E 6= ∅.

Lemma 3.4 The set H0 ⊂ G is an orthonormal system on any (N,M)-

elementary set E ⊂ X.

Proof. Using the definition of (N,M)-elementary set we have

∫

E

(χ, h)(χ, g) dν(x) =

pN−1∑

j=0

∫

G⊥

−Nζj

(χ, h)(χ, g) dν(x) =

=

pN−1∑

j=0

∫

X

1G⊥

−Nζj
(χ)(χ, h)(χ, g)dν(x) =

8



=

pN−1∑

j=0

∫

X

1G⊥

−N ζj
(χηj)(χηj, h)(χηj, g) dν(x) =

=

pN−1∑

j=0

∫

X

1G⊥

−N ξj
(χ)(χ, h)(χ, g)(ηj, h)(ηj, g) dν(x).

Since

(ηj, h) = (rα0

0 r
α1

1 . . . r
αM−1

M−1 , a−1g−1+̇a−2g−2+̇ . . . +̇a−sg−s) = 1,

(ηj, g) = (rα0

0 r
α1

1 . . . r
αM−1

M−1 , b−1g−1+̇b−2g−2+̇ . . . +̇b−sg−s) = 1,

then

∫

E

(χ, h)(χ, g) dν(x) =

pN−1∑

j=0

∫

G⊥

−Nξj

(χ, h)(χ, g) dν(x) =

∫

G⊥

0

(χ, h)(χ, g) dν(x) =

= δh,g. �

Theorem 3.2 Let (G, +̇) be a p-adic Vilenkin group, E ⊂ G⊥
M – an

(N,M)-elementary set. If |ϕ̂(χ)| = 1E(χ) on X then the system of shifts
(ϕ(x−̇h))h∈H0

is an orthonormal system on G.

Proof. Let H̃0 ⊂ H0 be a finite set. Using the Plansherel equation we
have
∫

G

ϕ(x−̇g)ϕ(x−̇g) dµ(x) =

∫

X

|ϕ̂(χ)|2(χ, g)(χ, h)dν(χ) =

∫

E

(χ, h)(χ, g)dν(χ) =

=

pN−1∑

j=0

∫

G⊥

−Nζj

(χ, h)(χ, g) dν(χ).

Transform the inner integral
∫

G⊥

−N ζj

(χ, h)(χ, g) dν(χ) =

∫

X

1G⊥

−N ζj
(χ)(χ, h)(χ, g) dν(χ) =

=

∫

X

1G⊥

−Nζj
(χηj)(χηj, h−̇g) dν(χ) =

∫

X

1G⊥

−N ξj
(χ)(χηj, h−̇g) dν(χ) =

9



=

∫

G⊥

−Nξj

(χηj, h−̇g) dν(χ).

Repeating the arguments of lemma 3.4 we obtain
∫

G

ϕ(x−̇h)ϕ(x−̇g) dµ(x) = δh,g. �

Theorem 3.3 ([14]) Let ϕ(x) ∈ DM(G−N). A shifts system (ϕ(x−̇h))h∈H0

will be orthonormal if and only if for any α−N , α−N+1, . . . , α−1 = (0, p− 1)

p−1∑

α0,α1,...,αM−1=0

|ϕ̂(G⊥
−Nr

α−N

−N . . . rα0

0 . . . r
αM−1

M−1 )|
2 = 1. (3.6)

Lemma 3.5 ([14]) Let ϕ̂ ∈ D−N(G
⊥
M) be a solution of the refinement

equation
ϕ̂(χ) = m0(χ)ϕ̂(χA

−1)

and (ϕ(x−̇h))h∈H0
be an orthonormal system.

Then for any α−N , α−N+1, . . . , α−1 = 0, p− 1

p−1∑

α0=0

|m0(G
⊥
−Nr

α−N

−N r
α−N+1

−N+1 . . . r
α−1

−1 r
α0

0 )|2 = 1. (3.7)

4 Trees and refinable functions

In this section we reduce the problem of construction of step refinable
function to construction of some tree.

We will consider some special class of refinable functions ϕ(χ) for which

|ϕ̂(χ)| is a characteristic function of a set. Define this class.

Definition 4.1 A mask m0(χ) is called N-elementary (N ∈ N0) if m0(χ)

is constant on cosets G⊥
−Nχ, its absolute value |m0(χ)| has two values only:

0 and 1, and m0(G
⊥
−N) = 1. The refinable function ϕ(x) with Fourier

transform

ϕ̂(χ) =

∞∏

n=0

m0(χA
−n)

is called N-elementary too. N-elementary function ϕ is called (N,M)-

elementary if ϕ̂(χ) ∈ D−N(G
⊥
M). In this case we will call the Fourier

transform ϕ̂(χ) (N,M)-elementary, also.
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Definition 4.2 Let Ẽ =
⊔

α−N ,...,α−1,α0

G⊥
−Nr

α−N

−N . . . r
α−1

−1 r
α0

0 ⊂ G⊥
1 be an (N, 1)-

elementary set. We say that the set ẼX is a periodic extension of Ẽ if

ẼX =

∞⋃

s=1

p−1⊔

α1,...,αs=0

Ẽrα1

1 r
α2

2 . . . rαs

s .

We say that Ẽ generates an (N,M) elementary set E, if
∞⋂
n=0

ẼXA
n = E.

Since ẼX ⊃ G⊥
−N then

M+1⋂
n=0

ẼXAn = E and

(
M+1⋂
n=0

ẼXAn

)⋂
(G⊥

M+1\G
⊥
M) =

∅. The converse is also true. Since
(

M+1⋂

n=0

ẼXA
n

)
⋂

(G⊥
M+1 \G

⊥
M) = ∅.

Then we have
(

M+2⋂

n=0

ẼXA
n

)
⋂

(G⊥
M+2\G

⊥
M+1) = ẼX

⋂
(

M+1⋂

n=0

ẼXA
n
⋂

(G⊥
M+1 \G

⊥
M)

)
A =

= ẼX

⋂
∅ = ∅.

Let N be a natural number. Denote V = {0, 1. . . . , p−1} and construct

a tree T (V ) in the following way:
1) The root of this tree and its vertices of level 1, 2, . . . , N − 1 are equal to

zero.
2) Any path (αk → αk+1 → · · · → αk+N−1) of length N is present in the
tree T (V ) exactly 1 time.

Such tree we will call N -valid.
For example for p = 3, N = 2 we can construct the tree

♠0 ✲ 0 ♠✲ 2
�
��✒

✲

❅
❅❅❘

♠

♠1

♠0

♠2

✲ ♠0

✲ ♠1
�
��✒

♠1

❅
❅❅❘ ♠2Figure 1

This tree contains any edge

(0, 0), (0, 1), (0, 1), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)

11



exactly 1 time and height T (V ) = 6.

Using the tree T (V ) we will construct the family of cosets in the follow-
ing way:

For any a path

(αs → αs−1 → · · · → αs−N+1 → αs−N → αs−N−1 → · · · → α−N+1 → α−N)

in which αs = αs−1 = · · · = αs−N+1 = 0.
we construct cosets

G⊥
−Nr

α−N

−N r
α−N+1

−N+1 . . . r
α0

0 , G
⊥
−Nr

α−N+1

−N r
α−N+2

−N+1 . . . r
α1

0 , . . . , G
⊥
−Nr

αs−N

−N r
αs−N+1

−N+1 . . . r
αs

0 ,

(4.1)
G⊥

−Nr
αs−N+1

−N . . . rαs

−1, G
⊥
−Nr

αs−N+2

−N . . . rαs

−2, . . . , G
⊥
−Nr

αs

−N . (4.2)

The union of all such cosets we denote as Ẽ. It is clear that Ẽ ⊂ G⊥
1 .

Definition 4.3 Let ẼX be a periodic extension of Ẽ. We say that the tree

T (V ) generates a set E, if E =
∞⋂
n=0

ẼXA
n.

Lemma 4.1 Let T (V ) be a N-valid tree. Let E ⊂ X be a set generated by
the tree T (V ), H – height of T (V ). Then E is an (N,H−2N)-elementary

set.

Proof. Let us denote

m(χ) = 1ẼX
(χ), M(χ) =

∞∏

n=0

m(χA−n).

First we note that M(χ) = 1E(χ). Indeed

1E(χ) = 1 ⇔ χ ∈ E ⇔ ∀n, χA−n ∈ ẼX ⇔ ∀n, 1ẼX
(χA−n) = 1 ⇔

∀n, m(χA−n) = 1 ⇔
∞∏

n=0

m(χA−n) = 1 ⇔M(χ) = 1.

It means that M(χ) = 1E(χ).
Now we will prove, that 1E(χ) = 0 for χ ∈ G⊥

H−2N+1 \G
⊥
H−2N . Since ẼX ⊃

G
⊥
−N it follows that 1ẼX

(G⊥
H−2NA

−H+N) = 1ẼX
(G⊥

−N) = 1. Consequently

∞∏

n=0

1ẼX
(χA−n) =

H−N−1∏

n=0

1ẼX
(χA−n)

12



if χ ∈ G
⊥
H−2N+1 \G

⊥
H−2N . Let us denote

m(G⊥
−Nr

α−N

−N r
α−N+1

−N+1 . . . r
α0

0 ) = λα−N ,α−N+1,...,α0
.

By the definition of cosets (4.1), (4.2) m(G⊥
−Nr

α−N

−N r
α−N+1

−N+1 . . . r
α0

0 ) 6= 0 ⇔ the
vector (α0, α1, ..., α−N+1, α−N) is a path (α0 → α1 → ...→ α−N+1 → α−N)

of the tree T (V ).
We need to prove that

1E(G
⊥
−Nr

α−N

−N r
α−N+1

−N+1 . . . r
αH−2N

H−2N ) = 0

for αH−2N 6= 0. Since ẼX is a periodic extension of Ẽ it follows that the

function m(χ) = 1ẼX
(χ) is periodic with any period rα1

1 r
α2

2 . . . rαs
s , s ∈ N,

i.e. m(χrα1

1 r
α2

2 . . . rαs
s ) = m(χ) when χ ∈ G⊥

1 . Using this fact we can write
M(χ) for χ ∈ G⊥

H−2N+1 \G
⊥
H−2N in the form

M(G⊥
−Nζ) = M(G⊥

−Nr
α−N

−N r
α−N+1

−N+1 . . . r
αH−2N

H−2N ) =

= m(G⊥
−Nr

α−N

−N r
α−N+1

−N+1 . . . r
α0

0 )m(G⊥
−Nr

α−N+1

−N r
α−N+2

−N+1 . . . r
α1

0 ) . . .

m(G⊥
−Nr

αH−3N

−N r
αH−3N+1

−N+1 . . . r
αH−2N−1

−1 r
αH−2N

0 ) (4.3)

m(G⊥
−Nr

αH−3N+1

−N r
αH−3N+1

−N+1 . . . r
αH−2N

−1 ) . . .m(G⊥
−Nr

αH−2N−1

−N r
αH−2N

−N+1 )m(G⊥
−Nr

αH−2N

−N ).

Assume that M(G⊥
−Nζ) 6= 0. Then all factors in (4.3) are nonzero. So we

have the path

0 → · · · → 0 → αH−2N 6= 0 → αH−2N−1 → · · · → α0 → · · · → α−N+1 → α−N ,

where there are N zeroes at the beginning of the path. The length of such

path is H + 1, which contradicts the condition height(T ) = H.
Now we prove that E is (1, H−2N) elementary set. Since the tree T(V)

is N -valid, it has all possible combinations of N numbers αi = 0, p− 1 as
its paths, and we have the first property of elementary sets satisfied. Also,

since height(T ) = H, there exists a path

α1 = 0 → · · · → αN = 0 → αN+1 6= 0 → αN+2 → · · · → αH

of length H. Such path generates the set G
⊥
−Nr

αN+1

−N ⊂ G−N+1 \ G−N ,
since αN+1 6= 0. Also, the same path generates the set G⊥

−Nr
αN+2

−N r
αN+1

−N+1 ⊂
G−N+2 \G−N+1. Continuing this process we will obtain all sets

∀l = 0, H −N − 1,G⊥
−N

l∏

n=0

r
αN+1+n

−N+n ⊂ G−N+l+1 \G−N+l,

13



which means the second property of elementary sets is also satisfied. Thus

we can conclude that E is (1, H − 2N)-elementary set and the lemma is
proved. �.

Theorem 4.1 LetM, p ∈ N, p ≥ 3. Let E ⊂ G⊥
M be an (N,M)-elementary

set, ϕ̂ ∈ D−N(G
⊥
M), |ϕ̂(χ)| = 1E(χ), ϕ̂(χ) the solution of the equation

ϕ̂(χ) = m0(χ)ϕ̂(χA
−1), (4.4)

where m0(χ) is an N-elementary mask. Then there exists a rooted tree

T (V ) with height(T ) =M + 2N that generates the set E.

Prof. Since the set E is (N,M)-elementary set and |ϕ̂(χ)| = 1E(χ), it
follows from theorem 3.2 that the system (ϕ(x−̇h))h∈H0

is an orthonormal

system in L2(G). Using the theorem 3.3 we obtain that ∀α−N , . . . , α−1 =
0, p− 1

p−1∑

α0,α1,...,αM−1=0

|ϕ̂(G⊥
−Nr

α−N

−N . . . r
α−1

−1 r
α0

0 . . . r
αM−1

M−1 )|
2 = 1.

Since ϕ̂ is a solution of refinement equation (4.4) it follows from lemma 3.5

that ∀α−N , . . . , α−1 = 0, p− 1

p−1∑

α0=0

|m0(G
⊥
−Nr

α−N

−N r
α−1

−1 r
α0

0 )|2 = 1. (4.5)

Let as denote λα−N ,...,α−1,α0
:= m0(G

⊥
−Nr

α−N

−N . . . r
α−1

−1 r
α0

0 ). Then we write

(4.5) in the form
p−1∑

α0=0

|λα−N ,...,α−1,α0
|2 = 1. (4.6)

Since the mask m0(χ) is N-elementary it follows that |λα−N ,...,α−1,α0
| takes

one of two values only: 0 or 1.

Now we will construct the tree T . We will begin with the path of N
zeros

01 → 02 → · · · → 0N ,

where 01 is the root of the tree.

Let U be a family of cosets G
⊥
−Nζ ⊂ G

⊥
M such that ϕ̂(G⊥

−Nζ) 6= 0 and
G⊥

−N /∈ U. We can write a coset G⊥
−Nζ ∈ U in the form

G
⊥
−Nζ = G

⊥
−Nr

α−N

−N . . . r
α−1

−1 r
α0

0 . . . rαs

s , αs 6= 0. (4.7)
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Here s ≤ M − 1 since each coset in U is a subset of G⊥
M , and there exists

at least one coset with s = M − 1 since function is (N,M)-elementary. If

s = M − 1 and αs+1 + · · ·+ αs+l 6= 0 then coset

G
⊥
−Nr

α−N

−N . . . r
α−1

−1 r
α0

0 . . . rαs

s r
αs+1

s+1 . . . r
αs+l

s+l /∈ U

0)Initially, we take a coset

G
⊥
−Nζ1 = G

⊥
−Nr

α
(1)
−N

−N . . . r
α
(1)
−1

−1 r
α
(1)
0

0 . . . r
α
(1)
s1

s1 ∈ U, αs1 6= 0

and connect the path

p(1) = α(1)
s1

→ · · · → α
(1)
0 → α

(1)
−1 → · · · → α

(1)
−N

to the 0N vertex. We obtain the tree T (0) that contains unique branch

T (0) = (01 → 02 → · · · → 0N → αs1 → · · · → α0 → α−1 → · · · → α−N).

1) On the first step, take another coset

G
⊥
−Nζ2 = G

⊥
−Nr

α
(2)
−N

−N . . . r
α
(2)
−1

−1 r
α
(2)
0

0 . . . r
α
(2)
s2

s2 ∈ U \G⊥
−Nζ1, α

(2)
s2

6= 0

which generates the path

p(2) = (α(2)
s2

→ · · · → α
(2)
0 → α

(2)
−1 → · · · → α

(2)
−N)

Let us add the path 01 → 02 → · · · → 0N to the beginning of the path

p(2) and denote it as p̃(2), i.e.

p̃(2) = (01 → 02 → · · · → 0N → α(2)
s2

→ · · · → α
(2)
0 → α

(2)
−1 → · · · → α

(2)
−N)

Now we will include this path into our tree T (0). To include it we will
compare the path p̃(2) with the tree T (0).

There are 3 possible cases:

1)The path p(0) is shorter than p(1) and

α(0)
s0

= α(1)
s1
, α

(0)
s0−1 = α

(1)
s1−1, ..., α

(0)
−N = α

(1)
s1−(s0+N).

In this case we connect the tail

α
(1)
s1−(s0+N+1) → α

(1)
s1−(s0+N+2) → · · · → α

(1)
−N
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of the path p(1) to the vertex α
(0)
−N .

2)The path p(0) is longer than p(1) and

α(0)
s0

= α(1)
s1
, α

(0)
s0−1 = α

(1)
s1−1, ..., α

(0)
s0−(s1+N) = α

(1)
−N .

In this case the path p̃(1) is already a path of the tree T (0) and we leave the
tree T (0) unchanged.
3)There exists an integer l such that α

(1)
s1−l 6= α

(0)
s0−l and ∀k < l, α

(1)
s1−k =

α
(0)
s0−k. If l = −1 then we get α

(1)
s1−l = 0N . When l is calculated we connect

the path

α
(1)
s1−l → α

(1)
s1−l−1 → · · · → α

(1)
−N

to the vertex α
(0)
s1−l+1 and obtain the tree

01 ✲ . . . ✲0N ✲α
(0)
s0 . . .

✲α
(0)
s0−l+1

✲α
(0)
s0−l

✲ . . . ✲α
(0)
−1

✲ . . . ✲α
(0)
−N .

�
��✒
α
(1)
s1−l

✲ . . . ✲α
(1)
−1

✲ . . . ✲α
(1)
−N

Figure 2
This is the end of first step.

Consider n steps fulfilled, i.e. paths p(0), p(1), ..., p(n) are chosen and the
correspondent tree T (n) is constructed. Now we will perform the (n+1)-th

step. Let us take a coset

G
⊥
−Nζn+1 = G

⊥
−Nr

α
(n+1)
−N

−N . . . r
α
(n+1)
−1

−1 r
α
(n+1)
0

0 . . . r
α
(n+1)
sn+1

sn+1 ∈ U\
n⋃

k=1

G
⊥
−Nζk, α

(n+1)
sn+1

6= 0,

which generates a path

p(n+1) = (α(n+1)
sn+1

→ · · · → α
(n+1)
0 → α

(n+1)
−1 → · · · → α

(n+1)
−N ).

and denote

p̃(n+1) = (01 → · · · → 0N → α(n+1)
sn+1

→ · · · → α
(n+1)
0 → α

(n+1)
−1 → · · · → α

(n+1)
−N ).

Now we will include the path p̃(n+1) into the tree T (n). To do it, we will
be looking for a path in the tree T (n) such that it has the longest starting

sequence matching with the beginning of p̃(n+1).
Step n+ 1.1. If α

(n+1)
sn+1 is not equal to any vertex of level N +1 of the tree

T (n) then we connect the path p(n+1) to the vertex 0N , obtain the new tree
T (n) and finish the step.
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Step n + 1.2. Otherwise there exists such (always unique) vertex of the

level N + 1, which we will denote by α(N+1),i, equal to α
(n+1)
sn+1 we consider

all vertices of level N+2 connected to it. If there are no vertices connected

or there are no such vertices matching α
(n+1)
sn+1−1 then we connect the tail of

p(n+1) starting from the element α
(n+1)
sn+1−1 to the vertex α(N+1),ij , obtain new

tree and finish the step. Otherwise, if there exists vertex of level N + 2

α(N+2),i equal to α
(n+1)
sn+1−1, we continue the process of including the path

p(n+1) into the tree until either there are no more elements in the path
p(n+1) or at some level there are no vertices equal to corresponding element
of the path p(n+1). In the first case the tree is left unchanged at this step. In

the second case the tail of p(n+1) is added to the tree somewhere. Obviously,
since the path p(n+1) has finite number of elements the process will also be

finite.
The description of the (n+1)-th step is finished and there are only few

final remarks left.
1)The resulting graph is a tree, since we produce no cycles at each step.

2)The process of constructing such tree is finite, i.e. contains finite
number of steps since during each step we use different coset of U and
there is a finite number of such cosets.

So, at this point we have obtained a tree. Let us prove that this tree
T is N-valid. To prove it, we must show, that each path of N elements is

unique in our tree. Firstly, let us prove that the path of N zeros appears
only once in our tree – and it is the path starting from its root. Indeed,

let us assume that the path exists somewhere else in the tree T and that
it is a part of some path

01 → · · · → 0N → αs → · · · → αk → 01 → · · · → 0N → · · · → α−N

from root to leaf. Since αs 6= 0 there exists at least one nonzero element

between two instances of the path 01 → · · · → 0N . Without the loss of
generality we can consider αk 6= 0.

Using the same technique as in (4.3), we can conclude, that

|ϕ̂(G⊥
−Nr

α−N

−N . . . r0Nk−2N−1 . . . r
01
k−N−1r

αk

k−N . . . r
αs

s )| =

= |λα−N ,...,α−1,α0
| . . . |λ0N ,...,01,αk

| . . . |λαs,0,...,0| = 1,

which in particular means that |λ0,...,0,αk
| = 1. Also, by the properties of

the mask λ0,...,0,0 = 1. These equalities contradict (4.6).
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Now, let us assume that the arbitrary path γ−1 → · · · → γ−N appears

twice. Thus, it is a subpath of 2 different paths from root to leaf

01 → . . . 0N → αs → · · · → αk → γ−1 → · · · → γ−N → · · · → α−N , k < s,

01 → . . . 0N → βs′ → · · · → βk′ → γ−1 → · · · → γ−N → · · · → β−N , k
′ < s′.

Let us denote 0i = αs+N−i+1 = βs′+N−i+1. Now, let us prove, that ∃j > 0 :

αk+j 6= βk′+j.
We assume that the length of α subpath is less than the length of β

subpath, i.e. s − k < s′ − k′. Firstly, let us check if αk 6= βk′. If they are
equal, let’s check if αk+1 6= βk′+1. If we haven’t encountered nonequal pair
before 0N = αs+1 and βk′−k+s+1, we check if they are nonequal. If not (i.e

they are equal), we check all the remaining pairs. If next N − 1 elements
of β subpath are equal to elements 0i of the α subpath, it contradicts the

fact that there is only one subpath of N zeros in our tree. Thus in this
case ∃j > 0 : αk+j 6= βk′+j.

Now, let us assume, that both subpaths are of the same length. If ∀j >
0 : αk+j = βk′+j then, by construction of the tree T these two paths actually

correspond to the same vertices from 01 to γ−N , which means subpath γ
does not appear twice in our tree. It contradicts the initial assumption
that it does appear twice. Thus in this case ∃j > 0 : αk+j 6= βk′+j, too.

Let us assume, without loss of generality, that αk 6= βk′. Using the same
technique as in (4.3), we can conclude, that

|ϕ̂(G⊥
−Nr

α−N

−N . . . r
γ−N

k−2N−1 . . . r
γ−1

k−N−1r
αk

k−N . . . r
αs

s )| =

= |λα−N ,...,α−1,α0
| . . . |λγ−N ,...,γ−1,αk

| . . . |λαs,0,...,0| = 1,

|ϕ̂(G⊥
−Nr

β−N

−N . . . r
γ−N

k′−2N−1 . . . r
γ−1

k′−N−1r
βk′

k′−N . . . r
βs′

s′ )| =

= |λβ−N ,...,β−1,β0
| . . . |λγ−N ,...,γ−1,βk′

| . . . |λβs′ ,0,...,0| = 1.

That means, in particular, that |λγ−N ,...,γ−1,βk′
| = |λγ−N ,...,γ−1,αk

| = 1,
which contradicts (4.6). Thus our tree is N-valid.

It is evident that this tree generates refinable function ϕ̂ with a mask
m0. Let’s show that height(T ) = M + 2N . Indeed, since ϕ̂ ∈ D−N(G

⊥
M) it

follows that there exists a coset G⊥
−Nr

α−N

−N . . . r
α−1

−1 r
α0

0 . . . r
αM−1

M−1 , αM−1 6= 0 for

which |ϕ̂(G⊥
−Nr

α−N

−N . . . r
α−1

−1 r
α0

0 . . . r
αM−1

M−1 )| = 1. This coset generates a path

01 → · · · → 0N → αM−1 → · · · → α0 → α−1 → · · · → α−N

of T . This path contain M + 2N vertices. It means that height(T ) ≥
M + 2N . On the other hand there is no coset G⊥

−Nζ ⊂ G⊥
M+1 \ G⊥

M ,
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consequently there is no path with L > M +2N . So height(T ) =M +2N .

The theorem is proved. �

Definition 4.4 Let T (V ) be an N-valid tree, H = height(T ). Using

cosets (4.1) we define the mask m0(χ) in the subgroup G
⊥
1 as follows:

m0(G
⊥
−N) = 1, m0(G

⊥
−Nr

α−N

−N . . . r
α−1

−1 r
α0

0 ) = λα−N ,...,α−1,α0
, |λα−N ,...,α−1,α0

| = 1

when G
⊥
−Nr

α−N

−N . . . r
α−1

−1 r
α0

0 ⊂ Ẽ, m0(G
⊥
−Nr

α−N

−N . . . r
α−1

−1 r
α0

0 ) = λα−N ,...,α−1,α0 =

0 when G⊥
−Nr

α−N

−N . . . r
α−1

−1 r
α0

0 ⊂ G⊥
1 \Ẽ. Let us extend the mask m0(χ) on

the X \ G⊥
1 periodically, i.e. m0(χr

α1

1 r
α2

2 . . . rαs
s ) = m0(χ). Then we say

that the tree T (V ) generates the mask m0(χ). Set ϕ̂(χ) =
∞∏
n=0

m0(χA−n).

It follows from lemma 4.1 that
1) supp ϕ̂(χ) ⊂ G⊥

H−2N ,

2) ϕ̂(χ) is (N,H − 2N) elementary function,
3) (ϕ(x−̇h))h∈H0

is an orthonormal system.

In this case we say that the tree T (V ) generates the refinable function ϕ(x).

Theorem 4.2 Let p ≥ 3 be a prime number, T (V ) an N-valid tree. Let H

be are height of T (V ). By ϕ(x) denote the function generated by the T (V ).
Then ϕ(x) generates an orthogonal MRA on p-adic Vilenkin group.

Proof. Since T (V ) generates the the function ϕ then 1)ϕ̂ ∈ D−N(G
⊥
M),

2)ϕ̂(χ) is (N,H − 2N)- elementary function, 3)ϕ̂(χ) is a solution of refin-
able equation (3.3), 4)(ϕ(x−̇h))h∈H0

is an orthonormal system. From the

theorem 3.1 it follows that ϕ(x) generates an orthogonal MRA. �

5 Construction of wavelet bases

In [6] and [7] Yu.A.Farkov reduces the problem of p-wavelet decomposition

into a problem of matrix extension. We will use another method [13].
As usual, Wn stands for the orthogonal complement of Vn in Vn+1: that

is Vn+1 = Vn ⊕Wn and Vn⊥Wn (n ∈ Z, and ⊕ denotes the direct sum).
It is readily seen that

1) f ∈ Wn ⇔ f(Ax) ∈ Wn+1,
2) Wn⊥Wk for k 6= n,
3) ⊕Wn = L2(G), n ∈ Z.

From theorems 4.1, 4.2 we derive an algorithm for constructing wavelet
bases.

Step 1. Choose an arbitrary tree T - N -valid. Let H be a height of the
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tree T .

Step 2. Choose a finite sequence (λα−N ,...,α0
)p−1
α−N ,...,α0=0 such that λ0,0,...,0 =

1, |λα−N ,...,α0
| = 1 if there exists subpath α−N → · · · → α0 in the tree T ,

|λα−N ,...,α0
| = 0 otherwise.

Step 3. Construct the mask m0(χ) and Fourier transform ϕ̂(χ) using

definition 4.4. It is clear that E = supp(ϕ̂(χ)) is (N,H − 2N)-elementary
set.
Step 4. Find coefficients βh for which

m0(χ) =
1

p

∑

h∈H
(N+1)
0

βh(χA−1, h). (5.1)

To find coefficients βh, we write this equation in the form

m0(χk) =
1

p

pN+1−1∑

j=0

βj(χk,A−1hj) (5.2)

where

hj = a−1g−1+̇a−2g−2+̇ . . . +̇a−N−1g−N−1, χk ∈ G⊥
−Nr

α−N

−N . . . r
α−1

−1 r
α0

0 ,

j = a−1 + a−2p+ · · ·+ a−N−1p
N , k = α−N + · · ·+ α−1p

N−1 + α0p
N ,

a−1, a−2, . . . , a−N = 0, p− 1, α−N−1, . . . , α−1, α0 = 0, p− 1.

Since the matrix 1
p
(χk,A−1hj) of this system is unitary it follows that

the system (5.2) has a unique solution.

Step 5. We set ml(χ) = m0(χr
−l
0 ), l = 1, p− 1, X0 = {χ : |m0(χ)| = 1}.

Clearly, ml(χ) may be written as

ml(χ) =
1

p

∑

h∈H
(N+1)
0

βh(χr
−l
0 ,A

−1h) =
1

p

∑

h∈H
(N+1)
0

β
(l)
h (χ,A−1h)

where β
(l)
h = βh(r

l
0,A

−1h). By the construction ofml(χ) we have |ml(X0r
l
0)| =

1. From the necessary condition (3.7) it follows that |ml(X0r
ν
0)| = 0 for

ν 6= l, ml(χ)mk(χ) = 0 when k 6= l.
Step 6. Define the functions

ψl(x) =
∑

h∈H
(N+1)
0

β
(l)
h ϕ(Ax−̇h).

Theorem 5.1 The functions ψl(x−̇h), where l = 1, p− 1, h ∈ H0, form
an orthonormal basis for W0.
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Proof. a) We claim that (ϕ(·−̇g(1)), ψl(·−̇g(2))) = 0 for any g(1), g(2) ∈ H0.

Since

ϕ̂·−̇h(χ) = (χ, h)ϕ̂(χ), ϕ̂A·−̇g(χ) =
1

p
(χ,A−1g)ϕ̂(χA−1),

it follows that

(ϕ(·−̇g(1)), ψl(·−̇g
(2))) =

∫

X

ϕ̂(χ)ϕ̂(χA−1)(χ, g(1))(χ, g(2))ml(χ) dν(χ) = 0

because supp ϕ̂(χ) = E and ml(E) = 0, l = 1, p− 1.
b) By analogy

(ψk(·−̇g
(1)), ψl(·−̇g

(2))) =

∫

X

|ϕ̂(χA−1)|2(χ, g(2)−̇g(1))mk(χ)ml(χ) dν(χ) = 0

when k 6= l.

c) We verify that (ψl(·−̇g(1)), ψl(·−̇g(2))) = 0, provided that g(1), g(2) ∈ H0

and g(1) 6= g(2). Write this scalar product in the form

(ψl(·−̇g
(1)), ψl(·−̇g

(2))) =

∫

X

|ϕ̂(χA−1)|2(χ, g(2)−̇g(1))|ml(χ)|
2 dν(χ) =

=

∫

EA
⋂
X0r

l
0

(χ, g(2)−̇g(1)) dν(χ).

Show that EA
⋂
X0r

l
0 is an (N,H−2N)-elementary set. By the definition

E =
⊔

α∈T (V )

G
⊥
−Nr

α−N

−N ...rα0

0 . . . rαs

s r
0
s+1...r

0
s+N (s ≤ H − 2N − 1) (5.3)

where the union is taken over all paths

α = (0, ..., 0, αs, αs−1, . . . , α0, α−1, ..., α−N)

of the tree T . It means that for any vector (α−1, ..., α−N), αj = 0, p− 1
the union (5.3) contains unique coset G⊥

−Nr
α−N

−N ...r
α−1

−1 r
α0

0 . . . rαs
s r

0
s+1...r

0
s+N .

Consequently EA =
⊔

α∈T (V )

G
⊥
−N+1r

α−N

−N+1...r
α−1

0 . . . rαs

s+1r
0
s+2...r

0
s+N+1 =
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p−1⊔

α−N−1=0

⊔

α∈T (V )

G
⊥
−Nr

α−N−1

−N r
α−N

−N+1...r
α−1

0 . . . rαs

s+1r
0
s+2...r

0
s+N+1.

On the other hand

X0r
l
0 =

⋃

j∈N

⊔

(γ−N ,...,γ−1,γ0)∈T (V )

p−1⊔

b1,b2,...,bj=0

G
⊥
−Nr

γ−N

−N ...r
γ−1

−1 r
γ0+l
0 rb11 . . . r

bj
j .

Therefore EA
⋂
X0r

l
0 consists of all cosets

G
⊥
−Nr

γ−N

−N ...r
γ−1

−1 r
α−1

0 rα0

1 . . . rαs

s+1r
0
s+2...r

0
s+N+1

where

(0, ..., 0, αs, αs−1, . . . , α−1 = γ0 + l, γ−1, ..., γ−N) ∈ T

Since the tree T is N -valid it follows that EA
⋂
X0r

l
0 is (N,H − 2N + 1)-

elementary set. By lemma 3.4 it follows that
∫

EA
⋂
X0r

l
0

(χ, g(2)−̇g(1)) dν(χ) = 0.

d) We claim that any function f ∈ W0 can be expanded uniquely in a series
in terms of (ψl(x−̇g))l=1,p−1,g∈H0

. The proof of this fact may be found in

[13], theorem 5.1. �
Step 7. Since the subspaces (Vj)j∈Z form an MRA in L2(G), it follows

that the functions

(ψl(A
nx−̇h)) l = 1, p− 1, n ∈ Z, h ∈ H0

form a complete orthogonal system in L2(G).
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